SPECTROPHOTOMETRIC DETERMINATION OF UREA IN NATURAL WATERS WITH HYPOCHLORITE AND PHENOL

By

Robert T. Emmet

This document has been approved for public release and sale; its distribution is unlimited.

MACHINERY LABORATORY

RESEARCH AND DEVELOPMENT REPORT

May 1969
The Naval Ship Research and Development Center is a U.S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland and the Marine Engineering Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center
Washington, D.C. 20007
SPECTROPHOTOMETRIC DETERMINATION OF UREA IN NATURAL WATERS WITH HYPOCHLORITE AND PHENOL

By
Robert T. Emmet

May 1969 MACHLAB 117 Report 2663
ABSTRACT

The yellow compound formed from urea, hypochlorite, and phenol with an absorbancy maximum at 454 millimicrons has been adapted to determine micromolar quantities of urea in natural waters. The urea is chlorinated in a solution of sodium hypochlorite at pH 7.7, and upon the addition of phenol, the intermediate condenses rapidly to form the colored product. In freshwater, the absorbancy index is 2.6×10^3 absorbency units per centimeter cell times gram atom urea–N per liter, and in 35 parts per thousand seawater the color is twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea–N per liter, and the relative standard deviation is 10% at a urea–N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.
ADMINISTRATIVE INFORMATION

This report is part of Sub-project SR104 03 01, Task 0590, Assignment 723 108, as described in the May 1968 program summary.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td>iv</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENTAL INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>Apparatus</td>
<td>1</td>
</tr>
<tr>
<td>Reagents</td>
<td>1</td>
</tr>
<tr>
<td>Procedures</td>
<td>2</td>
</tr>
<tr>
<td>Calculation</td>
<td>4</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td>Reactions</td>
<td>4</td>
</tr>
<tr>
<td>Signal Stability</td>
<td>6</td>
</tr>
<tr>
<td>Temperature and Salt Effects</td>
<td>6</td>
</tr>
<tr>
<td>Specificity of the Method</td>
<td>6</td>
</tr>
<tr>
<td>Calibration and Precision</td>
<td>7</td>
</tr>
<tr>
<td>Adaptation to Clinical Samples</td>
<td>7</td>
</tr>
<tr>
<td>OTHER COLOR REACTIONS</td>
<td>10</td>
</tr>
<tr>
<td>INSIGHTS INTO THE AMMONIA METHOD</td>
<td>10</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>Appendix A – Bibliography</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTION LIST (10 pages)</td>
<td></td>
</tr>
</tbody>
</table>
SPECTROPHOTOMETRIC DETERMINATION OF UREA IN NATURAL WATERS WITH HYPOCHLORITE AND PHENOL

By Robert T. Emmet

INTRODUCTION

Urea is produced by ureaytic animals, including the crustacea, is hydrolized to ammonia, and reabsorbed by the phytoplankton. The urea forms a significant portion of the available nitrogen, particularly in waters polluted by domestic sewage. An analysis for urea would provide a more complete description of the partition and dynamics of nitrogen in natural systems. Because of the myriad potential interferences and low urea concentrations, such an analysis for use in nutrient surveys should be specific and sensitive. The most specific sea-water method to date, a paper chromatographic method described by E. T. Degens and H. J. Reuter, requires a lengthy procedure for concentration. A more convenient sea-water method is the adaptation by B. S. Newell, B. Morgan, and J. Cundy of the Fearon carbamidodiacetetyl reaction. However, the red color produced by combining urea with diacetetyl monoxime in the presence of strong acid develops slowly, and the acidic terminal solution is difficult to handle. In addition, the calibrations and blank determination are carried out in sodium chloride solution rather than in the natural sample where unexpected chemical interferences could be detected.

In contrast, the hypochlorite-phenol method described in this article produces general, blank, and standard sample signals which rapidly develop in aliquots of the sample. The signal is a canary yellow dye with an absorbancy maximum at 454 millimicrons. This color reaction requires conditions similar to those of the hypochlorite-phenol-ammonia reactions, and was noticed by the author while making ammonia measurements of ocean surface-water samples.

EXPERIMENTAL INFORMATION

APPARATUS

The determination is made in small volumetric flasks by adding the reagents with Luer-type syringes. The Teflon syringe needles should reach beneath the meniscus of the sample to ensure replicate addition and rapid mixing of the reagents.

REAGENTS

Except where noted the reagents are stable for several months if kept in glass stoppered containers.

Superscripts refer to similarly numbered entries in Appendix A
1. Sodium hypochlorite, 2.5% NaOCl. This analysis was developed using Fisher Scientific Company N. F. 5% NaOCl solution which was commercially prepared by passing Cl₂ through NaOH solution, and which contains equimolar concentrations of NaOCl and NaCl.

2. Sodium hypobromite; 0.050% v/v Br₂, pH 12.2. Prepare 1 liter of pH 12.2 NaOH solution, add with a syringe 0.050 ml Br₂, and stir until homogenous.* This reagent contains equimolar concentrations of NaOBr and NaBr.

3. Hydrochloric acid reagent; 0.25N in HCl, 0.3% w/v MgCl₂.

4. Boric acid buffer stock solution; 0.16 M in H₃BO₃, 0.054 M in KCl and 0.090 M in NaOH. Prepare the reagent daily by adding to 25 ml of the stock solution 0.15 ml 3% HOOH solution.

5. Ethanolic phenol reagent; 10% v/v C₆H₅OH. Prepare by diluting clear phenol 1:10 with 95% ethanol. To remove the yellow oxidation products, crystalline phenol may be distilled in the hood with a round bottomed flask and a short air condenser.

PROCEDURES

The sample and reagent volumes in the following procedures are chosen to maintain the meniscus in the flask neck while permitting adequate mixing. To closely approximate the stepwise pH measurements in Table 1, the reagent volumes should be within 5% of those specified. The flasks should be well washed and rinsed twice with distilled water.

