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A Method for Numerical Caleulation of
SLIPSTREAM CONTRACTION OF A SHROUDED IMPULSE DISC IN THE STATIC CASE

With Application to Other Axisymmetric Potential Flow Problems

by

Harvey R. Chaplin, Jr.

SUMMARY _

The problem of the éxisymmetric flow of an ideal incompressible
fluid through an impulse disc bounded by a thin shroud is considered.‘
A systematic calculation précedure is developed, suitable for use on
a large electronic digital computer. The shroud and slipstream are
represenfed by a continuous surface distribution of ring vortices.

The correct slipstream shape is approached by successive approximationms.

The results of calculations of the slipstream contraction ratio,
in the static case, for cylindrical, conical, and parabolic-éambered
shrouds, are presented. It is found that the slipstream contracts

less severely, in the case of very short cylindrical shrouds, than had

" previously been supposed. Also for cylindrical shrouds, it is fouhd

that an excellent estimate of the slipstream contraction ratio can be
obtained from a comparatively brief calculation, essentially
equivalent to a calculation from the linearized theory, provided the

estimate is based on the product of velocity and vortex densityAat the



trailing edge rather than on the vortex density alone. These results
have practical interpretations, within the framework of the one=-
di.ensional shrouded propeller theory, in terms of shrouded propeller
static efficiency and thrust ratio. However, such interpretations
must be made cautiously until the proper experimental evidence is
deQelopéd. The theoretical results provide a useful guide for the
planning and evaluation of proper experiments.

. The method of calculation is also applicable to axisymmetric fiows
about (a) shrouded impulse discs at finite thrust coefficients, (b)
circular inlets, and (c) arbitrary annular and ;olid bodies of
revolution. Internal flows within circular ducts can be closely
approximated by the internal flows within very long shrouds. A few
calculative results are presented to illustrate these applications.

The accuracy of the method has not been definitely established
because, in most of the cases considered, there were no exact solutions
available for comparison. By all indications, however, careful
application of the method can yield results which are, for ordinary

engineering purposes, equivalent to exact solutions,

ii




K(k), E(k)

NOTATION

propeller disc area, square feet

shroud exit area, 7 T

N * Sduare feet

thrust coefficient, T/(3 n ?Na p U?)

fractional error [ (approximate value) + (exact value) - 1]

ratio Qi/QN

ratio v(8)/y(8, _)

complete elliptic integrals of the first and second kind,
respectively

shroud chord, feet

numbers of cone-frustum segments used to approximate the
shroud and slipstream, respectively

power expended by the propeller, lb-ft/sec
limiting slipstream radius, far downstream, feet

curvilinear coordinate of a point on the shroud or slip-
stream surface, measured along the surface from the shrow
leading edge, feet

curvilinear coordinate of a point on a surface composed of
cone~frustum.segments, feet

total thrust, pounds
‘propeller thrust, pounds
free~-gstream velocity, feet per second

axial and radial components of the velocity at a general
point

mean velocity at a point on the vortex sheet (that is,
mean of the surface velocities on either side of the
sheet) feet per second

e e

i1 , '
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V.Y Vr
X, R
X, T
xi, ri, Si
ii"ii’ 8,

surface velocity, feet per second
axial velocity within the far slipstream

axlal and radial components of the velocity V, feet
per second

axial and radial velocity influence functions, feet-l

axial and radial coordinates of a point on the shroud or
slipstream surface, feet

axlal and radial coordinates of a general point, feet

coordinates of the first point of the ith cone-frustum
segment, feet

coordinates of the midpoint of the ith segment (that is,
ii = %(x1 + xt+1), etc.) except, when 1 = 1, coordinates

of the first point of the first segment, also the leading
edge of the shroud, feet

coordinates of the shroud trailing edge, feet

stream function influence coefficient, square feet (ai jaj
1

is the value of the stream function at the point

(ii, ?i). due to the pulse yj(a))

axial and radial velocity influence coefficients, dimen=
sionless

partial values of the influence coefficients, corresponding
to the first part of the pulse yj(s)

e
Ve

P (ai,j = ai,j- + ai,j+ , ete.)

partial values of the influence coefficients, corresponding
to the second part of the pulse yj(s)

(ai,j - ai,j—+ ai,j+ , ete.)

iv




oy gemi-vertex angle of the ith segment, radians (subscript
omitted when not required for clarity)

Y density of ring~-vortex singularity distribution, divided
by 21, feet per second

yi(s) pulse of continuously distributed ring-vortex singularities
defined over the ith and (i~1)th cone~frustum segments,
feet per second

Y4 characteristic value of yi(s), feet per second
y" Froude efficiency (T = TU/P)

< 3
Mgt static efficiency (net = Mge = , )

pAtP

¢ slipstream contraction ratio (R, / EN)B
p fluid density, slugs per cubic foot
y value of Stokes' stream function, cubic feet per second
Yok gtream-function influence function, feet






INTRODUCTION

The advent of the high speed electronic computer has made it practi-
cal to solve many problems in fluid mechanics which would have required
prohibitive labor in 'an earlier era. The present investigation is con-
cerned with bringing the power of this modern tool to bear against
certain problems of the axisymmetric flow of an ideal incompressible
fluid which have resisted previous efforts at solution.

In Part I, the problem of the axisymmetric potential flow through a
shrouded impulse disc 1s considered, This is a boundary value problem of
a non-classical mixed type which had previously been solved only in cases
for which the second boundary condition could be disposed of by a simple
assumption. A systematic method of calculation is developed, tried out,
and discussed.

The motivation for the investigation of Part I comes from certain
practical problems of the shrOudéd propeller, associlated with the concept
of slipstream contraction. However, Part I is confined primarily to con-
sideration of the mathematical problem of the shrouded impulse disc. The
practical aspects are discussed in Part II, in the context of the results
of calculations.

It is found that the method of calculation developed to solve the
problem of the shrouded impulse disc 1s also directly applicable to cer-
tain other problems; and that it could, by means of straightforward
modifications and extensions, be developed into a rather general and
powerful tool for axisymmetric potential flow calculations. These further

applications and possible extensions are also discu' =d briefly in Part II.

L
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PART I - A METHOD FOR CALCULATING THE AXISYMMETRIC POTENTIAL FLOW

THROUGH A SHROUDED IMPULSE DISC IN THE STATIC CASE

The shrouded impulse disc is a mathematical idealization of the
shrouded propeller, wherein the fluid which passes through the propeller
is imagined to receive a uniformly discontinuous increase in total pres=-
sure, and to flow downstream in a sharﬁly defined stream tube, called the
slipstream. Further, the velocity .18 imagined to be free from azimuthal
components, and to be continuous everywhere except at the boundaries of
the flow; that is, at the shroud and slipstream surface.

This idealization obviously greatly enhances the possibilities of
calculating the flow in detail. On the other hand, many of the details
of the flow so calculated will differ markedly from those of a real flow
through a real shrouded propeller.

" The question of the applicability of shrouded impulse disc results
to practical shrouded propeller problems will be discussed at length -
in Part II of the present investigation. Part I is restricted to con-
sideration of the mathematical problem of the idealized shrouded impulse
disc.

In the exact theory of the shrouded impulse disc, the shroud shape
is regarded as known. The flow and the slipstream shape are to be deter-
mined so that the shroud and slipstream are part of a common a;ream tube;
and so that there is a uniform discontinuity in squared velocity across
the slipstream boundary.

Previous theories have provided approximate solutions of this prob-

lem, subject to assumptions which can be justified only if the slipstream




diameter 18 nearly constant. Therefore, these theories have been of
very 1imited value for estimating the slipstream contraction.
PREVIOUS THEORIES

Access to the technical literature related to shroudediprOpellers was
greatly facilitated by Sacks' and Burnell's (Reference 1) comprehensive
bibliography, which includes brief critiques of many of the important works

Current practical understanding of the shrouded propeller is based,
in large part, on the one~dimensional momentum theory of the shrouded
impulse disc. A fairly thorough account of this theory is given by K¥.ger
(Reference 2). The essential elements are reviewed herein, at the beganning
of Part II. A number of useful relationships between the thrust, powé}
expenditure, and forward velocity are deduced by applying the principﬁgs of
conservation of momentum aﬁd energy to the flow in the slipstream far\;ﬁwn-
stream from the shroud. The one-~dimensional theory gives no predictia; of
the slipstream contraction, howevef;“and, to apply the theory successffﬂly,
one must have prior information on the slipstream contraction from som?A
independent source. | {

A second theoretical approach, which can yileld a prediction of thé
slipstream contraction, is provided by the method of singularities. Thi§ x
approach to the shrouded impulse disc problem appears to have been first\
developed to the point of application by a team of investigators in Germaﬂy
during the World War II period. A lucid account of the main features off
this work, with references to the original papers, was subsequently f
published by two of these investigators, Kiichemann and Weber (Reference iﬁ,

The axisymmetric flow about a shrouded Impulse disc with negligible

shroud thickness and small (but not necessarily negligible) camber was



represented by a distribution of ring vortices om a semi-infinite cylinder,
originating at the leading edge of the shroud. The vortex distribution was
assumed to be uniform downstream of the shroud trailing edge. The vortex
distribution along the length of the shroud was solved for, applying the
boundary condition (equivalent to that applied by Glauert (Reference 4) in
his thin-airfoil theory) that the flow at a point on the cylinder contain-
ing the singularities should be parallel to that at the corresponding point
on the shroud. The solutions actually obtained were carried oﬁt by a
numerical process, in which the boundary condition was satisfiled at a
finite number of points along the shroud. A second boundary conditionm,
equivalent to the Kutta condition of airfoil theory, was shown to be
satisfied merely by requiring that the vortex distribution be continuous at
the trailing edge. (The numerical process involved the use of tables of
the stream function and velocity component% for an isolated vortex ring
(Reference 5), based on the solution for flow around a vortex ring, which
was given in terms of the complete elliptic integrals by L%Pb (Reference 6).)
It was argued that the solutions obtained in thjs manner afforded valid

approximations in all cases in which the stream surface defining the shroud

-
s

and slipstream deviated little from the cylinder on which the singularities
were placed. This requirement was shown to be satisfied? in general, when
the thrust coefficient was small. 1In the case of high thrust coefficients
(including the static case), a valid approximation was assured only if the
shroud was cylindrical and of sufficiently long chord to assure a slipstream
contraction ratio of nearly unity. Thus, the application of such results to
the prediction of the contraction ratio was severely limited.

This general approach to the problem is uwsually referred to as




5=

"linearized shrouded propeller thet;ry." The linearized theory Imas been
further developed by a number of more recent investigators, who hamwe also
considered some of the effects of shroud thickness, finite center bodies,
and propellers with finite numbers of blades and non-uniform loadi’xhg.
However, the limitations on application of the linearized theory tw® the
prediction of slipstream contraction have not; been alleviated. Femx an
account of these developments, the reader is referred to Morgan (Beference 7).

