PRESSURE DISTRIBUTION ON TOWED AND PROPELLED
STREAMLINE BODIES OF REVOLUTION
AT DEEP SUBMERGENCE

by

John L. Beveridge

Distribution of this document is unlimited.

HYDROMECHANICS LABORATORY
RESEARCH AND DEVELOPMENT REPORT

June 1966

Report 1665
PRESSURE DISTRIBUTION ON TOWED AND PROPELLED
STREAMLINE BODIES OF REVOLUTION
AT DEEP SUBMERGENCE

by

John L. Beveridge

Distribution of this document is unlimited.
TABLE OF CONTENTS

ABSTRACT ... 1

INTRODUCTION ... 1

INDUCED VELOCITY FIELD OF PROPELLER ... 2

FLOW ABOUT BODIES OF REVOLUTION ... 4

 Flow Without Propeller .. 4

 Combined Flow Due to Body and Propeller .. 6

DISCUSSION OF MEASURED Pressures AND COMPUTED RESULTS 10

CONCLUSIONS .. 14

APPENDIX A – DETAILS OF COMPUTATIONS .. 16

APPENDIX B – DESCRIPTION OF MODEL AND TEST PROCEDURE 19

REFERENCES ... 21

LIST OF FIGURES

Figure 1 – Flow Due to a Three-Dimensional Sink .. 3

Figure 2 – Half Profile of Equivalent and Original Body of Revolution 7

Figure 3 – Meridian Profile of a Body of Revolution Depicting Velocities
 Induced by a Stern Propeller .. 8

Figure 4 – Pressure Distribution along a Meridian for TMB Model 4198 11

Figure 5 – Cross Plot of Pressure Coefficient versus Propeller Advance
 Coefficient as Obtained from Tests with TMB Model 4198
 and Propeller 2861A ... 12

Figure 6 – Cross Plot of Pressure Coefficient versus Propeller Advance
 Coefficient as Computed for TMB Model 4198 and
 Propeller 2861A .. 13

Figure 7 – Series 58 Form, TMB Model 4198 .. 19
LIST OF TABLES

Table 1 – Comparison of Propeller Induced Velocities from a Single Sink and a Uniform Sink Distribution .. 5
Table 2 – Velocity Distribution in a Potential Flow .. 7
Table 3 – Offsets and Particulars for Series 58 Form, Model 4198 20
NOTATION

\(A \) \hspace{1cm} \text{Propeller disk area}

\(a^* \) \hspace{1cm} \text{Displacement thickness in boundary layer for axisymmetric flow}

\(C_T \) \hspace{1cm} \text{Propeller thrust-loading coefficient, } \frac{T}{\frac{1}{2} \rho AV_a^2}

\(D \) \hspace{1cm} \text{Maximum diameter of a body of revolution}

\(d \) \hspace{1cm} \text{Propeller diameter}

\(J_a \) \hspace{1cm} \text{Propeller apparent speed coefficient, } \frac{V_0}{nd}

\(K_T \) \hspace{1cm} \text{Propeller thrust coefficient, } \frac{T}{\rho n^2 d^4}

\(L \) \hspace{1cm} \text{Length of a body of revolution}

\(M \) \hspace{1cm} \text{Nondimensional source or sink strength, } \frac{m}{V_0 L^2}

\(m \) \hspace{1cm} \text{Dimensional source or sink strength}

\(n \) \hspace{1cm} \text{Frequency of propeller revolution}

\(\hat{n} \) \hspace{1cm} \text{Unit vector in normal direction}

\(P \) \hspace{1cm} \text{Pressure, or a general point}

\(P_i \) \hspace{1cm} \text{Control point}

\(Q \) \hspace{1cm} \text{Point source output}

\(q \) \hspace{1cm} \text{Surface source output}

\(q_0 \) \hspace{1cm} \text{Stagnation pressure, } \frac{1}{2} \rho V_0^2

\(R \) \hspace{1cm} \text{Radius vector}

\(R_0 \) \hspace{1cm} \text{Propeller radius}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Cylindrical coordinate or offset to a meridian profile</td>
</tr>
<tr>
<td>r^*</td>
<td>Radius to equivalent body with added displacement thickness</td>
</tr>
<tr>
<td>r'</td>
<td>Nondimensional radius vector, $\frac{R}{L}$</td>
</tr>
<tr>
<td>S</td>
<td>Surface area</td>
</tr>
<tr>
<td>T</td>
<td>Propeller thrust</td>
</tr>
<tr>
<td>V</td>
<td>Total fluid velocity</td>
</tr>
<tr>
<td>V_a</td>
<td>Propeller speed of advance</td>
</tr>
<tr>
<td>V_n</td>
<td>Normal velocity or induced normal velocity</td>
</tr>
<tr>
<td>V_0</td>
<td>Undisturbed fluid velocity</td>
</tr>
<tr>
<td>V_q</td>
<td>Resultant induced velocity</td>
</tr>
<tr>
<td>V_r</td>
<td>Radial induced velocity</td>
</tr>
<tr>
<td>V_T</td>
<td>Tangential induced velocity</td>
</tr>
<tr>
<td>V_x</td>
<td>Axial induced velocity</td>
</tr>
<tr>
<td>v_b</td>
<td>Nondimensional tangential velocity $\frac{V_{Tb}}{V_0}$ along body surface without propeller</td>
</tr>
<tr>
<td>v_n</td>
<td>Nondimensional velocity, $\frac{V_n}{V_0}$</td>
</tr>
<tr>
<td>v_q</td>
<td>Nondimensional velocity, $\frac{V_q}{V_0}$</td>
</tr>
<tr>
<td>v_r</td>
<td>Nondimensional velocity, $\frac{V_r}{V_0}$</td>
</tr>
<tr>
<td>v_T</td>
<td>Nondimensional velocity, $\frac{V_T}{V_0}$</td>
</tr>
<tr>
<td>v_x</td>
<td>Nondimensional velocity, $\frac{V_x}{V_0}$</td>
</tr>
</tbody>
</table>
W_0 Effective wake fraction, \(1 - \left(1 - \frac{V}{V_0}\right)\)