<table>
<thead>
<tr>
<th>Reagent Addition</th>
<th>Distilled Water</th>
<th>Sea-Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Sample</td>
<td>Blank Sample</td>
</tr>
<tr>
<td>Original Sample</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>OBr⁻</td>
<td>-</td>
<td>11.1</td>
</tr>
<tr>
<td>OC₁⁻</td>
<td>10.3</td>
<td>11.2</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>7.7</td>
</tr>
<tr>
<td>HCl + OBr⁻</td>
<td>7.7</td>
<td>-</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>C₆H₅OH</td>
<td>8.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>

*Abbreviations used in this text are from the GPO Style Manual, 1967, unless otherwise noted.
The general procedure for the analysis of urea requires eight steps.

1. Transfer a 20.0 ml aliquot of sample, which should be colorless, free from solid matter, and at temperature (T) to a 25 ml volumetric flask containing a microstirring magnet. Do not cavitate the sample by rapid addition as the microbubbles contribute to the blank signal.

2. Add 3.0 ml of distilled water and begin to stir vigorously.

3. Add 0.30 ml of NaOC1 reagent.

4. After 3 to 5 seconds, add 0.50 ml NaOBr reagent with one hand.

5. After 1 to 2 more seconds, add (0.30+X) ml of HC1 reagent with the other hand. "X" is the volume in ml of HC1 reagent required to titrate 0.50 ml of NaOBr reagent to pH 7.0.

6. After 15 to 20 more seconds, add 0.50 ml of H3BO3 buffer reagent with one hand.

7. After 1 to 2 more seconds, add 0.30 ml ethanolic phenol reagent with the other hand and stir for 10 to 20 more seconds.

8. After 10 but not more than 20 more minutes, compare the absorbancy of the sample solution at 454 m\(\mu\) against distilled water.

A separate blank sample should be obtained for every sample which differs from the previously accepted blank sample by more than 1 part per thousand in salinity or 2° C or if any of the reagents are renewed. The blank sample procedure is slightly different from that of the general sample.

1. Add a duplicate aliquot of the sample at T±2° C to a 25 ml flask without cavitation.

2. Add 3.0 ml of distilled water and begin to stir vigorously.

3. Add 0.50 ml NaOBr reagent.

4. After 9 to 11 minutes add, 0.30 ml NaOC1 reagent with one hand.

5. After 1 to 2 more seconds add, (0.30+X) ml HC1 reagent with the other hand and continue with Step 6 in the general procedure.

Because the sensitivity of the color reaction varies with the composition of the sample, a standard sample should be reacted whenever it is found necessary to react a blank sample. Standardation is required more frequently at low salinities. If unusually high urea concentrations are found, the sample may be diluted with distilled water only if the blank and standard samples are similarly treated.

The standard sample is prepared by the general procedure with one change; the 3.0 ml addition of distilled water in Step 2 should be replaced by 3.00 ml of urea solution of known concentration 5 to 25 times that of the sample.
Urea is quite stable subject only to enzymatic hydrolysis by bacteria. A sample will keep for a day at room temperature, for several weeks under refrigeration and indefinitely at -20°C.

CALCULATION

To obtain the urea concentration of the sample, multiply the difference between the blank and general sample absorbancies by the difference between the general and standard sample absorbancies and divide by three twentieths the urea-N concentration of the added standard solution.

DISCUSSION

REACTIONS

When the sample is buffered by the NaOCl – HOCl equilibrium at pH 7.7, the urea is chlorinated to a mixture of mono-, di-, and tri-chlorourea.

\[\text{HC}10 \rightleftharpoons \text{OC}1^- + H^+ \], \[K_{eq} = 4.6 \times 10^{-8} \] (1)

The activity of the C12 is influenced by the C1- activity.

\[\text{C}12 + \text{H}_2\text{O} \rightleftharpoons H^+ + \text{HC}10 + \text{C1}^- \], \[K_{eq} = 4.3 \times 10^{-5} \] (2)

The pH and capacity of the buffer solution were adjusted to maximize the intensity of yellow color. Under optimal chlorination conditions, a variable decrease in color intensity was noticed when a large surface area of the reacting solution was exposed to the air. Escape of the Cl2 or HOCl from the acidified hypochlorite solution was suspected. When a small reproducible area was exposed in the neck of a volumetric flask after the HC1 reagent addition, the yield and precision improved markedly.

If phenol is added directly to the pH 7.7 solution, the blank signal is high because of side reactions between the halogens and phenol, and the yellow color is unstable. By first adding a H3BO3 buffer the blank is reduced and the pH is raised so that the rates of color development and fading become more manageable. In the presence of H3BO3 the conversion of urea-yellow to ammonia-blue is retarded and the sample does not turn green for several hours.

The rate of yellow color development is increased, particularly in the freshwater samples if MgCl2 is added with the HC1 reagent and KC1 with the H3BO3 buffer reagent. The color development is also more rapid and the precision improved between replicate samples if HOOH is added with the buffer. HOOH reacts with OC1- and OBr- to produce O2, and the oxidizing conditions evidently promotes color development. This last dependency lends support to the theory that the dyes in the ammonia and urea analyses are oxidized forms of indophenol compounds.10 E. H Rodd9
describes an indophenol which absorbs strongly at 630 m\(\mu\) and possesses a structure which could be directly obtained by para-condensations of the phenol molecules with the chlorinated ammonia intermediate followed by oxidation.

\[
\begin{align*}
\text{O} & \equiv \text{N} \\
\text{indophenol-blue} & \quad \text{(oxidized form)}
\end{align*}
\]

The leucophenol is reportedly stable at low pH whereas the oxidized form is stable in alkaline solution. The ammonia-blue compound similarly changes from clear to blue, above pH 8.1. The urea-yellow is probably an indophenol also because it is converted to ammonia-blue in alkaline solution and because, like the blue compound, it can be reversibly colorized and decolorized by varying the pH above and below 5.0, respectively.

\[
\begin{align*}
\text{O} & \equiv \text{N} \\
\text{indophenol-yellow} & \quad \text{(oxidized form)}
\end{align*}
\]

The indo-N:carbonyl-C bond, which is weakened by withdrawal of electrons to form the stable quinoid structure, is apparently hydrolyzed and the urea-yellow turns from yellow \(\rightarrow\) green \(\rightarrow\) blue more rapidly at higher pH's where the ammonia-blue is stable.