Despite the known limitations of the linearized theory, it Ha® neverthe-
less been applied by some investigators to the calculation of slifstream
contraction of the shrouded impulse disc, even in the static case, because
no alternative method of calculation was available. The most extemsive such
application was by Kriebel, Sacks, and Nielson (Reference 8), usfng; a
technique devised by Burggraf (Reference 9). They treated thin cylifindrical
shrouds of sufficiently short chord that the flow around the shroud could be
considered esseqtially two-dimensional. (This work is particularliy
interesting, in that it is the only case in which explicit analytieal
solutions have been obtained.) Helmbold (Reference 10) presented mesults
of numerical calculations (for shrouds with chords of 0.5, 1.0, and 2.0
propeller radii) in which the boundary condition was satisfied at mnly three
points along the chord.

To whatever extent such calculations might be valid, most of the
earlier analyses using the linearized theory also produced resultiss which
could be interpreted to give information on the slipstream contractdion in
the static case; but such interpretations were not offered by the emarlier
authors. For example, Kiichemann and Weber (Reference 11, Figure 7}

presented for cylindriéal shrouds of chord/diameter ratios zero te wmity a



graph of a nondimensional variable which is directly interpretable, in the
static case, as twice the contraction ratio, less one. These authors made
no such interpretation, however; and, in fact, stated in regard to their
representation of the slipstream by a uniform vortex cylinder that ".

the flow at advance ratio zero, of particular importance for the propeller

with annular fairing, cannot be dealt with by this assumption.”

FORMULATION OF THE PROBLEM

In this section we will formulate the problem of calculating a
stationary irrotational flow of an incompressible, inviscid, homogeneous
fluid of infinite extent through a shrouded impulse disc, in the static
case. We will restrict ourselves to the case of a shroud which is a
surface of revolution, this being the simplest case of practical interest.
Effects of gravitational forces and other extraneous forces will be
neglected, as is usual in problems of this kind.

We will use the cylindrical coordinate system (x, r, 0). It is evident
from symmetry that none of the properties of the flow will depend on the
azimuthal coordinate, O, so the coordinates of a general point can be
specified (x, r), provided that, when two or more points are specified
without the aximuthal coordinate, they will be understood to lie in a
common meridian plane.

The shroud can specified by an equation

r = R(x) , 0sx< X o

393 x e

s:_o\/_\_.

|
|
i
e X A ~———

X C &
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The function R(x) need not be siﬁgle-valued. To avoid ambiguity, we will
define a curvilinear coordinate S, measured along the shroud from the
leading edge. The shroud can then be specified by the single-valued

“

equation.

r=R() , 0<§ < St e

For the present, let us assume that the slipstream boundary is a
simple continuation of the shroud surface, so that the shroud and slipstz
boundary together constitute a continuous semi-infinite surface of revolu

describable by a single-valued function

r=R(S) , 0<8§

although only the portion of this function which describes the shroud is
known initially.

We regard the shroud as a rigid and impervious physical surface;
whereas, as previously stated, the slipstream boundary is regarded as a
hypothetical surface along which the normal velocity component; vanish, t
across which we admit the possibility of a discontinuity in tangential
velocity. The fole of the impulse disc now becomes apparent for, under t

assumptions thus far stated in the present section, Bernoulli's equation
p+ % p(® ++3) = P,

would apply, with the same constant p,, along every streamline of the

flow. Thus a discontinuity of velocity across the slipstream surface
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would imply a discontinuity in pressure, which is phyéically unreason=-
able. This difficulty is avoided by postulating the existencé of a
closed surface, the impulse disc, which is bounded by a closed line on
the surfaceiof the shroud, and which, together with the shroud and
slipstream surface, divides the space into two regions, as follows:
The first region includes all of the points on the outer suface of
the slipstream boundary. Within the first region, Bernoulli's equation

applies in the form

pt+tiop@® ++v3) = P,

The second region includes all of the points on the inner surface of
the slipstream boundary. Within the second region, Bernoulli's equation

applies in the form:

p+ % p(® +v?) = p +4p

Now, a discontinuity in velocity across the slipstream boundary is
permissible, provided the discontinuity in squared velocity is equal to
2 Ap/p, for there will then be no discontinuity in static pressure.

On the other hand, if we now adopt the assumption that all velocity
components are continuous across the impulse disc, it is evident that
there is a uniform discontinuity in static pressure across that surface.
We can argue that this is physically reasonable, if we consider the
impulse disc to represent a propeller, on the grounds that an approximately
similar difference in the static pressure is found between points just
ahead of, and just behina, a real propeller.

It will be recognized that, under the assumptions which have been




introduced, we will be dealing with that class of fluid flows known as
potential flow. Thorough treatments of the formulation and solution of
the basic flow.equations for such cases are given by Lamb, Reference 6,
and appear in innumerable other books on fluid mechanics, applied
mathematics, and potential theory. However, for the séke of clarity and
completeness, the complete mathematical development of the problem will
be outlined, starting from the equations of continuity and irrotationality.
To avoid repetitious citation of references, it will be understood that
Lamb can be referred to for all aspects of this development not unique to
the present problem.

The governing equations of the flow are the equations of continuity

and irrotationality:

Woa L eww u + 1 3@v) = o0 ' [
g*;*'.;"gﬁ; 3x 1 dr :
‘ du _ 3 = o

or ox L

It is convenient to introduce Stokes' stream function, Y (x,r), defined

so that
v =-—% %% N 1
Y(x,r) = fr u(x,r’) r’de’ _

o
(We denote these relations as Equations (1] because, as can be verified

by direct substitution, the existence of the function ¥(x,r) is a
sufficient condition that the continuity Equation L1] is satisfied).
Our boundary conditions can now be expressed’

Y(x,R) = Y5 , Osxx L
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1lim

0 [ug(x,R—s) + v (x,R-¢) - u®(x,Rte) - vz(x,R+e)] = 2 ﬁf

(4]
for x; o, =x.

Now, evidently the function R(S) is bounded, because if R increased
“without limit, the velocities within the slipstream must vanish and

Equation (4) could not be satisfied. Moreover, it is evident that, as ~
x increases withéut limit, the velocities outside the slipstreah must
vanish, so that the flow‘within the slipstream becomes unifofm. ‘This
provides a relation between the quantities ¥, and %? , for, if we denote

the limiting velocity by u, and the limiting radius by R,, we have

= 2
¥, %u, R,

from Equation [3]; and
uw?, = 2Ap/p
from Equation [4]. Whence
R2 = Y  V2/(p/p)
Thus we are free to specify only one of the quantities, Yo or %?,
arbitrarily, in stating the problem. We will choose to specify Yo
arbitrarily. (It may be noted further that the value given to Yo’
together with the arbitrary scale in which the shroud dimensions are
given, serves merely to establish a scale of velocities. It will not
influence the slipstream contraction.)
Let us now examine the assumption that the slipstream surface is a
simple continuation of the shroud surface. This assumption could be
justified by analogy with the Kutta condition of airfoil theory, but ‘?

it appears that there is a better justification. Suppose the slipstream
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surface met the shroud surface at a point other than the trailing edge.

r

f

Evidently, the velocities must vanish in the corners on both sides of

- X -
such a juncture, and Equation [4] could not be satisfied. Moreover; we
gsee that the slipstream not merely must meet the shroud at the trailing
edge, but that the function R(S) must have c;ntinuous first derivatives
at all points 8 2 S; o . Otherwise, we would have a corner, at which the
velocities wéuld vanish on one side of the surface and become unbounded
on the other side, and again Equation [4] could not be satisfied. (One
can conceive of cases in which these simple arguments would not hold.

For example, a shroud might have a cusp between the specified leading
and trailing edges, at which the slipstream might meet without violation
of Equation [4]; but such exceptions are evidently without practical

interest.)

Now let us collect the pertinent relations together. Equations
[1] and [2] can be replaced by a single equation expressing the condition

of irrotationality in terms of the stream function.

RPY 4 PY . 1 3 =9 \
B Xl T dr (27]

The boundary conditions can now be expressed
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¥Y(x,R) = ¥ , 0= x

lim
c -0 [ua(x,R—e) + v3 (x,R-e) -u? (x,Rte) - vz(x,R+e)] = a constant
for X e < x. The velocities u and v are given in terms of the stream

function by Equation [1/].

Given a shroud, and the boundary value Yo of the stream function,
one is to find a solution Y¥(x,r) of Equation [2’] which has the value
Qo on the shroud surface, and which satisfies the condition [4’] along
the rest of the stream surface Y = Y.

Equation [2’] is readily solved by the method of separation of
variables, and has solutions of the form

Y(x,r) = r(Akekx + Bke-kx) Jl(kr)
where J, is the Bessel function of first order and first kind, and where

1

k can assume any value whatever, real or complex. .
We require solutions corresponding to velocities which are continuous
and bounded everywhere except on the surface
r = R(x) s 0<x
whereas it is found that individual solutions of the above type correspond
to velocities which are unbounded at infinity. However, it is shown in

Reference 6 that, by superposition of infinitely many of these elementary

solutions in the form of a definite integral, a composite solution
- e -'1"‘ - _k -
Y(x,1) —‘f x j: e Ix x, Jl(kr) Jl(kf) dk

(with k real) can be formed, which corresponds to velocities which are

7

[3]

(4]

s

)y
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bounded and continuous gt all points except on the circle (x,r). In
fact, this expression gives the stream function at a point (;’.;) due to a
discrete vortex ring of circulation I' at the position (x, r). (There are
other solutions which satisfy this condition; for example, the stream
functions of ring vortices and ring doublets. However, since we have to
deal with a boundary condition on the discontinuity of tangential velocity
across a surface, it will be seen that the ring vortex is a natural
choice.)

Lamb also gives.an equivalent and more convenient form of this
solution, in terms of the complete elliptic integrals. A concise review

of Lamb's derivation is given herein in Appendix E. The result is:

¥, £) =L T 2 [ (1 - KBIK(Kk) - E(k)]‘ (5]
. 217 k 2

where K(k) and E(k) are the complete elliptic integrals of the first

and second kinds, with modulus

! k = / 4r¥
(x-X)® + (r+£)

We can now construct a solution of Equation [2’] which has the re-

quired properties, as a superposition of infinitely wmany solutions of the
type given in Equation [5], in the form of another definite integral. 1In
other words, we can consider that Y(i,-f) arises from a distribution of
coaxial ring vortices on the surface r = R(S). Since weé are concerned
only with points on this surface, it is convenient to write Equation [5]
in the form

A¥(E) = y(S) dS ¥*(5,5) ‘ (5]
where Y(S)dS has taken the place of %%, and 1is thé circulation around

the element of surface between S and S + dS, divided by 2m; and the

e

L’
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function {*(S8,58), which we shall call the stream-function influence
function, represents the remaining factors of the right-hand member
of Equation [5].