X, Y Dimensional rectangular coordinates

x, y Nondimensional rectangular coordinates $\frac{X}{L}$ and $\frac{Y}{L}$

α Angle of inclination to body surface

β Angle between axis of body and r' for discrete M_j's

$\vec{\nabla}$ Vector operator del

θ Angle between resultant and x-component of propeller induced velocity

A^* Displacement area

ν Kinematic viscosity

ρ Mass density

ϕ Total velocity potential

ϕ_1 Velocity potential for body

ϕ_2 Velocity potential for propeller

ϕ_3 Additional velocity potential for propeller interference

Subscripts: i, j Matrix position.

vi
ABSTRACT

Measured and computed pressure distributions were obtained for a well-streamlined body of revolution (fineness ratio of ten to one), with and without a propeller, at deep submergence. Velocity distributions over the surface of the body with and without an added boundary-layer displacement-thickness are obtained from the velocity-potential function for a surface distribution of sources. Propeller-induced velocities in the near field ahead of a propeller are estimated from a uniform sink-disk representation and a single sink representation is used for large distances from the propeller. Propeller interference (image) effects are obtained from discrete singularities placed along the body axis. Within the field of propeller influence, differences occur in the theoretical and experimental pressure distributions. These discrepancies are discussed.

INTRODUCTION

Studies of pressure distributions for ships, submarines, and torpedoes have used, as a point of departure, information obtained from more basic work with bodies of revolution. This report deals with the problem of pressure distributions on the surface of submerged streamline bodies of revolution with and without a stern propeller.* Specifically, the problem is to develop an analytic method, based on existing theory, that will permit predictions of pressure distributions with acceptable accuracy. Such pressure distributions can be used to obtain detailed information on the distribution of interaction forces (e.g., along the afterbody) as contrasted to methods which give only total forces. With regard to these propeller-body interaction forces, gross effects may be determined by means of Lagally's theorem.1, 2, 3

Some recent contributors to the subject of pressure distributions for towed and propelled bodies of revolution are Amtsberg,4 Dreger,5 Korvin-Kroukovsky,6 and the author.7 Amtsberg reported propulsion interaction experiments on “so-called” substitute bodies of revolution (i.e., bodies of revolution whose sectional-area curves represent ship-shaped forms). These experiments included measurements of the pressure distribution along the lower meridian of two such forms. Dreger confined his efforts to the mathematical computation of pressure distributions and thrust deduction in potential flow. Korvin-Kroukovsky presented pressure measurements obtained in a wind tunnel as well as computed pressure distributions for a model of U. S. Airship AKRON.

*The present investigation was supported by the Bureau of Ships Fundamental Hydromechanics Research Program.

1References are listed on page 21.
Since the advent of ALBACORE, having a fineness ratio of 7.3, the trend in single-screw submarine design, has been to higher fineness ratios (for reasons other than hydrodynamic) and, as a result, pressure and velocity information on bodies of revolution of about ten to one are needed. The investigations cited above did not consider bodies of revolution whose shape and fineness ratio are representative of current submarine designs; therefore, computations and experiments were performed with a TMB Series 58 form having a ten to one fineness ratio. In the present study the usual computational procedure of considering propeller and body flow-fields separately and combining them later is followed. The extent of the work includes not only the presentation of a general computational method, but makes available new experimental pressure-distribution data, for a body of high fineness ratio, to which other analytical methods can be compared.

The principal assumptions and limitations that are involved in the computational method are summarized as follows:

1. It is assumed that the fluid is incompressible and inviscid. However, calculations were performed for both a bare body and an equivalent body with the displacement thickness of the boundary layer considered as part of the body.

2. It is assumed that the induced steady-state velocity field immediately ahead of a propeller can be estimated from the velocity induced by a uniform distribution of sinks on a circular disk, and that a single sink is adequate for estimating propeller-induced velocity at distances greater than one propeller diameter from the propeller plane.

3. Propeller interference effects are considered by introducing discrete singularities along the axis of the body. The boundary condition that the velocity normal to the body surface must be zero is satisfied only at certain control points located on the afterbody. Since the body is smooth and the propeller interference velocities are small, it is assumed that the discrete distribution is a good approximation to a continuous distribution.

INDUCED VELOCITY FIELD OF PROPELLER

If the propeller is replaced by a sink disk, its steady-state velocity field may be computed by using the method of Kückemann and Weber. As a further simplification it will be shown that a single sink representation of the propeller is adequate, compared to a sink disk, for computing induced velocities at distances greater than one diameter forward of a propeller. These mathematical propeller models give the propeller-induced velocity field as a function of propeller thrust loading, but do not consider propeller blade thickness. The assumption of no thickness effect may not be adequate. If the propeller is replaced by a sink located at the propeller center, the velocity induced at a point \(P \) is as shown in Figure 1.
A three-dimensional sink has the velocity potential

\[\phi_2 = -\frac{M}{R} \]

[1]

Differentiate \(\phi_2 \) with respect to \(R \) to obtain

\[V_q = -\frac{\partial \phi_2}{\partial R} = -\frac{M}{R^2} \]

[2]

where \(m = \frac{Q}{4\pi} \) is the strength of a point sink, \(Q \) being the volume rate of flow into the sink, \(R \) is the distance from the sink to a field point \(P \), and \(V_q \) is the induced velocity.

By substituting \(\frac{Aq}{4\pi} \) for \(m \) in Equation [2], a convenient nondimensional form is obtained:

\[\frac{V_q}{q} = -\frac{1}{4}\left(\frac{R_0}{R}\right)^2 \]

[3]
where A is the propeller disk-area,

R_0 is the propeller radius, and

q is the surface sink input.