In the alkaline hypobromite reagent \(\text{Br}_2\) is hydrolyzed.

\[
\text{Br}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HOBr} + \text{Br}^-, \quad K_{eq} = 5.0 \times 10^{-9} \quad \ldots \ldots \quad (3)
\]

\(\text{OBr}^-\) is in equilibrium with \(\text{HOBr}\).

\[
\text{HOBr} \rightleftharpoons \text{OBr}^- + \text{H}^+, \quad K_{eq} = 2.1 \times 10^{-9} \quad \ldots \ldots \quad (4)
\]

Urea is oxidized completely in 10 minutes in cold solutions more alkaline than pH 9.0. (6)

\[
\text{CO(NH}_2\text{)} + 3\text{OBr}^- \rightleftharpoons \text{N}_2 + 3\text{Br}^- + \text{CO}_3^{--} + 2\text{H}^+ + \text{H}_2\text{O}, \quad K_{eq} = 10^{128} \ldots \quad (5)
\]
The OBr− reagent never oxidizes the urea in the general procedure because the solution is always too acid. The Br\textsubscript{2} in the OBr− reagent is destroyed by reaction with phenol in all samples, thus eliminating that source of absorption interference. The slight absorbancy which is added by side reactions between the OBr− reagent and phenol is equivalent in all three procedures.

SIGNAL STABILITY

The rates of development and fading of the yellow color and the rate of development of the blank signal all increase with decreasing pH and increasing temperature and salinity. The pH’s, after the successive additions as listed in Table 1, have been chosen so that the blank signal will be low and so that all samples between 3\°C and 30\°C and between the salinities of fresh water and seawater will develop urea signals which are sufficiently stable for absorbency comparisons.

After maximal development at 25\°C the yellow dye fades at rates of 1 to 2\% per hour in distilled water and 3 to 4\% per hour in seawater. The blank signal never reaches a maximum, but its growth can be retarded by keeping the temperature and pH of the terminal solution within the suggested limits.

TEMPERATURE AND SALT EFFECTS

The temperature of the sample does not effect the magnitude of the urea signal maximum. In a 3\°C solution, however, the rates of the development of the urea signal and blank signal and the rate of fading of the urea signal are about 50\% slower than in a 25\°C solution. To ensure comparable blank signals in all samples and to ensure that urea signal maxima are being compared in general and standard samples, the three aliquots of a sample should be within 2\°C of each other when reacted.

The sensitivity of the urea reaction increases about 90\% with increasing salinity from freshwater to 35 parts per thousand seawater. The increase is evidently due to divalent cations.

SPECIFICITY OF THE METHOD

In distilled water standard samples of several other nitrogen-containing compounds were reacted by the general urea procedure, and the gram atom N absorbancy indices in absorbancy units per centimeter cell times gram atom N per liter at 454 m\u03bc are reported to determine the specificity of the urea-hypochlorite-phenol signal.

Negative reactions were obtained with acetamide, alanine, ammonia, arginine, asparagine, aspartic acid, barbital, caffeine, citrulline, creatine, creatinine, cysteine, cystine, diphenyl urea, glutamic acid, glutathione, glycine, hippuric acid, histidine, isoleucine, leucine, lysine, methionine, methyl urea, monoethanolamine, phenyl alanine, phenylurea, N-propylamine, semicarbazide, serine, and threonine. Compounds giving positive reactions are listed with their respective gram atom N absorbancy indices: allantoin-1.6x103, buiret-1.6x103, tyrosine 1.0x103 and urea-2.6x103.

MACHLAB 117
If the OBr⁻ reagent addition is omitted from the general procedure, the 454 mµ absorbancy index of ammonia is \(0.35 \times 10^3\). Ammonia is also oxidized by OBr⁻ in the blank procedure and would contribute to the urea signal except that the development of the ammonia signals at 630 and 400 mµ are inhibited by Br⁻ which is added in large quantities in the OBr⁻ reagent.⁴

Of the five compounds giving positive reactions, none are likely to be present in natural waters or in body fluids in concentrations approaching that of urea. No sources of positive interference are therefore expected.

CALIBRATION AND PRECISION

The data given in Table 2 reflect the reproducibility and the salt effect. In Table 2 at 1.0 microgram atoms urea-N per liter, the standard deviation of a set of seven sea-water absorbancies is equivalent to 0.1 microgram atoms urea-N per liter. The standard deviation of the nine sea-water blank samples in the sample groups of 0.5, 1.0, and 2.0 microgram atoms per liter of added urea-N is equivalent to 0.05 microgram atoms urea-N per liter, and the variances sum to 0.0125 microgram atom² urea-N per liter². The estimated standard deviation of the urea-N detected at 1.0 microgram atoms per liter is therefore 0.11 microgram atoms urea-N per liter. At the 95% confidence level, for a sample to be significantly different from the blank, it must contain urea equal to twice the standard deviation. The lower limit of detection of the analysis in seawater is thus 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1.0 microgram atom per liter.