The rather awkward notation of Equation [4’] can be avoided if we

note that the magnitude of the velocity discontinuity across the surface

r = R(8) is precisely 2m vy(S). ' P
o 2 y(8) d8 = § (udx +vdr) = (V- V) dS
/o S as
W Vi = V+TTY
S\ i / Vv = V-T['Y
o
. s
— 2 _
VP - V2 = smyv

If we denote the mean tangential velocity at a point of this surface
by V(S), the discontinuity in squared velocity across the surface is

2

2
[ve) +n )] - [ve) - v®] = amvis) ves) (6]
The axial and radial components V_ and V. of the velocity V can
be obtained by differentiating the stream function according to
Equation [17]. The results are given by Reference 3. We will write the

results here in the form

]

v, (S)

av; )

Y(S) ds "V *(S, §)

[74

Y(S) dS V *(S, )

analogous to Equation [5’] above. Detailed expressions for the axial

and radial velocity influence functions are given herein in Appendix B.
We can now expresé the boundary conditions Equations [3] and [4’] in

terms of solutions of the differential equation (Equation [2']), with the

aid of Equations [5’], [6], and [7]:

o«

§(8) = J §%(S,8) vy(S) ds = , §=20 (3]
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Y(SW(S) = a constant, § 2 st.e.

(4”1

2

. S
v(3) ={[ fvx*(s,E) Y (S) ds] + [ 2fnv’_;k(s,’s‘) v(8) ds]a}

We must not lose sight of the fact that, in these equations, the
influence functions Y¥, V,*, V. * have s#ecific meaning only in terms of
a specific function R(S), since the same thing may be said of the
variables S, s themselves, and that the function R(S) is known initially
only uﬁ to the point § =S _ _ . Equations [37] and [4”] thus constitute
two equations in the two upknown functionsv

RG) . 8>Sy
" Y(8) ’ 5=20

It is evident, from the discussion of previous theory in the
preceding section, that we cannot expect to find nontrivial analytic
gsolutions of the pair of Equations [3’] and [4”]. Previous investigators,
even by neglecting the second boundary condition entirely, and retaining
a single equation equivalent to Equation [3’], have succeeded in obtaining
analytic solutions (or numerical solutions, for that matter) only by means
of still further simplifying assumptions regarding the representation of
the slipstream; and evén then, only in cases of small thrust coefficients

or of cylindrical shrouds. We shall therefore proceed immediately to

attempt solution of the problem by numerical approximation,

METHOD OF SOLUTION
We have seen that the successful previous treatments of the shroud-
ed propeller and the shrouded impulse disc by the method of singularities

proceeded on the following scheme: A sufficiently strong assumption was
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made on the mathematical representation o& the slipstream that the
bou.dary condition on the shroud itself ewuld be expressed by a single
definite integral equation with finite lZsmits of integration. This
equation yielded a solution which was assumed, subject to appropriate
restrictions, to be approximately consistent with the two boundary
conditions on the slipstream.

We will begin with the same scheme; %ut then, since we must antic-
ipate that, in genmeral our first solutiom will not be consistent with
the boundary conditions on the slipstream, we will seek to improve the
mathematical representation of the slipstweam by successive approximation.

A systematic calculating procedure along this line, suitable for
execution on a large electronic digital cwmputer,' is developed in detail
in Appendix A. TFor the sake of continuity, the essential elements of
this development will be indicated briefliyp here.

The following simplifying assumptions are introduced:

1. It is assumed that the distribution of vortices on the shroud and
slipstream can be represented by a contimmous distribution y(S) on a
continuous system of cone-frustum segmenils (N of which approximate the
shroud shape and M of which approximate ?&e slipstream shape), the
function Y(S) being further represented %y a superposition of NHM simple
pulse functions as illustrated in Figure 1.

2. It is assumed that, if such-a T=presentation is found so that
the boundary condition Y=Y  is satisfied at the leading edge and at the
midpoint of the second segment and each smcceeding segment except the
last (which is taken to be semi-infinite in length), and so that the

second boundary condition of the slipstrmam (W= a constant) is satisfied




-17-

at the midpoint of the Nth through (N+M-1l)th segments, this representation
will constitute an approximate solution of the exact problem, Equations [3’]
and [47].

These assumptions are justified initially by the fact that similar
assumptions, introduced by Smith and Pierce in their treatment (Reference 12)
of the Neumann problem for bod;es of revolution, led to excellént
approximations in the cases which they considered. (Smith and Pierce
represented bodies of revolution by stepwise continuous distyibutions of
ring sources on systems of cone-frustum segments.) Further justification
will be provided, after the fact, by demonstrating that the method of
calculation developed herein also gives excellent approximate solutions,
in certain cases for which exact solutions are known.

With these assumptions, the stream function and mean velocity
components at a point s = 51 of the system of cone-frustum segments (where
;i is a point on the leading edge, and otherwise ;i is a midpoint of the

ith segment) can be expressed by linear algebraic equations,

NHM _ ~
Y(§i> = j§1 ai,j Yj {8]
VLG =3 by Y ]
8,)= %
x+ 1 j=1 1)3 j
- N+ -
Vele)) = & 4,3 Yy 0l
j=1 '
- 2= 2 ¢ k‘
V() = [V, (s)) + V. 2(sp)] J

wheve ?3 is a variable characterizing the vortex density of the pulse
yj(s); and the influence coefficients 4,3 bi,j’ and 4,3 depend only

upon the geometry of the system of cone-frustum segments.
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The development of practical and accurate procedures for caléula-
ting these influence coefficients, given the shape of the system of
segments, constitutes a main problem of the present investigation.

This problem (which resolves itself into five distinct cases, depending
upon the nature of the pulse Yj(s) and the geometric relétionship of
the point Qi-to the cone-frustum segments over which this pulse is
defined) does not lend itself to brief discussion. The interested
reader is referred to the detailed development in Appendix A.

Now suppose we have been given a shroud and the constant boundary
value Yo’ and have chosen a system of N cone-frustum segments which
approximates the shroud. As a first approximation, we choose a con-
tinuation of this system (M additional segments, the last of which is
a semi-infinite cylinder) to represent the slipstream. Further, we
choose a set of numbers (Fi = ?iIVn > N+1<i<N+#M) to represent a first
approximatibn to the shape of the vortex distribution on the slipstream.
The influence coefficients now become known constants; and in Equation [8],
the last M+l terms of the summation reduce to a single known constant
multiplied by ?% . Application of Equation [8] to the first N points
;i results in a system of N equations in the N unknown variables Qj,
which can be solved for the values of these variables consistent with the
condition

¥(sy) = ¥, , 1s<is<N
Now, Equations [8] and [9] can be applied to learn how nearly consistent

our first approximation is, with the boundary conditions along the slip-

stream (which we have thus far neglected). That is, we tabulate the
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sets of quantities

¥
- - P Ml < i< NHM-1

v(E,) V)
If the first of these sets were unifornly equal to ¥, and the second
were uniformly equal to Y(§N)V(§N) we wuld consider the problem solved.
In general, of course, this will not be the case, and we will seek to
improve the first assumption on the sheye of the slipstream and the
shape of the vortex distribution on the slipstream. If we have a
method of doing this, we can, of course, repeat the procedure described
above as many times as we like, improvirz the assumptions after each
cycle of calculation, until we have a stlution as nearly consistent with
the boundary conditions on the slipstresm as desired.

The problem of deducing an improvet estimate of the slipstream
shape and vortex distribution is approacted under the following tenta-
tive assumptions:

1. It is assumed that the radial ccordinate of a general point on
the slipstream surface is a single-valuef function of the axial -
coordinate. Thus, the successive estimzzes of the slipstream shape need
differ only in the radial coordinates.

2.
;

It is assumed that, if the kth =stimate, wherein the radius at
the ith!segment midpoint was taken to be rk(§i) > leads to a boundary

value Yﬁ(§i) at this point, then a new eztimate

i rk+1(§1) = rk(;i) ‘vYo/Yk(‘s.i)

N

will lead to an improved approximation; =, if not, then some new

estimate lying between these two values tf r(Ei) will lead to an impro&ed
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approximation.

3. It is assumed that, if the kth estimate leads to a boundary
value vk(gi) at this point, then a new estimate F; = vk(Eﬁ)/vk(Ei) will
lead to an improved approximation.

The first of these assumptions is rather obviously justified in
cases of practical interest,

The second assumption is a generalization of the result that, for
an infinitely long cylinder of uniformly distributed ring vortices, the
value of the stream function at the boundary is proportional to the
sqﬁare of the radius (since the internal vglocity in such a case is °
uniformly 2y , independent of the radius). Thus the expression given
in the second aggumption can be expected to give a correction of the
right order of magnitude; and in any case, it is in the correcé sense
to move the vortex tube for the (kt+tl)th cycle of calculation towafd the
location which the stream tube Y=Y, occupied at the kth cycle.

The third assumption reflects the consideration that the veloéity
at a point of the boundary of a long vortex tube is changed only
slightly by a change in/the vortex density in the immediate neighborhoo
of the point. For/example, while the mean velocity on the boundary of
an infinite unifo;m vortex cylinder is mY, it can be shown (Appendix A,
Equation [5701) that the mean velocity at the midpoint of a short
uniform vortex cylinder, with a length of two-tenthé its radius, is‘
only'about 0.44y., Thus, on the long cylinder, the effect of halving th
vortex density everywhere within one-tenth radius of a given boundary
point is to change the mean velocity at this point by only about seven

percent.
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Thus, while a procedure for successive estimates based on these
assumptions may not be strictly and generally justified, the r-adjust-
ment and F-adjustment indicated are at least plausible, when considered
separately. It is much more difficult to justify applying both adjust-
ments simultaneously. Especially, it might be expected that adjustments
in the shape of the vortex tube would affect the mean velocity on the
Doundary appreciably. Indeed, we need not make the adjustments
simultaneously; we can make them individually on alternate cycles of
calculation., However, it was found by trial that a process of simultan-
eous adjustment is more efficient, under ordinary circumstances, and
gives successive solutions which converge satisfactorily toward consis-
tency with the boundary conditions on the slipstream. This procedure
is described in detail in Appendix A.