Nondimensionalizing the coordinates $P(X, r)$ in Figure 1, with respect to propeller radius, and using Equation [3], the X and r components of velocity V are

$$\frac{V_x}{q} = -\frac{1}{4} \left[\frac{1}{\left(\frac{X}{R_0} \right)^2 + \left(\frac{r}{R_0} \right)^2} \right] \cos \theta \tag{4a}$$

and

$$\frac{V_r}{q} = -\frac{1}{4} \left[\frac{1}{\left(\frac{X}{R_0} \right)^2 + \left(\frac{r}{R_0} \right)^2} \right] \sin \theta \tag{4b}$$

Comparative data for the induced velocities from a uniform distribution of sinks on a circular disk, and the induced velocities calculated from Equations [4a] and [4b] are tabulated in Table 1 for various values of the cylindrical coordinate $\frac{r}{R_0}$ for a constant value of $\frac{X}{R_0} = 2.0$. The propeller was represented by a sink disk for $\frac{X}{R_0} < 2$ and a single sink for $\frac{X}{R_0} > 2$. Since V_x and V_r are themselves small fractions of q and the undisturbed velocity V_0, it is believed that a single sink should give sufficiently accurate values of propeller-induced velocities for estimating pressure distributions at $\frac{X}{R_0} > 2$.

FLOW ABOUT BODIES OF REVOLUTION

FLOW WITHOUT PROPELLER

A solution for the potential flow about a body leads to a solution of the Laplace equation $\nabla^2 \phi = 0$ subject to certain boundary conditions. Methods of solving the direct problem of
determining the flow about a prescribed axisymmetric body have been investigated by Kaplan,10 Young and Owen,11 Vandrey,12 Landweber,13 and Smith and Pierce.14 In the following, then, only a brief summary of the method used will be presented.

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$\frac{r}{R_0}$ & $\frac{V_x}{q}$ & $\frac{V_r}{q}$ & $\frac{V_x}{q}$ & $\frac{V_r}{q}$ \\
\hline
Sinks Uniformly Distributed on a Circular Disk* & Single Sink & Sinks Uniformly Distributed on a Circular Disk* & Single Sink \\
\hline
0.0 & 0.0525 & 0.0625 & 0.0000 & 0.0000 \\
0.2 & 0.0525 & 0.0616 & 0.0048 & 0.0061 \\
0.4 & 0.0509 & 0.0589 & 0.0088 & 0.0118 \\
0.6 & 0.0477 & 0.0549 & 0.0119 & 0.0165 \\
0.8 & 0.0446 & 0.0500 & 0.0151 & 0.0200 \\
1.0 & 0.0414 & 0.0447 & 0.0183 & 0.0224 \\
1.2 & 0.0382 & 0.0394 & 0.0199 & 0.0236 \\
1.4 & 0.0334 & 0.0344 & 0.0207 & 0.0241 \\
1.6 & 0.0302 & 0.0298 & 0.0207 & 0.0238 \\
1.8 & 0.0255 & 0.0256 & 0.0207 & 0.0231 \\
2.0 & 0.0223 & 0.0221 & 0.0207 & 0.0221 \\
\hline
\end{tabular}
\end{center}

*From Reference 9.

The potential due to a surface distribution of sources m is

$$-\int_S \frac{mds}{R}$$ \hspace{1cm} \text{[5]}

and for a prescribed body, the source strengths are calculated for the condition of no flow through the body surface, i.e., $V_n = 0$. The unknown source strengths can be obtained by solving a Fredholm integral equation of the second kind. Smith and Pierce14 programmed a solution on the IBM-704 for this integral equation by using a set of linear algebraic equations.
It has been reported16 that consideration of the influence of the boundary layer usually leads to an improvement in the accuracy of estimating actual pressure distributions over the distributions obtained for bodies of revolution in a potential flow. In accounting for the difference between actual pressure and potential pressure which exists, particularly in the region of the rear stagnation point, the so-called displacement thickness of the boundary layer is considered as part of the body. By repeating the potential flow calculation for an equivalent body whose ordinates include this added thickness, closer agreement with the actual pressure distributions might be expected because of the more realistic shape of the bounding streamlines.

Granville15, 16 has reviewed the subject of turbulent boundary layers in a pressure gradient and presented a method for calculating their most important characteristics. A radius r^* to the surface of an equivalent body of revolution is defined16 by

$$r^* = r_w + a^* \cos \alpha = \sqrt{r_w^2 + 2 A^* \cos \alpha}$$

where r_w is the radius of a body of revolution,

a^* is the displacement thickness of the boundary layer normal to the surface of an axisymmetric body,

A^* is the displacement area, and

α is the angle of inclination of the body surface to the body axis.

Table 2 gives the velocity distribution in a potential flow as obtained from the IBM-704 program14 for TMB Model 4198 with and without an added displacement thickness. In Figure 2 the nondimensional offsets y for the bare body and r^*/L for the equivalent body of revolution are plotted versus length fraction x (based on true body length). Attention is called to the fact that a tail extending to infinity was added to account for the displacement thickness of the boundary layer in the case of the equivalent body. As anticipated, the data in Table 2 reveal little difference between the two velocity distributions except in the vicinity of the stern ($x = 1.0$) where the velocity distribution for the equivalent body approximates more closely conditions in a real viscous flow.

COMBINED FLOW DUE TO BODY AND PROPELLER

A meridian profile may be defined in cylindrical coordinates as shown in Figure 3. In Figure 3 all lengths are expressed nondimensionally as fractions of the body length L, and all velocities are expressed as fractions of the transport velocity V_0. For convenience in this part of the problem the origin is taken at the tail of the body.
TABLE 2

Velocity Distribution in a Potential Flow

<table>
<thead>
<tr>
<th>Length Fraction x</th>
<th>Velocity Ratio, (v_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 4198</td>
</tr>
<tr>
<td>0.030</td>
<td>0.968</td>
</tr>
<tr>
<td>0.060</td>
<td>0.997</td>
</tr>
<tr>
<td>0.085</td>
<td>1.0075</td>
</tr>
<tr>
<td>0.175</td>
<td>1.024</td>
</tr>
<tr>
<td>0.275</td>
<td>1.030</td>
</tr>
<tr>
<td>0.375</td>
<td>1.027</td>
</tr>
<tr>
<td>0.525</td>
<td>1.020</td>
</tr>
<tr>
<td>0.725</td>
<td>1.010</td>
</tr>
<tr>
<td>0.825</td>
<td>0.995</td>
</tr>
<tr>
<td>0.875</td>
<td>0.983</td>
</tr>
<tr>
<td>0.925</td>
<td>0.965</td>
</tr>
<tr>
<td>0.950</td>
<td>0.952</td>
</tr>
<tr>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.030</td>
<td>----</td>
</tr>
</tbody>
</table>

Figure 2 – Half Profile of Equivalent and Original Body of Revolution

Since the total velocity is the gradient of the total potential, the velocity formulation is accomplished by summing the contributions of all pertinent potentials,

\[
\phi = \phi_1 + \phi_2 + \phi_3
\] \hspace{1cm} [6]

and

\[
-\vec{V} = \vec{\nabla} \phi_1 + \vec{\nabla} \phi_2 + \vec{\nabla} \phi_3
\] \hspace{1cm} [6a]
where ϕ is the total velocity potential,

ϕ_1 is the velocity potential for the body in uniform flow,

ϕ_2 is the velocity potential for the propeller, and

ϕ_3 is the interference velocity potential required to satisfy boundary conditions on the body.