ADAPTATION TO CLINICAL SAMPLES

This urea method may be adapted for an automatic analysis of blood, serum, and urine samples. Deproteinization is best accomplished by dialysis with isotonic solutions because the reactions require that the sample be near neutral pH. This method is superior to the diacetyl monoxine method which is currently used for automatic analysis of clinical samples⁷ because (1) the color development is rapid; (2) its magnitude is independent of temperature; (3) the analyzed samples are not corrosive; and (4) the reaction is more specific for urea in biological fluids.¹, ⁵, ¹³
Table 2
Absorbancies Obtained by Adding Quantities of Urea Solution to Urea-Free Distilled Water and Urea-Free Seawater of Salinity 35 Parts Per Thousand

<table>
<thead>
<tr>
<th>Microgram Atom per Liter of Added Urea-N</th>
<th>454 m(\mu) Absorbancy in Distilled Water in a 5-CM Cell</th>
<th>454 m(\mu) Absorbancy in Seawater in a 5-CM Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blank Samples</td>
<td>Standard Samples</td>
</tr>
<tr>
<td>0.0</td>
<td>0.011</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.062</td>
</tr>
<tr>
<td>0.5</td>
<td>0.017</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.076</td>
</tr>
<tr>
<td>1.0</td>
<td>0.023</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>0.024</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.087</td>
</tr>
<tr>
<td>2.0</td>
<td>0.039</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>0.109</td>
</tr>
<tr>
<td>10</td>
<td>0.122</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td>0.120</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>0.120</td>
<td>0.274</td>
</tr>
<tr>
<td></td>
<td>0.122</td>
<td>0.270</td>
</tr>
<tr>
<td></td>
<td>0.119</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>0.122</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>0.121</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>0.123</td>
<td></td>
</tr>
<tr>
<td>Microgram Atom per Liter of Added Urea-N</td>
<td>454 m(\mu) Absorbancy in Distilled Water in a 5-CM Cell</td>
<td>454 m(\mu) Absorbancy in Seawater in a 5-CM Cell</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Blank Samples</td>
<td>Standard Samples</td>
</tr>
<tr>
<td>20</td>
<td>0.231</td>
<td>0.461</td>
</tr>
<tr>
<td></td>
<td>0.219</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td>0.224</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>0.219</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>0.218</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>0.223</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>0.219</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.425</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>0.420</td>
<td>0.824</td>
</tr>
<tr>
<td></td>
<td>0.427</td>
<td>0.838</td>
</tr>
<tr>
<td></td>
<td>0.424</td>
<td>0.842</td>
</tr>
<tr>
<td></td>
<td>0.425</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>0.420</td>
<td>0.838</td>
</tr>
<tr>
<td></td>
<td>0.428</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>0.429</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.834</td>
<td>1.54*</td>
</tr>
<tr>
<td></td>
<td>0.841</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>0.844</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>0.839</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>0.835</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>0.846</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>0.834</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>0.839</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1.29*</td>
<td>2.30*</td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>2.63*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>4.95*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.97</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>9.25*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.10</td>
<td></td>
</tr>
</tbody>
</table>

*Absorbancies read in shorter cells and converted to a 5-cm path.
OTHER COLOR REACTIONS

As noted with regard to reaction specificity, several compounds other than urea react to give colored products when treated by the urea procedure. The bluret and allantoin products are thought to be identical with the urea inclophenol because of similarities in absorbency and reaction characteristics.

An extremely useful signal, however, would be the tyrosine compound absorbancy at 375 μm, because tyrosine of all the amino acids tested gave the sole positive signal. As shown in Table 3 the tyrosine signal is linear through 100 microgram atoms tyrosine-N per liter. The distilled water samples were reacted by the general urea procedure excluding the OBr⁻ reagent. The signals develop within 2 minutes and are stable for several hours. If no ammonia is present the urea blank procedure will give a valid tyrosine blank signal.

Table 3
Absorbancies Obtained by Adding Quantities of Tyrosine Solution to Tyrosine-Free Distilled Water

<table>
<thead>
<tr>
<th>Microgram Atoms per Liter of Added Tyrosine-N</th>
<th>375 μm Absorbancy in Distilled Water in a 5-CM Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.034, 0.031, 0.033, 0.032</td>
</tr>
<tr>
<td>25</td>
<td>0.287, 0.292</td>
</tr>
<tr>
<td>50</td>
<td>0.585, 0.580</td>
</tr>
<tr>
<td>100</td>
<td>1.142, 1.130</td>
</tr>
</tbody>
</table>

INSIGHTS INTO THE AMMONIA METHOD

This work on urea suggested several refinements of the hypochlorite-phenol-ammonia analysis in Report 2570, (4)

The precision of a series of replicate ammonia samples can be increased by using teflon syringes which extend beneath the sample meniscus. The use of micro-stirring bars (Fisher Scientific Company, No. 9-312-102) reduces the vortex which also increases the precision.
In the search for a chemical reaction which would replace the tedious vacuum diffusion blank procedure, several compounds were studied that oxidized ammonia to nitrogen gas. Sodium nitrite was found unsatisfactory because, in addition to removing ammonia, it inhibited the blank signal development. Since ammonia is oxidized more readily than urea by hypobromite, this reagent would have worked as in the urea analysis except that it contains bromide which inhibits the development of the ammonia signal. Such a blank would not detect ammonia in the reagents, nor would it be possible to compensate by adding equivalent hypobromite to the general sample, for the 20% to 30% increase in the blank absorbency from the side reactions between hypobromite and phenol.

The recommended ammonia blank signal is composite and is obtained by reacting a series of three solutions. Solution 1 is an ammonia-free distilled water sample reacted by the general procedure. By comparing the distilled water blank with previous such values the degree of ammonia contamination in the reagents may be estimated. The ammonia contamination would not show up in Blank Solutions 2 and 3 because of Br⁻ interference. Solutions 2 and 3 are aliquots of the natural sample which should be stirred for 5 to 10 minutes with 0.20 and 0.40 ml, respectively of NaOBr reagent. They should then be developed by the general ammonia procedure, adding extra acid to compensate for the alkalinity as in the urea blank. The sample blank is determined by subtracting the difference between the absorbencies 3 and 2 from 2, the lowest absorbency \([\text{sample blank} = 2 - (3 - 2)]\). The ammonia contribution to the blank is then corrected for the salt effect (see Table 2), and added to the sample blank to yield the true blank signal.