In summary, we have replaced the integral equations [3’] and [4”],
which express the boundary conditions at every point of the shroud and
slipstream, with sets of algebraic equations (see Appendix A, Résumé of
the Calculating Procedure, Equations [Al‘] and [A2’] which express the
boundary conditions at finite numbers of control points along the shroud
and slipstream. Moreover, we have adopted a cyclic calculating

procedure, at each cycle of which we use an "interim boundary condition"

=1 . .
‘1’(81)=}§ 2,3Vt Wy Zai’ij =y , 1<i=sN
3=l j=N

which applies at the control points of the shroud only.
The main features of this procedure are

‘1., Selection of a first approximate representation
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(xi,ri w» 151 < NHM)

Fy .ll-l < i < NM)
of the shape of the shroud and sliipstream and relative vortex distribution
along the slipstream. |

2. Calculation of the influemce coefficients ay 5 bi 5 and ¢
) ) b ’

. L,3°
3. Solution of N equatioms im N unknowns, from the "interim

boundary condition" to yield valwes of :;j’ 1< jsN.
4. Evaluation of the errom #am the boundary conditions along the
slipstream, by calculating
Y(E»i)
Y(Gy) ¥Gy)

These must ultimately become uvwiferm sets.

}NSiSN-i-M-l

5. Calculation of improved estimates
(xi,ri s W2 < S‘N-I-M)

F Bl < i < NHM)

i_ ?
of the shape and vc;rtex distribution of the slipstream. The cyclic
procédufe is to. be continued unitiil the errors, és evaluated at step 4,
are sﬁitably sméll. The details of the procedure are developed and
summarized more explicitly iﬁ Appendix A.
PRELIMINARY CALCULATIONS

A liimited Qeriesw of calculations of slipstream contraction was
undertaken, with the dual objectives of (a) confirming the feasibility of
making such calculations by the procedure proposed and (b) providing
improved quantitative knowledge of slipstream contraction, for future use

in shrouded propeller theory amdl design. o

For this purpose, the calemlating procedure outlined in the preceding
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section and developed in detail in Appendix A was translated into a
FORTRAﬁ language computer program for compilation and execution by the
IARC digital computer system of the David Taylor Model Basin. The FORTRAN
coding was performed by the writer, with substantial assistance from Model
Basin staff mathematicians, especially Mr. Dan M. Walker. For each
calculation, input data were supplied to the LARC system in the form of
punched cards presenting the N+M.pairsiof initial coordinates (xi,ri) and
the M initial values of F,. Results were received from the system in the

1

form of printed tabulations presenting the current values ?1 s Ty Fi ’
Y(Ei)V(Si), and Y(Ei) at the end of each iterative cycle, plus certain
supplementary data, at the end of the last cycle, from which the surface
velocities at each point (§i,;i) could be found if desired. The target
boundary value, Yo, of the stream function, was defined by the program to
be one-half. The slipstream contraction ig, of course, independent of
Yo’ and velocities scale linearly with Y.

Early trials of the computer program were directed toward a very
brief investigation of the convergence of the iteration process, and
toward obtaining a preliminary notion of the number and spacing of cone=-
frustrum segments required for adequate representation of the shroud and
slipstream. |

CONVERGENCE - As discussed in Appendix A, the first formulation of the
iterative calculation procedure overestimated the required adjustments
in slipstream radius at the end of each cycle, and did not produce
acceptable convergence. However, after several fruitless efforts, a
simple modification of the procedure (wherein the r-adjustments were, in

effect, first estimated by the original formula, but then multiplied by
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a variable factor, ranging from one-third for very small adjustments to
nearly unity for large adjustments, before being applied) was found which
did produce satisfactory convergence. This is illustrated by Figure 2,
which presents for comparison the results from the first, second, fifth,
and twentieth cycles of calculation, for a short cylindrical shroud

(Z/EN = 0,20). Tabulated resulfé, from the first ten cycles of this
calculation, and the twentieth cycle, are presented in Table 1.

As is evident from Table 1, the calculations could well have been
terminated long before the twentieth cycle. ‘HOQever, an early decision
was made to run all of the calculations of slipstream contraction for
tﬁenty iterative cycles, for the following reasons: The LARC computing
system has no provision for on-line inspection of intermediate results.
It is therefore necessary to decide in advance when the calculation will
be terminated. (The alternative possibility, of programming the computer
to terminate whenever some specified convergence criterion was satisfied,
was rejected because no sufficiently simple and reliable convergence
criterion was evident.) Moreover, once the computing sequence has been
terminated, there is no convenient way to restart it,‘where it left off.
Finally, it was considered desirable, in these first applications of the
comput ing procedure, to carry the calculations on f;r a liberal number of
iterative cycles iﬁ order to guard against the possibility that a sequence
+ of successive solutions which appéared to be converging might not con-
tinue to converge, or might converge to a different destination than would
be guessed from the first severai cycles.

The convergence of successive solutions illustrated by Figure 2 and

Table 1 turned out to be typical of that which occurred for all iterative




~25=

calculations reported herein, vith the following qualification: The
convergence was somewhat more —:pid for longer shrouds (larger ratio
Z/?N), and somewhat slower for zhorter shrouds (smaller ratio E/;N)'

(In fact, for the shortest shrzud attempted thus far, E/EN = 0,05, it was
not evident that ﬁhe solutions vere converging, by the end of a twenty-
cycle calculation in which the zlipstream was represented by a uniform
vortex cylinder at the first c=le. Convergence was finally obtained
by starting the calculation ovir again, with a better first estimate of
the slipstream shape and vortes distribution.) For very short shrouds,
unless a good first estimate iz used, substantial changes occur in the
"eurvature" of the vortex shezz, as measured in the meridian plane, just
downstream of the trailing edzz of the shroud, during the first few
cycles of calculation. (The rzridian-plane section of the vortex sheet
consists of straight-line segmsats, but is understood to approximate a
smooth curve, whence the concezt of "curvature.') Under these
circumstances, the assumption *mplicit in the iteration process - that
r-adjustment will affect ¥(s) zrimarily, and not affect V(s8) very much -
does not hold true, and the sizuatlon is kept from getting out of hand
only by '"damping" the r-adjuszments as discussgd in Appendix A. Un-
doubtedly, the present method :ould be appliéé to still shorter shrouds
than attempted herein, by usiz: heavier damping, and careful first
estimates; but, Lf it were desired to approach zero chord lengtﬁ, it
would probably become necessazy to take direct account, vhen estimating
the r-adjustments after each zrcle, of the effect of these adjustments
on V. Undoubtedly, such a przcedure could be devised. However, there

{s no known practical interes:, at present, in shrouds of chord shorter
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than perhaps 0.4EN » 80 this question was not pursued in the present
investigation.

REPRESENTATION OF THE SHROUD - In most of the calculations presented
herein, the shroud was represented by a surface composed of 24 cone-
frustum segments (N4=v24). In order to have reasonable assurance that
this provided an ad;qﬁ;te representation, one of the early calculations
was repeated, but with N = 12. The results of the two calculations are
presented for comparison in Figure 3. The close correspondence in all
features of the two results is regarded as strong evidence th;;Vthe
representation with N = 24 was adequate for the simple shroud shapes
studied. The estimates of slipstream contraction ratio afforded by the
two calculations were equal within 0.2 percent. (The same evidence might
be used to justify making the succeeding calculations with N = 12.
However, the saving in the expense of the calculations would not have
been significant, so the more éccurate representation was used.)

REPRESENTATION OF THE SLIPSTREAM - The spacing of segments immediately
downstream of the shroud frailing edge is necessarily similar to that
immediately upstream, because of the consideration (previously dis-
cussed) that the widths of adjacent segments should hot differ drastically.
Further downstream, ail of the variables involved in the calculations
vary more and more slowly, along the slipstream, so the successive segment
widths can safely be increased, gradually, to the maximum allowable width
of'abOuf twenty percent of the localrradius. The main choice to be made,
as to the representation of the slipstream, is how far downstream to

continue the system of cone-frustum segments before terminating it in the

final (N+Mth) semi-infinite, segment.
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In most of the calculations presented herein, the N+Mth segment was
- e
begun at X 4 LI where x was measured from the shroud leading

edge, and ¥, was the radius of the shroud trailing edge. In order to

N
have reasonable assurance that this provided an adequate representation,
one of the early calculations was repeated, with the same segment spacing
but a reduced number of segments (reduced M) such that XM = 2 ?& . The
results of the two calculations are presented for comparison in Figure 4.
The close correspondence in all features of the two results is regarded

as strong evidence that the representation of the slipstream with

L = 4 EN was adequate. The estimates of slipstream contraction ratio
afforded by the two calculations were equal within 0.1 percent.

It can be noted from Figure 4 that, if one elected to estimate the
slipstream contraction ratio by taking Ty 28 an estimate of the limiting
slipstream radius (or by taking §&+M as an estimate of the limiting
slipstream vorticity, analogous to the usual practice in the linearized
theory), the result would depend comparatively strongly on how far down-
stream the system of cone-frustum segments was carried. This dependence
is largely avoided by basing the estimate of the slipstream contraction
on the quantity W.

(In this connection, it can be noted from Table 1 that, in the
particular case represented there, the value of Y(§N)V(§N) from the first
cycle of calculation--in which the entire slipstream was represented by
a single semi-infinite cylinder, as in the linearized theory~~would
already have provided a rather good estimate of the slipstream contraction.

The poscible significance of this circumstance will be investigated

further in a later section.)
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COMPUTING TIME - For any one of the calculations for which results
are presented herein, the time required for the LARC Computer system
to perform the calculation can be roughly approximated by the formula:

(Time in Minutes) = (Number of Iterative Cycles)

2 3
(e @l

The program will accommodate values of N up to 50, for iterative
calculations, and up to 98 for single-cycle calculations. 1In either
case, N+M cannot exceed 100,

(The program can be modified very easily to permit values of N up
to, say, 90, for iterative calculations., However, N+M cannot be in-
creased very much without fairly extensive modifications. Imn any event,
as is apparent from the above formula, the calculations rapidly become .
more expensive as the numbers N and M are increased.) »

REMARKS - It may be well to péint out that it has not been proven
that solutions of the exact problem, (Equations [3’] and [4”]) exist; nor
that,.1f a solution is found, it will be unique. The facts that a
numerical procedure has been found to yield apparently very close
approximations to such solutions, and that these results seem entirely
reasonable physically, constitute circumstantial evidence of existence
and uniqueness, but ﬁardly proof. This evidence will become stronger
(but not conclusive) in a later section when it is found that the same
numerical procedure also yields extremely close approximations to exact
solutions of other probiems, for which existence and uniqueness are
well known.

This situation finds parallels in many other applications of
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mathematics to physical problems. There is always the undeniable

hazard, in such cases, that approximate methods of analysis may yield

"solutions" of a problem which has no solution. This hazard is far

-

outweighed byvxhnwaHGEhces in knowledge which such methods, -in company
/’/’ I
wi.~ paysical intuition, make possible. 7~
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PART II - APPLICATIONS AND EXTENSIONS

We have considered the‘prablem of the axisymmetric potential flow
of an incompressiﬁle fluia tﬁfough a shrouded impulse disc, and have
succeeded in finding a practical method of obtaining approximate numer-
e ical solutionms.