When the total velocity is obtained from Equation [6a] the pressure distribution is appropriately calculated for points on the body from the Bernoulli equation.

The mathematical model of a stern propeller will induce velocities along the afterbody that are normal to the body surface. These normal velocities must be balanced by equal and opposite velocities to satisfy the boundary condition $\hat{n} \cdot \vec{v} = 0$ where \hat{n} is the unit vector in the normal direction. To balance the normal velocity induced by the propeller at the body surface, a set of five discrete sources M_j are arranged on the axis of the body. At each control point $P_i (x_i, r_i)$ (see Figure 3) the sum of the outward directed normal velocities due to all discrete sources must be equal to and opposite to the normal velocity induced by the propeller. At point $P_i (x_i, r_i)$, the propeller induced normal velocity is

$$v_{n_i} = v_{q_i} \sin (\theta_i - \alpha_i)$$
and \(\nu_{n_i} \) balanced by the contribution of the discrete \(M_j \)'s gives

\[
\nu_{n_i} + \sum_{j=1}^{5} \frac{M_j \sin (\beta_{ji} - \alpha_i)}{(r_{ji})^2} = 0
\] \[7\]

where \(\nu_{n_i} \) is the nondimensional propeller induced normal velocity \(\frac{V_{n_i}}{V_0} \),

\(M_j \) is the nondimensional source strength \(\frac{m_j}{V_0 L^2} \),

\(\beta_{ji} \) is the angle between axis of body and \(r_{ji}' \) for discrete sources,

\(\alpha_i \) is the angle between the tangent to the body surface and the body axis,

\(\theta_i \) is the angle between resultant and \(\alpha \)-component of propeller induced velocity, and

\(r_{ji}' \) is the nondimensional radius vector.

Equation \[7\] results in a system of five linear nonhomogenous algebraic equations from which the unknown strengths \(M_j \) of the control sources may be solved.

When the unknown source strengths \(M_j \) are determined, the various contributions to the total velocity are summed according to Equation \[6a\]. The total tangential velocity at a point \(P_i \) on the body is, nondimensionally,

\[
v_{T_i} = v_{b_i} + v_{q_i} \cos (\theta_i - \alpha_i) + \sum_{j=1}^{5} \frac{M_j \cos (\beta_{ji} - \alpha_i)}{(r_{ji}')^2}
\] \[8\]

where the first term on the right side is the contribution due to the body without propeller, the second term is the contribution due to the propeller, and the third term is the contribution due to discrete sources (propeller image system). In regard to Model 4198, the third term was calculated only for the bare body and its values were assumed to be the same for the equivalent body. No iterations were performed to consider the interference effect of the discrete sources on the propeller model because for the present case the source strengths \(M_j \) were found to be very weak (Appendix A). Using the total tangential velocity obtained from Equation \[8\], the pressure coefficient is obtained from Bernoulli’s equation, and is given by
\[
\frac{P}{q_0} = 1 - v_T^2 \tag{9}
\]

where \(q_0\) is the stagnation pressure \(\frac{1}{2} \rho V_0^2\).

DISCUSSION OF MEASURED PRESSURES AND COMPUTED RESULTS

A description of the model and test procedure is contained in Appendix B. In Figure 4 the experimental and computed pressure distributions for Model 4198 are presented nondimensionally as curves of the pressure coefficient \(\frac{P}{q_0}\), which is given by Equation (9). It is seen that the influence of the propeller is not felt forward of station \(x = 0.80\) for the given advance coefficient \(J_a = 0.72\). At this advance coefficient the propeller thrust-loading coefficient \(C_T\) is 1.411, which represents the highest propeller load for which computations were made.

These propeller coefficients are defined as \(J_a = \frac{V_0}{nd}\) and \(C_T = \frac{T}{\frac{1}{2} \rho AV_a^2}\)

where \(T\) is propeller thrust,
\(n\) is frequency of propeller revolutions,
\(\rho\) is mass density,
\(A\) is propeller disk area,
\(d\) is propeller diameter,
\(V_0\) is body speed, and
\(V_a\) is propeller speed of advance.

The salient features of the pressure distributions for both the towed and propelled conditions are confined to the last 20 percent of the body length. First, examine the experimental results. For the towed condition, without propeller, the pressure coefficient is positive aft of station \(x = 0.80\) and continues upward in the same manner as would be expected in a frictionless flow except in the region very near the stern ending where it is seen to level off. At the stern a pressure coefficient of about 0.10 was measured whereas in a frictionless flow, a value of unity would occur. Turning now to the propelled condition, we see that the measured pressure coefficient rises slightly above zero aft of station \(x = 0.80\), and then turns downward towards a negative value. All of the measured pressure data for the propelled conditions are
summarized in Figure 5 where the pressure coefficients \(\frac{P}{q_0} \) measured at a number of body locations are plotted as a function of the propeller advance coefficient \(J_a \). As would be expected, at stations close to the propeller the pressure coefficient is quite sensitive to propeller load.