The urea interference in the ammonia analysis can become significant if the samples are left for more than 20 minutes before comparing the absorbancies, because of the transformation of urea – yellow to ammonia – blue. This reaction is 100% more rapid in seawater and is further encouraged by the alkaline terminal condition of the ammonia analysis. The urea interference in the ammonia analysis may be minimized by comparing the sample absorbancies promptly.
Appendix A

Bibliography

DISTRIBUTION LIST

Commander
Naval Ship Systems Command
Room 2126, Munitions Bldg.
Washington, D.C. 20360
B. K. Cooper (10)

Commander
Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
John H. Huth

Commander
Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
Librarian (2)

Naval Oceanographic Office (5)
Washington, D.C. 20390
Attn: C. C. Bates
R. H. Randall
J. Sullivan

Officer in Charge
Naval Branch Oceanographic
Office, Bldg. Z-80
Norfolk, Va. 23511

Officer in Charge
Naval Branch Oceanographic
Office, 114 West "B" St.
Wilmington, Calif. 90744

Officer in Charge
Naval Branch Oceanographic
Office, Box P
FPO New York 09585

Officer in Charge
Naval Branch Oceanographic
Office
FPO San Francisco 96662

Officer in Charge
Naval Branch Oceanographic
Office, Box 110
FPO San Francisco 96610

Director of Defense Research
and Engineering Office (2)
Assistant Director Research
Office of Secretary of Defense
Washington, D.C. 20301

Officer in Charge
Naval Ship Engineering Center
Philadelphia Division
Philadelphia, Pa. 19112

Commanding Officer and
Director (2)
Navy Underwater Sound
Laboratory, Fort Turnbull
New London, Conn. 06320
Attn: Charles Brown

Officer in Charge
Naval Scientific and Technical
Intelligence Center
Naval Observatory
Washington, D.C. 20390

Superintendent (2)
U.S. Naval Academy
Annapolis, Md. 21402
Attn: Jerome Williams

Superintendent (2)
USN Postgraduate School
Monterey, Calif. 93940
Attn: Charles F. Rowell

Commanding Officer and
Director (2)
Naval Ship Research and
Development Center
Washington, D.C. 20007
Attn: Librarian

Commander, Naval Ship
Engineering Center
Washington, D.C. 20360

Commanding Officer and Director
Naval Applied Science
Laboratory
Flushing & Washington Avenues
Brooklyn, New York 11251

Commanding Officer and
Director (3)
Naval Research Laboratory
Washington, D.C. 20390
Attn: C. H. Cheek, Code 8330
J. W. Swinnerton, Code 8330

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Officer in Charge
Naval Biological Laboratory
Naval Supply Center
Oakland, Calif. 94625

Commanding Officer and Director
Naval Medical Research Institute, National Naval Medical Center
Bethesda, Md. 20014

Commanding Officer and Director
Naval Ordnance Laboratory
Silver Spring, Md. 20910

Commanding Officer and Director (6)
Office of Naval Research
Washington, D.C. 20390
Attn: Codes 408P, 463, 446, 418, 414

Office Chief of Naval Operations (2)
Washington, D.C. 20360
Wayne Magnitzky
RADM R.R.M. Emmet USN Ret. (2)
2125 No. Bay Rd.
Miami Beach, Fla. 33140

Director (20)
Defense Documentation Center
Cameron Station
Alexandria, Va. 22314

U.S. Geological Survey
Marine Geology and Hydrology
345 Middlefield Rd.
Menlo Park, Calif. 94025
Gene A. Rusnak (2)

Geological Division
Marine Geology Unit
U.S. Geological Survey
Washington, D.C. 20240

Chief, Marine Science Center
Coast and Geodetic Survey
U.S. Department of Commerce
Lake Union Base
1801 Fairview Ave., East
Seattle, Wash. 98102

U.S. Army Engineers Waterways Experiment Station (2)
Research Center Library
Vicksburg, Miss. 49097
Attn: Henry D. Simmons

U.S. Army Beach Erosion Board
5201 Little Falls Rd., N.W.
Washington, D.C. 20016

Advanced Research Projects Agency, Nuclear Test Detection Center, The Pentagon
Washington, D.C. 20310

Bureau of Commercial Fisheries
Dept. of the Interior
Washington, D.C. 20240

Director, Bureau of Commercial Fisheries, U.S. Fish and Wildlife Service
Dept. of the Interior
Washington, D.C. 20240

Director, Biological Laboratory
Bureau of Commercial Fisheries
Navy Yard Annex, Bldg. 74
Washington, D.C. 20390

Bureau of Sport Fisheries and Wildlife, U.S. Fish and Wildlife Service
Sandy Hook Marine Laboratory
P.O. Box 428
Highlands, N.J. 07732
Librarian

Laboratory Director
Bureau of Commercial Fisheries Research Laboratory
P.O. Box 640
Ann Arbor, Michigan 48107
John F. Carr

Laboratory Director
Bureau of Commercial Fisheries
Biological Laboratory
P.O. Box 1155
Auke Bay, Alaska 99821
Herbert E. Bruce

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
P.O. Box 280
Brunswick, Ga. 31521

Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
P.O. Box 6
Woods Hole, Mass. 02543

Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
P.O. Box 3098, Fort Crockett
Galveston, Texas 77552

Bureau of Commercial Fisheries
U.S. Fish and Wildlife Service
P.O. Box 3098, Fort Crockett
Galveston, Texas 77552

Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
P.O. Box 1155
Juneau, Alaska 99801

Laboratory Director
California Current Resources
Laboratory, Bureau of
Commercial Fisheries
P.O. Box 271
La Jolla, Calif. 92038

Laboratory Director
Tuna Resources Laboratory
Bureau of Commercial Fisheries
P.O. Box 271
La Jolla, Calif. 92038

Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
75 Virginia Beach Drive
Miami, Fla. 33149

Laboratory Director (2)
Biological Laboratory
Bureau of Commercial Fisheries
2725 Montlake Boulevard, E.
Seattle, Wash. 98102