We have treated the probleﬁ of the shrouded impulse disc as_a spec;al
case of the more genefal probiem of the axisymmetric potential flow about
an arbitrary surface of revolution. We may suspect, therefore, that our
metﬁod might have more general applications. This possibility will be
examined in’avlater section. First, let us consider the possible applicé-
tions of theoretical predictions of slipstream contraction to the problem

of the shrouded propeller.

APPLICATIONS TO SHROUDED PROPELLERS

It was mentioned at the outset that the original motivation for the
present investigation came.fpgm'certain practical problems of the shrouded
propeller. B

It is found experimentélly that shrouded propellers are more efficient,
in terms of thrust delivered and power expended, than free propellers, in
the static case. This advéﬁtage is of great praétical interest in connec~-

‘ ¢ion with "vwertical take-off and landing' aircraft. It has been best

understood, in terms of the concept of slipstream contraction, from the

e one-dimensional theory of the shrouded propeller.
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THE ONE-DIMENSIONAL THEORY OF THE SHROUDED PROPELEER ~- The assump-
tions introduced in Part I, in the section on Formulattion of the Problem,

are consistent with the assumptions of the one-dimensfonal theory of the
shrouded propeller, often referred to as '"simple momenfsm theory.'" Under
these assumptions, a number of uéeful relationshipa foxr the shrouded
propeller can be derived very simply, without considerfing the details
.

of the flow. A treatment of this theory was given by Exiiger, Reference 2,
who also obtained experimental data tending to confirm some of the main
conclusions.

One objection to the one~dimensiohal theory has been that most of
‘ the relationships deduced contain the siipstream contraxction ratio as an
unknown parameter, which must be estimated in order to apply the theory.
In the past, there has been no very sound basis for making such estimates,
except when ¢ was known to be nearly equal to unity.

Since we now have a tool for calculating slipstremm comntraction, it

ig of interest to review the essential features of the eme-dimensional

theory.

The Static Case -- In the static case (zero free-stream velocity),
the energy, dynamic pressure, and momentum of the slipstream are entirely

due to the action of the shrouded propeller.
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The momentum flux through a section of the slipstream, far downstream, is

H
fl

3
oVt Ao

The propeller thrust is

it

T

1 2
X VR A
p 2 P'j

P

The kinetic energy flux is

L 3/2 .
P o=y VoA g =T /2./pAt¢

.

Therefore, the static efficiency is given by

3/2
) gy = ——=—— = /& [10]

2./p At P

For a propeller without shroud, the total thrust and propeller
thrust are equated, and it is deduced that ¢ = % . Thus the shrouded
propeller enjoys the advantage of a static efficiency, better by a
factor of v@a than that of the free propeller, according to this theory.
(The'%tatic efficiency'is not a true efficiency, but a parameter which
plays the same role for the shrouded propeller which is played by "figure
of merit" for the hovering rotor.) |

The ratio of total thrust to propeller thrust is given by

T/TP = 2 ¢ At/Ap [11]
It is sometimes cited as an advantage of the shrouded propeller
that the total static thrust exceeds the thrust of the propeller. This
is not in itself an advantage, except insofar as it is symptomatic of
the real advantage of a superior static efficiency. The thrust on the

shroud appears largely as a suction pressure around the leading edge,
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with the result that there is uéually an adverse pressure gradient in
this neighborhood. This may be quite severe unless the shroud is rather
thick, or is made artificially thick during static operation by means

of flaps or inflatable sections.

The shrouded propeller's superior static efficiency is of great
interest in connection with Vertical Take-Off and Landing (VIOL) aircraft.
For prepeller-driven VIOL aircraft, the operation of the propellers is
essentially static during landing and take~off, at the times when the
propeller thrust must offset the entire weight of the aircraft, and the
maximum power is required.

If shrouded propellers are employed, to reduce the power required
for take-off and landing, a penalty is incurred in terms of the weight
and drag of the shrouds. From this standpoint, it seems advantageous to
make the shrouds as small as possible. On the other hand, if the shrouds
are too small, they may be less effective in preventing slipstream con-
traction. Moreover, it was suggested by Kriiger, Reference 2, that a long,
divergent (diffusing) shroud might produce a slipstream expansion, and
provide an even greater advantage. Thus, it is of great interest to the
designer to know the effects of the shroud geometry on sliéstream con-

traction in the static case.

The Case of Finite Thrust Coefficlents ~- When there is a free~
stream velocity, only a part of the energy, dynamic pressure, and momen-
tum of the slipstream are due to the action of the shrouded propeller.
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The mass flow through the propeller is ij At ¢, so that the

portion of the momentum flux ascribed to the action of the shrizded pro-

peller is
T = oV, A vV, -1
Vyhes 0y -0
The propeller thrust is

= (Ll v2_1 2
Tp (2 ij ) pU )AP

The portion of the kinetic energy f£lux ascribed to the action zf the

shrouded propeller is .

P = -;-pvj Ay ¢ V2 - 0°)

The thrust coefficient is

e -2y (0 )
T 1 2 U U
EpU At

Whence
\'4 _ 1
uj _2[1+,/i+2cT4/¢]

The Froude efficiency is, from Equations (127 and [14]

M =

and by application of Equation [16] becomes

2
1+-2=[1 +J1+20T/¢]

’nF=

ot

[12]

[13]

[14]

[15]

[16]

(17]
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The ratio of total thrust to propeller thrust is, from Equations [12]

and [13]

r ., 29V
T
p Vj + U

and, by application of Equation [16] becomes

T L+ 1+ 2¢/o )
- = 2
I ATV Yy Cpl9

(18]

For a free propeller, the ratio T[Tp is equated to unity, giving
the relationship between ¢ and CT’ which is plotted as the dashed curve
in Figure 10b. The contraction ratio for the free propeller approaches
unity as the thrust coefficient approaches zero, as would be intuitively
expected.

Equation [17] may be written, for low thrust coefficlents

C

T
T ~ 17 ,  Cp<l (177

Thus, it is seen that

a. At low thrust coefficients,‘there is substantially less differ-
ence between the slipstream contraction of a free propeller and that of
a shrouded propeller than there is in the static case.

b. The slipstream contraction ratio has a weaker influence on the
Froude efficienéy, in the case of low thrust coefficients, than it has on
the static efficiency, in the static case.

Both of these considerations tend to indicate that, even when the
drag of the shroud is ignored, there is little advantage in shrouding the
propeller -unless the performance in the static case is importént. When ~

the drag of the shroud is considered, the shrouded propeller is found to
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be at 8 definite disadvantage, at low thrust coefficients, so far as the
Froude efficiency is concerned. However, in some applications, the '
shroud may take the place of stabilizing or lifting surfaces, or provide

sound reduction, so as to retain an advantage despite the drag.

Experimental Evidence == RKriiger's experiments, Reference 2, and all
subsequent experience (see Reference 1) confirm the general conclusions
of the one~dimensional theory, using ¢ ~ 1 for the shrouded propeller,
as regards the advantage of the shrouded propeller over the free pro-
peller in thé static case. Moreover, in the case of reasonably long,
nearly cylindrical shrouds, the total thrust is found to be divided approx:
imately evenly between the shroud and the propeller, as expected from this
theory.

We were concerned, in Part I, with developing a method to predict in
detail, under assumptions consistent with those of the one-dimensional
theory, the effects on ¢ of shroud geometry variables. It would seem
that it must be possible to establish the more important of these effects
by proper experiments. However, while the shrouded propeller literature
(see Reference 1) contains a great quantity of experimental data, ome
finds no correlations of these data wherein these effects are systemati-
cally identified. -

Since it can hardly be believed that no such correlations have
been attempted, during two decades of shrouded propeller research, it
may be appropriate to speculate on the reasons why none are found in the
literature. First of all, one cannot measure the slipstream contraction
directly, because the slipstream (in the sense in which we are using this

word) does not really exist. Instead, one must measure effects which
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imply slipstream contractiom, such as changes in the'static efficiency
and the ratio of propeller thrwst to total thrust. However, these quan-
tities may be influenced by a great many other variables besides slip-
stream contraction, These include the numerous variables of propeller
geometry and location, centerbody geometry and 1oca£ion, and shroud
support strut geometry and lowation, as well as viscous effects on all
these components and the shroud. Even when two experiments are performed
with essentially the same model, a change in the geometry of the shroud
might--in addition to changing the slipstream contraci?on--also-change
the flow through the propellexr and around the centerbody, and change the
character of the boundary layers on any or all components. Obviously,
compara?ive interpretation of experiments with different models is still
more uncertain. The large effiects which occur when the shroud is added
to a free propeller, or remowed from a shrouded propeller, are compara-
tively easy to observe and imderpret; but if one compares & propeller
with a long shroud to one with a short shroud, or one with a cylindrical
shroud to one with a divergem& shroud, the differences in measurable
quantities which might properly be associated with differences in slip-
stream contraction may be of the same order of magnitude as--or even much
smaller than--numerous othex possible effects. Experimental isolation of
these effects is pqssible onYy by means of very painstaking measurements,
if it is possible at all. Et has evidently not yet been accomplished, to
any significent extent. Hopefully, futgre experiments may be planned
and interpreted more success®ally, with the advantage of better theoretical
information on the effects of shroud gedmetfy.

In summary, very signiffcant differences in performance are found,

experimentally, betweenw free propellers and shrouded propellers, in the
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static case. The general character and magnitude of these differences

are explained very conveniently and successfully in terms of the concept

of slipstream contraction. It seems reasonable to expect that some of

the important effects of variations in the shroud geometry of a shrouded
propeller might also be convenlently and successfully predicted in terms

of the concept of slipstream contraction. The available experimental
evidence neither confirms nor denies this expectation. At the minimum,)::
knowledge of the effects of shioud geometry on the glipstream contractio&f%
of shrouded impulse discs should be useful for planning and interpretiﬁg7a
new shrouded propeller experiments. At the maximum, if experimentnl céﬁ-f'
firmation is forthcoming, this knowledge might be extremely useful in thél“
design of shrouded propellers for VIOL applications.

It is the author's opinion that the predictions of the one-dimensional
theory regarding changes in static efficiency associated with changes in
shroud geometry, using values of the slipstream contraction ratio calcu-
lated by the present method, will be found to be reasonably valid; pro-
vided,

a. There is no flow separation from the shroud.

b. The pressure rise across the propeller disc is approximately-
uniform.

¢. Any changes in the efficiency of the propeller itself are either
prevented, by adjusting the propeller geometry, or are accounted for
geparately.

It should not be imagined that, ecven if this opinion is confirmed, the
design of shrouded propellers would then become straightforward. The

uncertainty regarding the slipstream contraction is only one of a large
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number of compliéations which plague the shrouded propeller designer.
(Perhaps the greatest of these is the difficulty of predicting the
circumstances under which flow separation will or will not occur. It
will be seen later that the present method of calculation, by providing
information on the velocity distribution over the shroud, might possibly

provide the basis for a future approach to this problem.)