Pressure distributions were computed from Equation [9] where the velocity \(v_T \) was calculated from Equation [8]. These computed results are presented in Figures 4 and 5 for comparison with the experimental results. We see from Figure 4 that the calculated equivalent body and experimental results for the towed condition agree very well over practically the entire body except for about the last 10 percent of the body length. In this region, the computed pressures for an equivalent body are somewhat lower than the test results. In the narrow range from \(x = 0.90 \) to the propeller plane, neither computed pressure distribution is in good agreement with the test curve. Of course, stagnation pressure occurs at the true stern ending if the boundary layer is not considered in performing the computation. Comparing the experimental and computed results in Figure 4 for the most heavily loaded propulsion condition (\(J_a = 0.72 \)), we see that the experimental and theoretical pressure curves converge to the values obtained without a propeller at about \(x = 0.80 \). In the region between station \(x = 0.80 \) and the propeller plane the pressure computed for the equivalent body is a little lower than the test results, whereas for the bare body the pressure is a little higher. Included in Figure 5 is the calculated equivalent body variation of the pressure coefficient at station \(x = 0.92 \).
as a function of propeller advance coefficient. At this location, the agreement with the experimental curve is good. In order not to clutter Figure 5, the remaining computed pressure curves for the propelled condition are shown in Figure 6.

Figure 5 — Cross Plot of Pressure Coefficient versus Propeller Advance Coefficient as Obtained from Tests with TMB Model 4198 and Propeller 2861A

The pressure data presented may be used to compute thrust deduction. In particular, the resistance augmentation or thrust-deduction force may be obtained by summing over the body surface the axial forces associated with the pressure defect between the towed and propelled conditions. Compared to direct force measurements, integration of the pressure defect from the three sets of pressure curves shown in Figure 4 give the following results:
<table>
<thead>
<tr>
<th>Condition</th>
<th>Thrust Deduction Coefficient, t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion Test (direct force measurement)</td>
<td></td>
</tr>
<tr>
<td>Experimental Pressure</td>
<td>0.075</td>
</tr>
<tr>
<td>Computed Pressure (equivalent body)</td>
<td>0.041</td>
</tr>
<tr>
<td>Computed Pressure (bare body)</td>
<td>0.031</td>
</tr>
</tbody>
</table>

$*The frictional thrust deduction coefficient t_t was assumed to be equal to the difference (0.015) between total t from the direct force measurements and t_p as obtained from the experimental pressure data. Other investigators have indicated about this same order of magnitude for the contribution of the shearing force to the total thrust deduction.

![Figure 6](image_url)
Figure 6 – Cross Plot of Pressure Coefficient versus Propeller Advance Coefficient as Computed for TMB Model 4198 and Propeller 2861A
As is seen from the tabulation, the integrated experimental pressure defect gives a reasonable value of 0.075 for \(t_p \) while the computed results are about 3 to 4 points too low. Only a marginal improvement in estimating thrust deduction is obtained for the equivalent body compared to the result for the bare body. The limits of integration used in computing \(t_p \) were from \(x = 0.80 \) to \(x = 0.96 \). It was not possible to obtain pressure measurements farther aft for the experiments with the propeller in place. Since the slopes of the sectional-area curve are small from station \(x = 0.96 \) to the propeller disk at \(x = 0.975 \), only slightly lower values for \(t_p \) result compared to those that would be obtained by extending the upper limit to the propeller disk.

To complete the analysis of the results shown in Figure 4, the following explanations are given for the relative positions of the three pressure distributions without propeller. In the region somewhat ahead of the stern ending \((X/L = 1)\) the measured real viscous \(P/q_0 \) is higher than that computed for pure potential flow. This result has been observed by others\(^6,17,18\) and could be related to the point of turbulent-flow separation at the stern.

Compared to the \(P/q_0 \) curve obtained by experiment without propeller, the results for the equivalent body are too low due to deficiencies in the equivalent body concept and in the method of calculation involving the theory of boundary layers in a longitudinal pressure gradient. With reference to the computed pressure distribution of the equivalent body for the propulsion condition, it leads to an underestimate of the pressure defect. Thus, the adequacy of the mathematical representation of the propeller (for determining induced velocities at points close to the propeller) in the present case may be questionable despite the fair agreement of the absolute pressure distribution as calculated and measured.

CONCLUSIONS

The principal findings which have resulted from this study are:

1. For the body and propeller configuration considered, propeller interference (image) effects were small (e.g., maximum discrete source strength was three percent of the singularity strength of the propeller).

2. Considering the displacement thickness of the boundary layer led to a more realistic computed pressure coefficient at the stern ending; however, it does not seem that this consideration gives an overall improvement in the present analytical results.

3. Propeller influence on the body pressure distribution was confined to the last twenty percent of the body length.
4. Integration of the experimental pressure curves produced a thrust-deduction coefficient that agreed with direct force measurements. A similar comparison using computed pressure curves resulted in thrust-deduction coefficients that were three to four points lower than that measured.

5. On the basis of the comparison between experimental and computed pressures the uniform sink disk representation of a propeller and the equivalent body concept are open to serious question. Further analytical study of the concepts and methods of computation presented here is definitely necessary.
APPENDIX A
DETAILS OF COMPUTATIONS

In connection with the pressure distributions computed for Model 4198, the following computational details for Equations [7] and [8] are presented.

1. Contribution due to propeller — In the section INDUCED VELOCITY FIELD OF A PROPELLER, propeller-induced velocities were nondimensionalized for comparative purposes, in terms of the induced velocity at the propeller disk itself. Since only the front part of the propeller acts like a sink, the actual sink strength density must correspond to the ultimate slipstream velocity. For use in Equations [7] and [8], we convert these velocities in terms of the undisturbed velocity V_0 as follows:

$$v_q = \frac{V_q}{q} \cdot \frac{q}{V_0}$$

with

$$\frac{q}{V_0} = (1 - w_0) [1 + (1 + C_T)^{1/2}]$$

where V_q is the propeller resultant induced velocity,
q is the total surface sink input,
w_0 is the effective wake fraction, and
C_T is the propeller thrust-loading coefficient.