Laboratory Director
Bureau of Commercial Fisheries
Biological Laboratory
450-B Jordon Hall
Stanford, Calif. 94305

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Woods Hole Oceanography
Institution (7)
Woods Hole, Mass. 02543
Attn: Paul Fye
Columbus Iselin
Max Blumer
E. R. Baylor
David W. Menzel
Alfred C. Redfield
John H. Ryther

Scripps Institute of
Oceanography (6)
La Jolla, Calif. 92038
Attn: Edward D. Goldberg
Norris W. Rakestraw
Roger Revelle
Joseph L. Reid
John D. H. Strickland
P. M. Williams

Tennessee Valley Authority
Chattanooga, Tenn. 37401
E. David Daugherty

University of Alaska (2)
Institute of Marine Science
College, Alaska 99701
Attn: Donald W. Hood
Robert J. Barsdate

Carnegie Institute of Technology
Pittsburgh, Pa. 15213
Attn: E. J. Green

Cornell University
Division of Biological
Sciences
Ithaca, New York 14851
Attn: Robert S. Morison

Colby College (2)
Department of Chemistry
Waterville, Maine 04901
Attn: Paul A. Machemer

Columbia University
Geology Department
New York, New York 10027
Attn: Wallace S. Broecker

University of Delaware
Marine Laboratories
Newark, Del. 19711
Attn: Franklin C. Daiber
Donald Aurand

Duke University
Marine Laboratory
Beaufort, N.C. 28516
Attn: R. J. Menzies

Florida Institute of Technology
Department of Oceanography
Melbourne, Fla. 32901
Attn: James A. Lasater

Florida State University
Department of Oceanography
Tallahassee, Fla. 32306
Attn: Carl H. Oppenheimer

University of Hawaii
Department of Oceanography
Honolulu, Hawaii 96822
Attn: Richard G. Bader

Humboldt State College
Div. of Natural Resources
Arcata, Calif. 95521
Attn: James A. Gast

Harvard University
Cambridge, Mass. 02138
Attn: Bostwick H. Ketchum

The Johns Hopkins University (5)
Department of Oceanography
Baltimore, Md. 21218
Attn: Donald W. Pritchard
James H. Carpenter
W. Rowland Taylor
Herman F. Bosch
John T. Bray

Lehigh University
Marine Science Center
Bethlehem, Pa. 18015
Attn: W. H. Sutcliffe

Long Island University
Merriweather Campus
Graduate Department of
Marine Science
Greenvale, New York 11548
Attn: Cyrus Adler

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Dept. of Oceanography
Dalhousie University
Halifax, Nova Scotia, Canada

Fisheries Research Board of Canada (3)
Atlantic Oceanographic Group
Bedford Institute of Oceanography, P.O. Box 1006
Dartmouth, Nova Scotia, Canada
Attn: Iver W. Deudall
Robert F. Platford

Fisheries Research Board of Canada, Biological Station
Nanaimo, B.C., Canada
Attn: John P. Tully

University of Toronto
Toronto, Ontario, Canada
Attn: F. A. J. Armstrong

Institute of Marine Research (2)
Tätelitorninkatu 2
Helsinki, Finland
Attn: Folke Koroleff
Aarno Voipio

Station Zoologique
Villefranche-sur-Mer (Alpes-Maritimes), France
Attn: J. Gostan

Deutsches Hydrographisches
Barnhard-Nocht
Strasse 78 Institut
Hamburg 4, Germany
Attn: H. Weidemann

Institut für Meereskunde (2)
Universität Kiel
Hohenbergstrasse 2
Kiel, Germany
Attn: J. Krey
K. Grasshoff

Dr. K. Kalle
Rothenbaumchaussee 22
Hamburg 13, Germany

Hellenic Hydrobiological Institute
16 Posidonos Ave.
Paleon Faliron, Greece
Attn: Athanasios Kahajikidhis

Atvinnudeild Haskolans-Fiskideild
Skulagata 4
Reykjavik, Iceland
Attn: Unnsteinn Stefansson

Bhabha Atomic Research Centre (3)
Health Physics Division
Chembur P.O.
Bombay-71, India
Attn: A. K. Ganguly
S. S. Gogate
R. Sen Gupta

Central Marine Fisheries Research Institute
Substation
Ernakulam-6, India
Attn: C. P. Ramamrithan

National Institute of Oceanography, Council of Scientific and Industrial Research
Rafi Marg, New Delhi, India
Attn: R. Jayaraman

Department of Zoology
Undhra University
Watclair, India
Attn: D. V. Ramasarma

Laboratorio Centrale di Idrobiologia
Piazza Burghese 91
Roma, Italy
Attn: Carlo Maldura

Hydrographic Office
Maritime Safety Agency
Tsukiji, Chuo-Ku
Tokyo, Japan
Attn: Ryoji Higano

Kanazawa University
Kanazawa, Japan
Attn: Masayashi Ishibashi

Laboratory of Chemistry (2)
Kyoto Gakugei University
Kyoto, Japan
Attn: Tashio Yamamoto
Shinnosuke Higashi

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Kobe Marine Observatory (2)
Kobe, Japan
Attn: Sagi Takeshi
Hiroyuki Kitamura

Meteorological Research Institute (3)
Mabashi Suginami-Ku
Tokyo, Japan
Attn: Katsuko Suruhashi
Yukio Sugimura
Yoshio Sugiura

Water Research Laboratory (4)
Nagoya University
Nagoya, Japan
Attn: Tadashiro Koyama
Yasuo Miyake
Nobuo Kanamoni
Ken Sugawara

Tokai Regional Fisheries Research Laboratory
5, Kachidoki, Chuo-Ku
Tokyo 104, Japan
Attn: Rinnosuke Fukai

Department of Chemistry (3)
Tokyo University of Education
Bunkyo-Ku, Tokyo, Japan
Attn: Hamaguchi Hiroski
Rokuro Kuroda
Shizuo Tsunogai