SYSTEMA?IC CALCULATIONS OF SLIPSTREAM CONTRACTION -~ In order to
" provide some immediate quantitative information on the effects of shroud A
geometry on slipstream contraction, a limited series of calculations was
undertaken for certain interrelated families of cylindrical, conical, and
parabolic~-cambered shrouds.

The Static Case -~ It was of particular interest to obtain resulté
for cylindrical shrouds, in the static case, because the previously
available estimates of slipstream contraction, from the linearized theory,
pertained to cylindrical shrouds.

The results of twenty-iterative-cycle calculations for cylindrical
shrouds, over a wide range of chord/radius ratios, are presented in
Figure 5. Also presented, for comparison, are:

a. The ;stimate provided by the linearized, short-chord theory
of Kriebel, Sacks, and Nielsen (Reference 8).

b. The estimate available from the first cycle of calculation by

the present method, based on""yN_.'_M ; that is,

Yo
¢ =~

- = 3
™ Yyt N
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c. The estimate available from the first cycle of calculation by

: 3
the present method, based on y(EN)V(§N}‘§ that is,
ﬁg
9 ~ '_EJ._______

In the calculations by the present method, the slipstream was
represented, at the first cycle of calculation, by a uniform vortex
cylinder, just as in the linearized tk2ory. Thus, the estimates available

a from the first cycle of calculation are essentially linearized-theory
estimates.

These estimates are based on the relationship

= 1 2
Yo T2 utcho
where u_ is the limiting velocity within the slipstream, far downstream, and
R is the limiting slipstream radius. In the linearized theory it is
assumed a priori that vy is constant along the slipstream, and the rela-
tionship
. ' ‘ u, = 21 vy{&)-

leads directly to the estimate given iz "b" above. However, one is not
compelled to continue to assume a posteriori that y is constant along

the slipstream. The relationship
u? = dnyE) V()

together with an a posteriori assumptim that yV is constant along the
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slipstream with the value calculated at .the trailing edge, leads to the
estimate given in "c'" above.

The results given in Reference (8) were derived without any modifi~-
cation of the a priori assumption concerning the representation of the
slipstream, and so would be expected to merge, at small chord/radius
ratios, with the first~cycle estimate from ?NHM' It is seen in Figure 5
that this does, indeed, appear to be the case. (The identification of
this estimate with §N+M is, of course, somewhat arbitrary since, at the
first cycle of calculation, all of the Qi's from L = N to i = NHM were
equal.)

As anticipated earlier,‘Figure 5 shows £hat a comparatively good
estimate is afforded by the value of y(EN)V(EN) at the end of the first
cycle. From the special vantage point afforded by hindsight, it seems
quite reasonable that an extrapolation along the slipstream to infinity
should be based on the quantity vy V, which is supposed to be uniform along
the slipstream, rather than on the quantity vy, which is not supposed to
be uniform.

The only available and comparable results of previous theory for
larger chord/radius/ratiﬁs were those of Heimbold (Reference 10), which
were obtained froéxlinearized-theory calculations in which the boundary
conditions were applied at only three axial stations along the shroud.
Thus, th.y are not really representative of the linearized theory. As
a matiar of fact, however, Helmbold's results, which were for chord/
radius ratios of 0.5, 1.0, and 2.0, agreed rather closely with the results

of the present twenty-cycle calculations. Helmbold did use the value

of v V at the trailing edge for his estimate of slipstream contraction.
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Vortex distributions for certain of the cylindrical skwxouds, taken
from the twentieth cycles of calculation, are presented in Figure 6.
It is easily shown that in tfze case represented (YO = 0.5, "i-l = 1.0), the
function y(S) for a semi~infinite shroud must approach the walue 1/21m.
This asymptote is shown on Figure 6. A line is also shown which repre- \

%

sents the variation y(8) ~ S ~2 | which must necessarily prewail at the
leading edge of any thin shroud, and which evidently prevails for a
significant distance downstream from the lgading edge. It would seem
that, as cylindrical shrouds of shorter and shorter cHord! ame considered,
the functions y(S) change smoothly, and only slightly, fimm that which
would be found for a semi-infinite cylindrical shroud. AEse it would seem
that, for cylindrical shrouds of sufficiently long chord, wepresentation
of the entire slipstream by a uniform vortex cylinder could be justified,
even in the static case. (This latter conclusion is alse smpported by
Figure 5.)

Twenty-cycle calculations of slipstream contraction wewre carried out
for a few members of a family of diffusing conical shrouds and a family
of parabolic-cambered shrouds. These families were chosem so that the
cylindrical shrouds of Figure 5 would be limiting-case mmubers of both
families. Moreover, corresponding members of the conica® amd parabolic-
cambered shroud familes were chosen to have equal trailing—edge divergence
angles; namely, tan o = 0, 0.08, 0.16, and 0.24, in the warious cases.

The results are presented in Figures 7 and 8 and in Tble 2. It is
seen that shrouds with positive trailing-edge divergence amgles can

provide significantly more favorable contraction ratios.
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Weinig (Reference 13) gave an approximate formula for estimating
the effect of trailing-edge divergence on slipstream contraction; namely,
P ~ T—:—%TZETQ; . (This formula was based on two-dimensional free-
boundary calculations. The application to axisymmetric flow was justified
on the basis of an investigation by Trefftz (Reference 14), who showed
that approximately the same contraction occurred in the flow through a
circular orifice, as in the flow through a long narrow slit.)  The
formula is compared with presené results in Figure 9. It is seen that

the formula gives a fairly good approximation in cases of long-chord

conical and parabolic~cambered shrouds.

The Case of Finite Thrust Coefficients -~ While only the static case
has been considered in the preceding discussion (since it is in the static
case that slipstream contraction is especially interesting), the extension
of the method to include the case of axisymmetric flow in a freerstream
is very easy. This extension was included in the computer program. (If
the free-stream velocity is U, it is necessary only to add YWt to the
expressions for stream function, and to add U to the axial velocities.)

The computer program was arranged to permit séecification of a non-
zero value of free-stream velocity, U. This allows calculations for arbi-
trary finite thrust coefficients, by the same procedure employed in the
static case. (It is not possible, by the present method, to specify the
thrust coefficient CT precisely; but U is specified precisely, and it is

easily shown that

_ 4 Yo 2 Yo
CT = = ==y - 1
N U rN ¢
Thus, CT can be specified approximately before the caiculation, from a

preliminary estimate of the slipstream contraction ¢, and can be deter-

wead precisely after the calculation.)
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Results of calculations sufficient to provide a preliminary indi-
cafion of the variation of slipstream contraction with thrust coefficient,
for . c¢ylindrical shroud of chord/radius ratio 0.40, are presented in
Figure 10a. The slipstream contraction ratio was plotted versus the
reciprocal of the thrust coefficient, so that the static case, = = 0,
could be included on the graph. !

In the calculations with finite thrust coefficient, the shroud was
represented by twelve segments (N = 12), and the slipstream was represented
with XN+M = 2.05 ?N. The calculation with finite thrust coefficient is
much easier than in the static case, because there is less difference
between the initial and final slipstream shapes, and because the quantity
V(éi), along the slipstream, contains the constant component U, and hence
is less sensitive, fractionally, to the successive r=-adjustments.

Figure 10a shows the (perhaps) surprising result that, as one moves
away from the static (%; = 0), to finite thrust coefficients, the slip-
stream contraction ratio ¢ at first declines; and then, as l/CT is in~-
creased (CT decreased) further, ¢ increases again, approaching unity
asymptotically. While this result was not expected, it is readily under-
stood, in terms of the evolution of the static pressure, on the outer
surface of the vortex sheet, in the neighborhood of the shroud trailing

. edge. Consider, for examble, a case in which the mean axial velocity
within the shroud is held constant and equal to unity. At zero free-
stream‘velocity, the axial velocity at a point just outside the slipstream
boundary near the trailing edge will have a negative value, say, -B. To
the first approximation, at finite free-stream velocities, the axial

velocity at this point will be U - B(1-U); and the gage static pressure

at this point will be %- p {U3 - [(1 +B8)U - B]é} . This quantity is
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negative at U = 0, goes to a maximum positive value at a small value
of U, and approaches zero again as U approaches unity (tha: is, as CT
approaches zero). Thus, in a range of large but finite ttrust coeffi-
cients, the static pressure in the neighborhood of the trziling-edge is
perceptibly higher than ambient; and the mean internal axizl velocity,
across the trailing-edge plane, may well be lower (comparei with the
limiting velocity, far downstream, where the static press.re becomes uni-
form and equal to ambient) at some thrust coefficient, in this neighbo;-
hood, than at higher or lower thrust coefficients. Thus, it should not

be surprising that the slipstream contraction rati§ could be at a minimum
at a finite thrust coefficient.

This result lends emphasis to the fundamental and pezceptible differ-
ence between the classical "free streamline' problems (in which a uniform
stétic pressure is imposed along the "Free" surface, and Zence only the
flow oh one side of the surface need be considered), and the present
problem (in which the static pressure is continuous across the "free"
surface, but may vary along it, and hence a flow field which occupies all
space must be considered).

(It might be pointed out that it has been elected to consider, hefein,
that the static pressure is continuous across the slipstrzam surface, and
that the quantity V?, and hence the total pressure, are riiformly dis-
continuous across this surface, the uniform jump in total pressure corre-
sponding to an equal jump across an impulse disc spanning tbe‘interior
of the shroud. This viewpoint is most nearly consistent with the physical
processes of a real shrouded propeller. However, one cozld elect, with
exactly equivalent results, to consider that the slipstrsa@ sﬁrface con-

sists of a rigid, impervious membraﬁég;qcross which thers is a uniform
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jump in static pressure, the total pressure being uniform throughout the
enﬁire field. In this case, the concept of an impulse disc need not
enter at all, until one wishes to justify the application of the results
to shrouded propeller theory.)

For a cylindrical shroud, at the first cycle of calculation, the
shape of the vortex distribution is independent of the forward velocity,
U, since the shroud is automatically coincident with a stream surface of
the undisturbed free stream. Hence, the induced velocity at any point has

a fixed direction and a magnitude proportional to, say, y(EN). Thus, one

can write

whence

Y c '] ¥

[o] 1 o
(""?- - U/2>‘—'+U (:—e - U/2>
\ Ty C,  J\%y

For each chord/radius ratio, the constants C1 and 02 can be determined

from the first cycle of the static-case calculation, qufthe slipstream
contraction can then be estimated for any arbitrary value of U.. The
estimate obtained in this way is equivalent to ghe first-cycle estimate
from Y(EN)V(EN), obtained from a calculation in which the desired U is
specified. In fact, in Figure 10a, the upper dotted curve was deduced

from the first cycle of the static-case calculation, and was found to
practically contain the points with triangular symbols, which were obtained

from the first cycles of the finite CT (finite U) calculations. (In the

absence of all errors, that line would contain those points, exactly.)
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prone to have flow separation. However, this difficulty might be

circumvented by ume of inflatable leading edges or other devices.