Three values of the conversion factor q/V_0 were calculated using the experimental data obtained at the following self-propulsion conditions:

<table>
<thead>
<tr>
<th>J_a</th>
<th>$(1 - w_0)$</th>
<th>C_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.722</td>
<td>0.74</td>
<td>1.411</td>
</tr>
<tr>
<td>0.818</td>
<td>0.74</td>
<td>0.904</td>
</tr>
<tr>
<td>1.031</td>
<td>0.74</td>
<td>0.267</td>
</tr>
</tbody>
</table>

2. Contribution due to discrete sources — In Figure 3 the five control points for the discrete sources M_j were chosen at fractions of body length x (measured from the propeller plane) as follows:
where y is the offset to a meridian profile and α is the angle between the tangent to the body surface and the body axis. For the specific example of Model 4198, the matrix equations resulting from Equation [7] for the unknown source strengths M_j are

\[
\begin{align*}
\mathbf{v}_n1 & = 4218.6228 M_1 + 698.3240 M_2 + 49.7703 M_3 + 13.5278 M_4 + 3.1807 M_5 = 0 \\
\mathbf{v}_n2 & = 572.0963 M_1 + 2964.7492 M_2 + 158.9848 M_3 + 28.3864 M_4 + 5.1208 M_5 = 0 \\
\mathbf{v}_n3 & = 31.2601 M_1 + 106.2433 M_2 + 1703.6912 M_3 + 173.9916 M_4 + 11.8030 M_5 = 0 \\
\mathbf{v}_n4 & = 7.8563 M_1 + 16.9403 M_2 + 123.9944 M_3 + 1131.6302 M_4 + 35.0577 M_5 = 0 \\
\mathbf{v}_n5 & = 1.8125 M_1 + 2.7786 M_2 + 7.3243 M_3 + 25.1696 M_4 + 669.2430 M_5 = 0 \\
\end{align*}
\]

where the normal velocity \mathbf{v}_n induced by the propeller is tabulated below for the three propeller advance coefficients previously mentioned.

<table>
<thead>
<tr>
<th>J_a</th>
<th>0.722</th>
<th>0.818</th>
<th>1.031</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.014174</td>
<td>-0.009743</td>
<td>-0.003221</td>
</tr>
<tr>
<td>2</td>
<td>-0.004216</td>
<td>-0.002898</td>
<td>-0.000958</td>
</tr>
<tr>
<td>3</td>
<td>-0.000879</td>
<td>-0.000604</td>
<td>-0.000200</td>
</tr>
<tr>
<td>4</td>
<td>-0.001012</td>
<td>-0.000696</td>
<td>-0.000230</td>
</tr>
<tr>
<td>5</td>
<td>-0.000135</td>
<td>-0.000093</td>
<td>-0.000031</td>
</tr>
</tbody>
</table>

Computed source strengths M_j for the most heavily loaded propeller condition ($J_a = 0.722$, $C_T = 1.411$) are:
$M_1 = 32.25139 \times 10^{-7}$

$M_2 = 7.74224 \times 10^{-7}$

$M_3 = 3.23658 \times 10^{-7}$

$M_4 = 8.20027 \times 10^{-7}$

$M_5 = 1.55389 \times 10^{-7}$

These results show that in moving away from the propeller (from $x = 0.05$ to $x = 0.275$) the source strength required to satisfy the boundary condition at the body surface, in the presence of the propeller, is reduced approximately by a factor of 20. A comparison of the propeller source strength M_{prop} at maximum load to the maximum discrete source strength M_1 reveals $\frac{M_1}{M_{prop}} = 0.032$.
APPENDIX B

DESCRIPTION OF MODEL AND TEST PROCEDURE

A 15-foot body of revolution (TMB Model 4198) representing a Series 58 form with a ten to one fineness ratio was used for the experiments and computable example. This model is a well-streamlined form with maximum section located at station $x = 0.40$, a prismatic coefficient of 0.60, and zero tail radius. Table 3 gives the offsets and other geometric particulars for Model 4198. A photograph of Model 4198 is shown in Figure 7. Piezometer taps were located along the lower meridian at the following fractions of model length: $x = 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.85, 0.90, 0.92, 0.94, 0.95, 0.965$, and additionally, for tests without propeller, at $0.975, 0.98$, and 1.00. Propeller 2861, a 4-bladed TMB stock propeller with $d/L = 0.0448$, was located at station $x = 0.975$ for the propulsion tests.

Tests were conducted at approximately a 10-foot depth of submergence measured to the body axis. At this submergence there were no calculated free-surface effects. Towing was accomplished with a single strut whose towpoint was about 30 percent of the body length aft of the bow. The arrangement of the propeller motor and ballast within the model was that used for most routine submerged propulsion tests conducted at the Model Basin. All tests were carried out at a 10-knot carriage speed.

A number of U-tube manometer boards were mounted on the towing carriage. Each U-tube was partially filled with carbon tetrachloride containing a small amount of dye. One leg was connected to a piezometer tap and the other leg was connected to a water-filled reference tank at atmospheric pressure. With water over the carbon tetrachloride on both sides of the U-tube a more sensitive measure of differential head was obtained. Pressure measurements were carried out in the following manner: Zero readings were obtained for each tube; then, from a series of constant speed runs the equilibrium run was determined by observing the maximum differential head. Normally, about five runs were necessary to reach equilibrium for the 10-knot carriage speed.

Figure 7 — Series 58 Form, TMB Model 4198
TABLE 3
Offsets and Particulars for Series 58 Form, Model 4198

The present method of defining bodies of revolution is given in Reference 8.