Tokyo University of Fisheries
Minato-Ku
Tokyo, Japan
Attn: Yoshimi Marita

Central Fisheries Research Station, Puson, Korea
Attn: Kwang Yoon Shin

Escuela Superior de Ciencias Marinas
Universidad Autonoma de Baja California
Calle la Núm. 1838
Ensenada, Baja California, Mexico
Attn: R. Suárez

Laboratorio de Química
Instituto de Geofísica
UNAM
Torre de Ciencias, 50 piso
Ciudad Universitaria
Mexico 20, D.F.
Attn: Armando Baez

Nederl. Inst. V. Onderzoek der Zee (2)
Buitenhaven 27
Den Helder, The Netherlands
Attn: H. Postma
E. K. Duursma

The Netherlands Institute for Fisheries Investigation (2)
Ijmuiden, The Netherlands
Attn: R. Th. Roskam
D. De Langen

Department of Biology
University of Auckland
Auckland, New Zealand

New Zealand Oceanographic Institute of Scientific and Industrial Research
P.O. Box 8009
Wellington, New Zealand
(Librarian)

Fiskeridirektoratets Havforskningssinstitutt
Bergen, Norway
Attn: K. Palmork

Universitetet i Oslo
Institutt for Marine Biologi A
Frederiksgate 3
Oslo, Norway
Attn: Ernst Føyn

Instituto de Investigación de los Recursos Marinos
Biologinesis N° 22 - La Punta
Callao, Peru
Attn: Oscar Guillén
DISTRIBUTION LIST (Cont)

University of Maine

Ira C. Darling Center
for Research
Walpole, Maine 04573
Attn: David Dean

Massachusetts Institute for
Technology, Department of
Geology and Geophysics
Cambridge, Mass. 02139
(Librarian)

University of Miami

Marine Laboratory
1 Rickenbacker Causeway
Miami, Fla. 33149
Attn: Eugene F. Corcoran

University of Michigan

Department of Meteorology
and Oceanography
2038 East Engineering Bldg.
Ann Arbor, Mich. 48104
Attn: John W. Winchester

University of Michigan

Great Lakes Research Div.
Institute of Science and
Technology
Ann Arbor, Mich. 48104
Attn: John C. Ayers

Nova University (3)

Ft. Lauderdale, Fla. 33316
Attn: Dayton Carritt
Charles S. Yentsch

New York University

Department of Meteorology
and Oceanography
Bronx, New York 10453
Attn: Gerhard Newmann

University of New Hampshire

New Hampshire Estuarine
Laboratory
Durham, N.H. 03824
Attn: G. E. Johns

University of North Carolina (3)

Chapel Hill, N.C. 27515
Attn: John Lyman
Charles M. Weiss

North Carolina State University
at Raleigh

Department of Zoology
Raleigh, N.C. 27601
Attn: Donald B. Horton

Oregon State University (4)

Department of Oceanography
Covell, Oregon 97331
Attn: Kilho Park
Ricardo M. Pytkowicz
David Tilles
Wesley Bradford

University of Rhode Island

Graduate School of
Oceanography
Kingston, Rhode Island 02881
Attn: James T. Corless
Michael E. Pilson

Southeastern Massachusetts

Technological Institute
Department of Biology
North Dartmouth, Mass. 02747
Attn: David McGill

Stanford University

Hopkins Marine Station
Pacific Grove, Calif. 93950
Attn: Donald Abbott

Texas A&M University

Department of Oceanography
and Meteorology
College Station, Texas 77843
Attn: Edward R. Ibert

Virginia Institute of

Marine Science
Gloster Point, Va. 23062
Attn: Morris L. Brehmer

University of Washington (5)

Department of Oceanography
Seattle, Wash. 98105
Attn: Lawrence K. Coachman
Jane M. Dugdale
Richard H. Fleming
Michael L. Healy
Francis A. Richards

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

University of Washington
Department of Chemistry
Seattle, Wash. 98105
Attn: Rex J. Robinson

University of Washington
College of Fisheries
Seattle, Wash. 98105
Attn: Lauren R. Donaldson

University of Wisconsin (3)
Madison, Wis. 53706
Attn: Grant Cottam
Arthur D. Hasler
G. Fred Lee

Yale University
Bingham Oceanographic Laboratory
New Haven, Conn. 06520
Attn: Daniel Merriman

Allan Hancock Foundation
University Park
Los Angeles, Calif. 90007

Lockheed California Company
Dept. 12-25, Bldg. 63-1
Plant A-1
Burbank, Calif. 91500
(Central Library)

Bissett-Berman Corporation
2941 Nebraska Avenue
Santa Monica, Calif. 90404
Attn: Neil L. Brown

Hudson Laboratories
145 Palisade St.
Dobbs Ferry, New York 10522
(Librarian)

Boeing Scientific Research Laboratory
P.O. Box 3981
Seattle, Wash. 98100

General Precision Laboratory
Pleasantville, New York 10570
Attn: F. B. Berger

Oceanics, Incorporated
Technical Industrial Park
Plainview, New York 13137
Attn: Wilber Marks

Haskins Laboratories
305 East 43rd St.
New York, New York 10017
Attn: L. Provasoli

Westinghouse Ocean Research Laboratory
Annapolis, Maryland 21401
(Librarian)

Servicio du Hidrografía Naval
Avenida Montes de Oca 2124
Buenos Aires, Argentina
Attn: Aldo M. Orlando

Lt. Nester C. L. Granelli
Monteverde 459
Buenos Aires, Argentina

Commonwealth Scientific and Industrial Research Organization, Oceanographic Laboratory (2)
Cronulla, N.S.W., Australia
Attn: Brian Newell
David Rochford

Institut E. Van Beneden
Université de Liège
22 quai Van Beneden
Liège, Belgium
Attn: Marcel Debuisson