OTHER APPLICATIONS AND EXTENSIONS

The emphasis in the preceding discussions has been placed on the
calculation of slifpstream contraction. However, the method developed
for calculating sX¥fipstream contraction involves the construction of a
close approximatiomm to an entire flow fileld bounded by a surface of
revolution. We may thus consider applying this method to othef problems
of axisymmetric potential flow, including some for which slipstream con~-
" traction may be off 1ittle or no interest, and even some in which a slip-
stream 18 not inveollwved at all.

While explovfmg the possibilities of further applications, the
opportunity will Bee taken to apply the present method to some problems
for which. exact seXutions are known. In this way we may obtain a few

direct checks on Ets accuracy.

INTERNAL FLOW IM CIRCULAR DUCTS -~ Axisymmetric flow through a section
of circular dustimg, of arbitrary radius distribution, can be approxi-
mated very readily, simply by representing a long "shroud' which has
the desired radfus distribution along a part of ite length. It is
advisable to Iet the shroud continue for some distance upstream and
downstream of the section under study, to minimize end effects; and to
specify values of W and \l'o which avoid any strong leading-edge singular-

ity, for the seme: weason. (A specification such that \Yo = '%"- Ur® should

gerve nicely, under most circumstances.)
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For an example of this application, a duct studied by Thwaites
(Reference 15) was chosen. Thwaites considered a class of potential
flows for which the radial coordinate bf an arbitrary point on a given
stream surface is a periodic function of the axial coordinate. Thus,
one of the stream surfaces may be chosen to represent the wall of an
infinitely long periodic duct, for which an exact solution for tﬁe *
internal flow is available.

Of course, it is not possible to represent an infinitely long
periodic duct by the present method, because an infinite number of cone-
frustum segments would be required. However, only the solution for a
single half~period of the internal flow is required, since the rest of
the internal flow then folléws by symmetry.

For the present example, as shown in Figure lla, three half-periods
of the duct were represented, on the assumptioﬁ that the flow in the
middle half-period would be essentially the same as for a truly periodic
duct. (The duct represented is from the third of the three examples
presented in Reference 15.) As shown in Figure lla, the results of cal-
culations of the velocity distribution on the wall, by the present method,
agree extremely well with Thwaites' results (by the exact method, for a
truly periodic duct).

Thwaites' practical interest in this perioaic duct lay in the assump-
tion that the flow within & half-period of the duct would approximate the
flow within a transition seétion, of the same shape, joining two cylindri-
cal ducts. By the present method, of course, such a transition section
can be~represented~directly, as shown in Figure 1lb. It would appear, on

the basis of the results presented in Figure 1lb, that Thwaites' assumptic

was reasonable; although, of course, the velocity distribution in the
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immediate neighborhoods of the junctures with the cylindrical ducts is
perceptibly different from that in the corresponding neighborhoéds of
the periodic duct. (Thwaites' interest was in effusing transitions,
whereas the example of Figure llb represents a diffusing transition.
However, since we are dealing with potential flow, this makes no material
difference.)

At the first attempt to calculate the flow through thé periodic dﬁct,
a noticeable discrepancy was found between the velocity distribution given
Py the present method and that given by Thwaites, in the neighborhood of
the section of minimum radius. Thwaites' calculations were then partially
rechecked, and a single ordinate -~ the minimum radius itself ~-- was found
to be very slightly in error. Specifically, it is given by Reference 16
to be 0.487, whereas a more nearly correct value is 0.4858, less than one-

fourth of one percent different. Using this value, excellent agreement

was obtained, as shown in Figure lla. This incident points up a need for

extreme care in‘specifying the coordinates X Ty for applications of

the present method; and suggests that, in many practical applications, the
accuracy of the results may be limited by the precision with which the
coordinates can be determined, rather than by erroré inherent in the

method itself.

CLOSED BODIES -~ The development of the method of calculation, detailed
in Appendix A, was specifically limited to a flow bounded by an open
surface of revolution. This limitation arises primarily from the handling
of the leading-edge singularity (Case II and Case IV of the Determination
of the Influence Coefficients, Appendix A). it was expected from the

beginning that an effort would eventually be made to extend the method to
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include solid anZ annular bodies of revolution. However, it was only
realized in retrzspect that this extension could very easily have been
included in the :riginal computer program, and in fact consists primarily
of simply bypassZig the segments of the program dealing with the leading-
edge singularity. Propbsed methods of doing this, and of dealing with
other less serio=zz obstacles in the present computer program, so as to
permit calculatims of flows about closed bodies (literally, closed vortex
sheets) will be outlined in a later section, along with other possible
extensions.

The represertation of a closedbody by a distribution of vortices
over its surface appears to have been applied rather rarely to practical
problems, althouzr the validity of such representation has long been
recognized. Lamt stated, in Reference 6, Art. 151, that " . . . every
continuous irrotz:ional motion, whether cyclic or not, of an incompressible
substance occupyizg any region whatever, may be regardéd as due to a cer-
tain distribution of vortices over the boundaries which separate it from
the rest of infinfte space." We do not wish to review here the intricate
reasoning by ;n’nic’z Lamb justified this statement, but the elements of
the argument reqeZred for our less general case are rather simple, 1f we
may appeal to cer:zin well-known theorems of the potential theory. First,
note that the flov about a closed body in a uniform stream can be re=-
duced to the flow sbout a body nioving through a fluid which is at rest
at infinity. Nex:t, we note that, in Lamb's words, 'No continuous irro-
tational motion is possible in an incomﬁressible fluid filling infinite
space, and subject to the condition that the velocity vanishes at infinity.’

From this it follows that the whole velocity field is determinate if the

cuxl of the veiocig 1s known at every point; for, suppose there were two




e e At A s ¥

~52~

velocity fiéldn Vl,‘vz satisfying & given specification on the curl, and
vanishing at infinity, then the field Va - Vi - V& would have vanishing
curl everywheie. énd would also vanish at infinityf and ﬁence, by the .
above theorem, would vanish everywhere. Let us suppose our body to be &
closed surface filled with the fluid. We have assumed the motion outside
the sqrface to be irrotational, and to vanish at ianfinity, and wa now
suppose the moﬁion‘within the surface to be irrotational also.'except in
a thin stratum of thickness, t, next to the surface. Now, any possible
motion of the outseide fluid, consigtent with our assumptions, can be
assoclated with some - not necessarily unique - distribution of curl
within this stratum; in other words, with a space distribution of vore
ticity. Theyargument is in no way changed_if we let t tend to zero, so
that the space distribution of vorticity becomes a surface distribution
of vortex density. Now if we return to the stationary surface in a ﬁni-
form stream, and require tha; the normal velocity vanish on the surface,
we have, by another well-known theorem of the potential theory, that the
veloéity vanishes everywhere in the region enclosed by the surface. In
this case, the vortex density at any point of the surfave is equal in
magnitude to the velocity just outside the surface, divided by 2r. If
the velocity field is unique, the distribution of vortex density 1s also
unique. 8ince the space outside an annular alrfolil is doubly connécted,
the velocity field is not uniquely determinad unless some suitable con=
straint « aucﬁ as the Kutta condition - 1is placed on the circulation
around the airfoil. ' .

Vandrey, Reference 17, calculated plane~symmetrical and axisymmetric

flows about closed bodies by representing the bodies by surface distri-

butions of vortices.
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Without any modification of the present computer program, we may
seek to approximate the flow abouf a closed body by fepresemting a
significant part of its surface by a vortex sheet.

Circular Inlet -- A very ‘simple example of this a'pprlfcation is
afforded by the problem of calculating the velocity distribwtion on the
inlet to a thick semi-infinite pipe. (This problem may be #hought of
as an idealization of the problem of calculating the flow ait the inlet

of a jet engine or a shrouded propeller.) .We may hope to approximate

\7//////1./1//////2 \C’-—""’

the flow at the inlet'by representing the inlet profile, a pemrtion of
the outer su.rface ;)f the pipe and the whole interior surface: ®f the pipe
by a vortex sheet, Essentially, this amounts to representing; the pipe
by a shrouded impulse disc with a shroud in the shépe of the specified
portion of the pipe surface and with a very long chord.

An example is presented in Figure 12. A circular pipe of internal
radius ;N and thickness 0.16125'1"N E Vith an inlet profile comgprosed of )
a quarter-circle aﬁd a quarter-ellipse, was represented as skatched in
Figure 12. The tick marks on the . sketch identify the joints of the
system of cone-frustum segments chosen for this representatiom.

Squared velocity distributioﬁs on £he iniet for the static case,
and for the case of free-stream ve}.ocity equal to seven-tentlss of the
mean internal axial velocity', ére presented in Figure 12. The scale of
velocities wa;s chosen so that the mean internal axial velocity was unity.

Also shown in Figure 12, for comparison, are results of emlcula-

tions, for the static case,rby the method of Smith- and: P¥emom {Reference
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In those calculations, the outer surface of the pipe was continued down-
stream past the 'trailing edge" shown in the sketch and then in to the
axis, capping off the pipe in the form of an urn. The inner surface\ﬁas
capped off by a sink disc, on which was prescribed a uniform normal
velocity. (These calculations were performed on the IBM 7090 computer
at the David Taylor Model Basin, using a modified version of a computer
program which had previously been made available to the ﬁodel Basin by
the Douglas Aircraft Company). As pointed out by Reference 12, the
method of Smith and Pierce is not fully successful in calculations of
inlet flows, because the boundary conditions are applied to the normal
velocities rather than to the stream function, and a cumulative "leakage
of fluid" can occur through the walls of the duct. (The normal velocity
at the center of each segment is required to be zero; but‘the mean normal
velocity along the segment is not necessarily zero.) This is presumably
responsible for the unrealistic decrease of surface velocity, below
unity, along the inner duct wall., It is seen, however, that the agree-
ment with results of the present method is rather good, along the inlet
profile itself,

Annular Airfoil -- We may carry the idea of the preceding paragraph
a step further, and seek to approximate the flow about a closédABody of
finite dimensions by representing the major portion of its surface by a
vortex sheet. We will call such a representation a '"nearly glosed"
surface. A particularly natural application of this idea is the applica-
tion to an annular airfoil, because an annular airfoil may be regarded as
a shrouded impulse disc in the limiting case of zero thrust coefficient,

and hence zero vortex density on the slipstream surface.
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As discussed previously, in connection with thé calculation of slip-
stream contractioh in caséé of finite thrust coefficients, the thrust
coefficient can be made to come out nearly to zero by proper choice of
¥, and U. The specification on U can then be modified on successive
calculations to make the thrust coefficient -- and hence the vortex
density on the slipstream -- as nearly zero as desired. Inasmuch as the
shape of the part of the vortex sheet representing the slipstream will be
immaterial, once the vortex density has vanished, it is unnecessary to
iterate for the shape of the slipstream.