<table>
<thead>
<tr>
<th>x</th>
<th>X</th>
<th>Y</th>
<th>Y</th>
<th>x</th>
<th>X</th>
<th>Y</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>0.00</td>
<td>000.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.52</td>
<td>93.6</td>
<td>0.4818</td>
<td>8.672</td>
</tr>
<tr>
<td>0.02</td>
<td>3.6</td>
<td>0.1427</td>
<td>2.569</td>
<td>0.54</td>
<td>97.2</td>
<td>0.4755</td>
<td>8.559</td>
</tr>
<tr>
<td>0.04</td>
<td>7.2</td>
<td>0.2092</td>
<td>3.652</td>
<td>0.56</td>
<td>100.8</td>
<td>0.4684</td>
<td>8.431</td>
</tr>
<tr>
<td>0.06</td>
<td>10.8</td>
<td>0.2490</td>
<td>4.482</td>
<td>0.58</td>
<td>104.4</td>
<td>0.4603</td>
<td>8.285</td>
</tr>
<tr>
<td>0.08</td>
<td>14.4</td>
<td>0.2873</td>
<td>5.171</td>
<td>0.60</td>
<td>108.0</td>
<td>0.4513</td>
<td>8.123</td>
</tr>
<tr>
<td>0.10</td>
<td>18.0</td>
<td>0.3200</td>
<td>5.760</td>
<td>0.62</td>
<td>111.6</td>
<td>0.4414</td>
<td>7.945</td>
</tr>
<tr>
<td>0.12</td>
<td>21.6</td>
<td>0.3485</td>
<td>6.273</td>
<td>0.64</td>
<td>115.2</td>
<td>0.4305</td>
<td>7.749</td>
</tr>
<tr>
<td>0.14</td>
<td>25.2</td>
<td>0.3734</td>
<td>6.721</td>
<td>0.66</td>
<td>118.8</td>
<td>0.4187</td>
<td>7.537</td>
</tr>
<tr>
<td>0.16</td>
<td>28.8</td>
<td>0.3953</td>
<td>7.115</td>
<td>0.68</td>
<td>122.4</td>
<td>0.4058</td>
<td>7.304</td>
</tr>
<tr>
<td>0.18</td>
<td>32.4</td>
<td>0.4145</td>
<td>7.461</td>
<td>0.70</td>
<td>126.0</td>
<td>0.3919</td>
<td>7.054</td>
</tr>
<tr>
<td>0.20</td>
<td>36.0</td>
<td>0.4312</td>
<td>7.762</td>
<td>0.72</td>
<td>129.6</td>
<td>0.3768</td>
<td>6.782</td>
</tr>
<tr>
<td>0.22</td>
<td>39.6</td>
<td>0.4457</td>
<td>8.023</td>
<td>0.74</td>
<td>133.2</td>
<td>0.3605</td>
<td>6.489</td>
</tr>
<tr>
<td>0.24</td>
<td>43.2</td>
<td>0.4581</td>
<td>8.246</td>
<td>0.76</td>
<td>136.8</td>
<td>0.3429</td>
<td>6.172</td>
</tr>
<tr>
<td>0.26</td>
<td>46.8</td>
<td>0.4687</td>
<td>8.437</td>
<td>0.78</td>
<td>140.4</td>
<td>0.3239</td>
<td>5.830</td>
</tr>
<tr>
<td>0.28</td>
<td>50.4</td>
<td>0.4775</td>
<td>8.595</td>
<td>0.80</td>
<td>144.0</td>
<td>0.3036</td>
<td>5.465</td>
</tr>
<tr>
<td>0.30</td>
<td>54.0</td>
<td>0.4848</td>
<td>8.726</td>
<td>0.82</td>
<td>147.6</td>
<td>0.2817</td>
<td>5.071</td>
</tr>
<tr>
<td>0.32</td>
<td>57.6</td>
<td>0.4905</td>
<td>8.829</td>
<td>0.84</td>
<td>151.2</td>
<td>0.2582</td>
<td>4.648</td>
</tr>
<tr>
<td>0.34</td>
<td>61.2</td>
<td>0.4947</td>
<td>8.905</td>
<td>0.86</td>
<td>154.8</td>
<td>0.2330</td>
<td>4.194</td>
</tr>
<tr>
<td>0.36</td>
<td>64.8</td>
<td>0.4977</td>
<td>8.959</td>
<td>0.88</td>
<td>158.4</td>
<td>0.2060</td>
<td>3.708</td>
</tr>
<tr>
<td>0.38</td>
<td>68.4</td>
<td>0.4994</td>
<td>8.989</td>
<td>0.90</td>
<td>162.0</td>
<td>0.1771</td>
<td>3.188</td>
</tr>
<tr>
<td>0.40</td>
<td>72.0</td>
<td>0.5000</td>
<td>9.000</td>
<td>0.92</td>
<td>165.6</td>
<td>0.1461</td>
<td>2.630</td>
</tr>
<tr>
<td>0.42</td>
<td>75.6</td>
<td>0.4995</td>
<td>8.991</td>
<td>0.94</td>
<td>169.2</td>
<td>0.1131</td>
<td>2.036</td>
</tr>
<tr>
<td>0.44</td>
<td>79.2</td>
<td>0.4979</td>
<td>8.962</td>
<td>0.96</td>
<td>172.8</td>
<td>0.0778</td>
<td>1.400</td>
</tr>
<tr>
<td>0.46</td>
<td>82.8</td>
<td>0.4953</td>
<td>8.915</td>
<td>0.98</td>
<td>176.4</td>
<td>0.0401</td>
<td>0.722</td>
</tr>
<tr>
<td>0.48</td>
<td>86.4</td>
<td>0.4917</td>
<td>8.851</td>
<td>1.00</td>
<td>180.0</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.50</td>
<td>90.0</td>
<td>0.4878</td>
<td>8.780</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 4198
Serial 40050060-100

Formula:

$$y^2 = a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6$$

where $a_1 = 1.000000$

$a_2 = + 1.137153$

$a_3 = -10.774885$

$a_4 = + 19.784286$

$a_5 = -16.792534$

$a_6 = + 5.645977$

Wetted Surface Coefficient = 0.7303

LCB, $x = 0.4456$

Model Particulars:

- Length, ft = 15.0000
- Diameter, ft = 1.5000
- Nose radius, ft = 0.0750
- Tail radius, ft = 0.0000
- Wetted surface, ft2 = 51.622
- Volume, ft3 = 15.9043
- LCB, ft = 6.6840
REFERENCES