Instituto Oceanográfico da Universidade de Recife (2)
Praia da Piedade, Recife
Pernambuco, Brazil
Attn: Julio Araujo
Lourivaldo Covalcanti

Instituto Oceanográfico da Universidade de São Paulo
Caixa Postal, 9075
São Paulo, Brazil
Attn: A. Magliocca

Bedford Institute of Oceanography (2)
P.O. Box 1006
Dartmouth, Nova Scotia, Canada
Attn: Lewis H. King
Arthur R. Cooti

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Fisheries Laboratory
Philippines Fisheries Commission
Lininaugcong, Palawan
Philippines
Attn: Manuel N. Llorca

Centro de Biologia Piscatoria
Rua Dr. Antonio Candido 9
Lisbon, Portugal
Attn: L. Matias Torres

Dept. of Sea Fisheries
Capetown, Republic of South Africa
Attn: S. A. Mostert

Instituto Español de Oceanografía
c/Alcalá, 27
Madrid (4) Spain
Attn: T. Aravio-Torre

Instituto de Investigaciones Pesqueras
Paseo Nacional
Barcelona, Spain
Attn: J. Selga

Laboratorio Oceanográfico
Paseo de la Farola, 27
Málaga, Spain
Attn: M. J. del Val

Laboratorio Oceanográfico
Felipe Sanchez, 20
Vigo (Ponterverdra) Spain
Attn: J. R. Besada

Havsfiskelaboratoriet
Hydrografiska avdelningen
Box 1308, Göteborg 4, Sweden
Attn: Stig Fonselius

Kungl. Tekniska Högskolan
Stockholm 20, Sweden
Attn: Lars Sillen

Fisheries and Food Ministry of Agriculture
Fisheries Laboratory
Lowestoff, Suffolk, England
Attn: P. G. W. Jones

Marine Biological Association of the U. K. (3)
The Laboratory
Citadel Hill
Plymouth, England
Attn: L. N. H. Cooper
E. D. S. Corner
C. B. Cowey

Millport Marine Station (2)
Isle of Cumbrae, Scotland
Attn: Harold Barnes
D. M. Finlayson

National Institute of Oceanography
Wormley, Godalming, Surrey
England
Attn: G. E. R. Deacon

Dept. of Oceanography
The University
Liverpool 3, England
Attn: J. P. Riley

Biochemistry Laboratory
St. Fitticks Road
Aberdeen, Scotland
Attn: C. B. Cowey

Marine Laboratory
P.O. Box 101
Victoria Road Torry
Aberdeen, Scotland AB9 8DB

Marine Biological Station
University of Liverpool
Port Erin, Isle of Man, U.K.
Attn: D. J. Slinn

Marine Science Laboratories (2)
University College of North Wales, Menai Bridge
Anglesey, Wales, England
Attn: C. P. Spencer
G. D. Floodgate

Estacion de Investigaciones (2)
Marinas de Margarita
Apartado 144
Porlamar-Estado Neua Esparta
Venezuela
Attn: Antonio Ballester
Jiro Fukuoka

MACHLAB 117, May 1969
DISTRIBUTION LIST (Cont)

Universidad de Oriente
Apartment, Postal 94
Cumaná, Venezuela
Attn: Taizo Okuda
The yellow compound formed from urea, hypochlorite, and phenol with an absorbancy maximum at 454 millimicrons has been adapted to determine micromolar quantities of urea in natural waters. The urea is chlorinated in a solution of sodium hypochlorite at pH 7.7, and upon the addition of phenol, the intermediate condenses rapidly to form the colored product. In freshwater, the absorbancy index is 2.6×10^3 absorbancy units per centimeter cell times gram atom urea-N per liter, and in 35 parts per thousand seawater, the color is twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Reaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypochlorite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seawater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plankton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrient</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Security Classification: Unclassified
The yellow compound formed from urea, hypochlorite, and phenol with an absorbancy maximum at 454 millimicrons has been adapted to determine micromolar quantities of urea in natural waters. The urea is chlorinated in a solution of sodium hypochlorite at pH 7.7 and upon the addition of phenol, the intermediate condenses rapidly to form the colored product. In freshwater, the absorbancy index is 2.6×10^3 absorbancy units per centimeter cell times gram atom urea-N per liter, and in 35 parts per thousand seawater, the color is twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.
twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.
The yellow compound formed from urea, hypochlorite, and phenol with an absorbancy maximum at 454 millimicrons has been adapted to determine micromolar quantities of urea in natural waters. The urea is chlorinated in a solution of sodium hypochlorite at pH 7.7 and upon the addition of phenol, the intermediate condenses rapidly to form the colored product. In freshwater, the absorbancy index is 2.6 x 10^3 absorbancy units per centimeter cell times gram atom urea-N per liter, and in 35 parts per thousand seawater, the color is twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.

UNCLASSIFIED

1. Analytical Chemistry	1. Analytical Chemistry
2. Seawater	2. Seawater
3. Urea	3. Urea
4. Ammonia	4. Ammonia
5. Analysis	5. Analysis
Emmet, Robert T.	Emmet, Robert T.
II. Title...	II. Title...
III. Report 2663	III. Report 2663
The yellow compound formed from urea, hypochlorite, and phenol with an absorbancy maximum at 454 millimicrons has been adapted to determine micromolar quantities of urea in natural waters. The urea is chlorinated in a solution of sodium hypochlorite at pH 7.7 and upon the addition of phenol, the intermediate condenses rapidly to form the colored product. In freshwater, the absorbancy index is 2.6×10^3 absorbancy units per centimeter cell times gram atom urea-N per liter, and in 35 parts per thousand seawater, the color is twice as intense. The lower limit of detection of urea in seawater is 0.2 microgram atoms urea-N per liter, and the relative standard deviation is 10% at a urea-N concentration of 1 microgram atom per liter. An adaptation of the method to automatic analysis of clinical samples is suggested, and a sensitive analysis procedure for tyrosine is described.