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 CHBUSHIPS</td>
<td>1 DIR, ORL</td>
</tr>
<tr>
<td>3 Tech Lib (Code 210L)</td>
<td>Attn: Dr. G.F. Wislicenus</td>
</tr>
<tr>
<td>1 Lab Mgt (Code 320)</td>
<td>1 DIR, DL, SIT</td>
</tr>
<tr>
<td>2 Prelim Des Br (Code 420)</td>
<td>2 Iowa Inst of Hydraul Res, State Univ of Iowa</td>
</tr>
<tr>
<td>1 Mach, Sci, & Res Sec (Code 436)</td>
<td>1 Dr. Hunter Rouse</td>
</tr>
<tr>
<td>1 Submarine Br (Code 525)</td>
<td>1 Dr. L. Landweber</td>
</tr>
<tr>
<td>1 Prop, Shaft, & Bear Br (Code 644)</td>
<td>1 CHBUWEPS</td>
</tr>
<tr>
<td>1 CNO</td>
<td>2 Fluid Mech & Flight Sec (RRRE-4)</td>
</tr>
<tr>
<td>4 CHBUWEPS</td>
<td>1 Supporting Res Br</td>
</tr>
<tr>
<td>2 Tech Lib (DL 1-3)</td>
<td>2 Dept NAME, Univ of Michigan</td>
</tr>
<tr>
<td>1 Fluid Mech & Flight Sec (RRRE-4)</td>
<td>Attn: Prof. R.B. Couch</td>
</tr>
<tr>
<td>1 Supporting Res Br</td>
<td>5 CHONR</td>
</tr>
<tr>
<td>2 Fluid Dyn Br (Code 438)</td>
<td>2 Univ of Notre Dame</td>
</tr>
<tr>
<td>1 Struc Mech Br (Code 439)</td>
<td>Attn: Dr. A.G. Strandhagen</td>
</tr>
<tr>
<td>2 Undersea Programs (Code 466)</td>
<td>3 School of Engin, Univ of California</td>
</tr>
<tr>
<td></td>
<td>1 Prof. H.A. Schade</td>
</tr>
<tr>
<td></td>
<td>1 Dept of Naval Arch</td>
</tr>
<tr>
<td></td>
<td>1 Engr Libr</td>
</tr>
<tr>
<td>1 CDR, USNOL</td>
<td>1 Oceanics, Inc.</td>
</tr>
<tr>
<td>1 DIR, USNRL</td>
<td>Attn: Dr. Paul Kaplan, Pres.</td>
</tr>
<tr>
<td>1 CO & DIR, USNMEL</td>
<td>1 TRG</td>
</tr>
<tr>
<td>1 CDR, USNOTS, Pasadena</td>
<td>1 Hydronautics, Inc.</td>
</tr>
<tr>
<td>1 DTMB High-Speed Phenomena Div Langley Field</td>
<td>1 Ingalls Shipbldg Corp</td>
</tr>
<tr>
<td>1 Supt USNAVPGSCOL</td>
<td>1 New York Shipbldg Corp</td>
</tr>
<tr>
<td>1 NAVSHIPYD PTSMH</td>
<td>2 Gen Dyn Corp., EB Div</td>
</tr>
<tr>
<td>1 NAVSHIPYD MARE</td>
<td>1 Bethlehem Steel Co., Shipbldg Div, Quincy</td>
</tr>
<tr>
<td>1 O in C, USN Sub School</td>
<td>Attn: Mr. Hollinshead DeLuce</td>
</tr>
<tr>
<td>Attn: Sub Dept</td>
<td>2 Gibbs & Cox, Inc.</td>
</tr>
<tr>
<td>1 O in C, PGSCOL, Webb</td>
<td>1 NNSB & DD Co., Engin Tech Div</td>
</tr>
<tr>
<td>1 DIR, Aero Res, NASA</td>
<td>Attn: Mr. John Kane</td>
</tr>
<tr>
<td>20 CDR, DDC</td>
<td>1 SNAME</td>
</tr>
<tr>
<td>1 DIR DEF R&E</td>
<td>Attn: Captain W.N. Landers</td>
</tr>
<tr>
<td>1 Hydro Lab, CIT</td>
<td>1 Douglas Aircraft Co., Inc., Aircraft Div</td>
</tr>
<tr>
<td>2 Dept NAME, MIT</td>
<td>Long Beach</td>
</tr>
<tr>
<td>1 DIR, St Anthony Falls</td>
<td>Attn: Mr. A.M.O. Smith</td>
</tr>
<tr>
<td>Hydraul Lab</td>
<td>1 CO, USNUOS</td>
</tr>
<tr>
<td>1</td>
<td>1 Naval War College, Newport</td>
</tr>
<tr>
<td></td>
<td>(Inst of Naval Studies)</td>
</tr>
<tr>
<td></td>
<td>1 CO & DIR, USNMDL</td>
</tr>
<tr>
<td>Copies</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ONR, Branch Office, Pasadena</td>
</tr>
<tr>
<td>1</td>
<td>Committee on Undersea Warfare</td>
</tr>
</tbody>
</table>
| 1 | National Bureau of Standards
 (Fluid Mechanics Section,
 Dr. G. Schubauer) |
| 1 | Convair Hydrodynamics Lab, San Diego |
| 1 | Cornell Aeronautical Lab, Inc., Buffalo |
| 1 | ERG, New York |
| 1 | Grumman Aircraft Eng Corp, Bethpage
 (Library) |
| 1 | Operations Research Inc., Los Angeles |
| 1 | Vidya, Inc. |
Title: Measured and computed pressure distributions were obtained for a well-streamlined body of revolution (fineness ratio of ten to one), with and without a propeller, at deep submergence. Velocity distributions over the surface of the body with and without an added boundary-layer displacement-thickness are obtained from the velocity-potential function for a surface distribution of sources. Propeller-induced velocities in the near field ahead of a propeller are estimated from a uniform sink-disk representation and a single sink representation is used for large distances from the propeller. Propeller interference (image) effects are obtained from discrete singularities placed along the body axis. Within the field of propeller influence, differences occur in the theoretical and experimental pressure distributions. These discrepancies are discussed.
Streamline Body
Submerged
Sources and Sinks
Boundary Layer
Towed
Propelled
Pressure Distributions on Afterbody
Experimental
Computed
Propeller
Mathematical Models (Sinks)
Induced Velocity
Body Interaction

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether “Restricted Data” is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, c, & 8d. **PROJECT NUMBER:** Enter the appropriate military department designation, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) “Qualified requesters may obtain copies of this report from DDC.”

 (2) “Foreign announcement and dissemination of this report by DDC is not authorized.”

 (3) “U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through __________.”

 (4) “U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through __________.”

 (5) “All distribution of this report is controlled. Qualified DDC users shall request through __________.”

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.