The results of a calculation in which the flow around an annular
airfoil was approximated are presented in Figure 13. Also shown are
experimental data from Reference 16. The agreement between calculated
and experimental velocity distributions is seen to be satisfactory} (The
airfoil represented in the figure was that given in Reference 16. It was
ten percent thick, with four percent camber, on an NACA a = 0.8 mean line,
and had an NACA 66-010 thickness distribution over the forward 45 percent
of the chord and parabolic‘thickness distribution over the after 55
percent.) As sketched in Figure 13, the cone-frustum system was begun
on the uppexr (outer) surface of the airfoil at the 96-percent-chord
station, extended forward, around the leading edge, and back along the
lower (inner) surface to the trailing edge. Then,\in order to establish
the trailing-edge flow in a direction more representative of that which
would obtain with a closed airfoil, a 2.5-percent-chord extension was
édded in the direction of the airfoil mean line extended. (It is believed
.that, unless some such measure were employed, the gap in the upper surface

at the trailing edge would produce an effect similar to that of a reflexed
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trailing edge, and the nearlz clos%§ alrfoll would have apprecilably
less circulation than the correap:éxdirwaed oy dlovever, only tie
arrangement sketched in Figure 12 was tri;d.)

The results of thils example of the 'nearly closed" annular airf:il,
and the preceding example of the circular inlet, strongly suggest th:t,
by proper extensions and modifications of the present method, axisymetric
flows about arbitrary finite annular bodies, including thick annular air-
folle and impulge disce with thick shrouds, can be approximated very
closely. Previously, only linearized-theory methods were available for
these problems, The linearized theory is limited to rather thin, nwrly
cylindrical bodies, and cannot correctly represent the velocity distcibu-
tion around the leading edge, because of the leading~edge singularity
which is present in that theory. This velocity distribution is of
practical interest in connection with the problem of leading-edge flaw
separation.

Sphere =~ The results of calculating the velocity distribution an
a "nearly closed" sphere are presented in Figure 14,

The method of representing the sphere is most easily described in
the following terms: A shrouded impulse disc was represented, with the
shroud coinciding with that portion of the sphere sketched in Figurz 14
_from © = 0,01 radian to § = (17=0.01) radian, At the rear, a short
transition to a cylinder of radius 0.0075 times the radius of the sihexe
was added, and then a semi-infinite uniform vortex cylinder "slipst-eam,"
of this same radius, completed the representation. There was thus m
internal flow through the sphere, but Y, and U were chosen so that ihe

5
mean internal axial velocity at the maximum cross section was only I0 - Uy,
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It was assumed that this internal flow, and the extremely thin
"glipstream" would have negligible effect, except in the immediate
neighborhoods of '"nose" and "tail" of the spheve.

It is seen in Figure 14 that the results of the calculations agreed
extremely well with exact theory, except in these uaighborhoods.

FURTHEi{ POSSIBLE EXTENSIONS -- The computer program which was developed
for the present investigation does not permit full exploitation of the
potential appltea&ioﬁs»of.ﬂu method. The following improvements L0 the
pr:gram ave ccnhamplatad for the near future: ‘ o

1. Proviaions for rvepresentation of a clesed anaulag body by a
closed aystem of cone=frustum segmeuts, rather than by a "neaxly ¢loged"
system, by allowing the polnts L and 8y to ecoineide, Tentative plans
includa! .

8. Removal of the prepeat limitatlon (diseussed in Case IIX of
the datermination of influence ceeffielents) va allowable preximity of
the midpoint of one segment to another segment.

b, In the case of an anaular bedy with ¢lipatzeam (that ia, a
shrouded impuloe dise with a shreud of arbitravy finlte thisknesn),
replacement of the silagular pulse Vl(a) by a tztangulay pulse, and
definitien 8y = 82/2. (The trailing edge will be eensideved to 1lie at
the polnt By, just devnstream of the evineident poiats s, and By)

e, In the ecase of an anaular aivfoil witheut a slipstrean,
dpeeifieation of the Kutta eonditien by speeifylng ?1 = ?% & 0§ and
replacement of ?1 by the beunda¥y value Yg of the skveam funetien, as an
unleasint variable in the soluéien of Nel sinultanesus equatiens, (@hé

teailing edge will be eensideved €8 lie at the esineident peints 84 and Sy
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2. Provisions for representation of a closed solid body by a
closed system of cone-frustiim segments, by allowing the points s, and

8 to lie on the axis of symmetry. Tentative, plans include

N+1

a. Replacement of the singular pulsg}vl(s)’by:a triangular
pulse, and definition §1 = 32/?. (The pulse éN+1(s) will be suppressed
by specifying FN+1 =0,)

b. Optional definition, Yb = 0, ‘

c. Removal of the present limitation (twenty percent of the
mean segment radius) on the permissible length of a segment. (Thié‘:{ -
limitation is,presently‘imposed because of applying analytic formulas
for the influence coefficlents to entire segments, and can be removed
by applying these formu;as only to a short mid-section of each segment;
and integrating numerically over the remaining portions of the segment.)

3. Provisions for calculating the velocity components and streamx\\
function at arbitrary points in the flow field, not on the system of
cone-frustum segments,

4, Provisions for calculating the flow about a system of two or - \
more coaxial bodies, such as, for example, a shrouded impulsg disc with
- a leading-edge slat, or with a centerbody.

The gbove modifications and extensions appear to be f;irly trivial
in difficulty, although the improvements in utility of the method of
calculation would not necessarily be trivial. |

Another extension which would appear to be of potential value, but
is not trivial, is the following: Provision for successive modification

of the shape of a section of a closed body of revolution to approach a

prescribed velocity distribution. Since, in the representation of a
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closed body by a surface distribution of vortices, the vortex density

-

distribution is directly proportional t6 thé velocity‘égggribution,

this representation would appear to be especially weliﬁiﬁféed to this
problem. CA semi~-infinite body is a closed body in this context.)

This class of proglems includes certain classical free-streamline problems
(wake flow, cavity flow, flow through an orifice, etc.) in which the pre-
scribed veloci£y is uniform, as well as other possibilities, such as the
design of laminar-flow annular alrfoils, design for miniﬁum adverse
pressure gradient of separation-prone components such as inlets and
diffusers, and many others. Although these problems might seeﬁ simpler
than the slipstream problem to the extent that the vortex‘distribution
is'given along the unknown ﬁoundary, the problem of successively adjust-
ing the boundary shape to obtailn converging solutions would in general

be much more difficult. Moreover, in many cases, the question of the
existence of a solution would be a matter of real practical concern,
since one can easily specify a velocity distribution which is impossible

of attainment.
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.. CONCLUSIONS

The following conclusions have been drawn: i

1. A practical method of obtaining approximate numerical solutions
of the mathematical problem of the axisymmetric potential flow threough a
shrouded impulse disc, using a high-speed computer, has been developed,
In particular, it is now possible to examine in detail the theoretical
effects of shroud geometry on slipstream contraction.

2. The assumptions of the theory of the shrouded impulse disc are
consistent with those of the one-dimensional theory of the shrouded
propeller. That theory has been extremelyiueeful in the past, evén
though it was neceasary to use fough estimates of the slipstream contrac-
tion for ite application. It is a reasonable presumption that the one-
dimensional theory will be still more useful, now that it is possible to
make detailed predictions of the slipstreaﬁ cohtractién. However, a
definite conclusion on this must await expérimentgl confirmation.

3. The results of systematic calculations of slipstream contrac-
tion for families of cylindrical, conical, and parabolic-cambered shrouds,
in the static case, -have been presented.

4, It is found that the slipstream contrécts léss severely, in ‘the
case of very short cylindrical shrouds, than had previously been predicted.

5, In the case of cylindrical shrouds, a good estimate of the slip-
stream contraction in the static case can be obtained from linearized-
theory calculations, by using the calculated discontinuity iy squared
velocity (which is proportioﬁal to the quantity W) across the slipstream
at the tralling edge. This technique was used without subntantiat£;n by

at least one previous investigator, but has not been used by more recent
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inveétigators. However, there is no possibility of similarly accurate
estimatés from the linearized theor& for non-cylindrical shrouds,
because the linearized theory cannot apply to the static case unless the
gshrouds are cylindrical.

6. The computer program developed for the shrouded impulse disc
problem is generally applicable to axisymmetric potential flows agbout
and through arbitrary open surfaces of revolution. A saméle calculation
of the velocity distribution on the inﬁerior wall of a long duct of
varying radius agreed extremely well -with a previous exact solution.

7. Annular and solid bodies pf revolution can be approximated by
"nearly closed" surfaces of revolution. A sample calculation of the
velocity distribution on an annular éirfoil agreed quite well with ex-
periment. A sample calculation of the velocity distribution onra sphere
agreed extremely well with exact theorf.

8. By means of fairly:straightforﬁard modifications and extensions,
which are discussed briefly, the préseﬁt.method éan become a rather
general and powerful tool for making axisymmefricvpotential flow
calculations. 1In particular, it appears that problems of flow about
arbitrary thick annular bodies, with circulation or slipstreams, not
amenable to treatment by ﬁievious methods can be treated accurately and

conveniently.
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APPENDIX A
PRACTICAL METHOD OF CALCULATION

It is desired to develop a systematic calculating process, sultable
for execution on an electronic digital computer, for approximate solution

of the equations

-

f ¥*(s,3) v($) &s = ¥, 820 [A1]
o - :

Y{é) V@) = a constant , S =2 S, o

V@) = [vxa @ +v? (3)] ¥

> [A2]

vx('é) = JO vx*(s,'é) y(S) ds

-]

V@ = [ vasE v@as

o

Ve

ya

where it 18 understood that the influence functions V¥#*, Vx*, and Vr*
have definition in terms of a function R(S) with a range 0 < S. However,
;his function is given initially only in the range 0 < 8 < st.e'

This becomes practical if each of the functions R(S) and y(S) can be
characterized adequately by a finite number of variables. To this end,

the following simplifying assumptions are introduced
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1. It is assumed~thet the function R(S) eeu be repiesented with
sufficient accuracy by a function r(sj, the.graph of which is composed
of N+M straight~11ne segments The first segment originetes.ae the
leading edge of the shroud, 8§ =8 = 0.' The miupoint of the Nth segment

coincides with the trailing edge of the shroud, s =3 S=8

N’" Tt.e.

fhe N+ M th segment is semi~infinite at r = rN+M.=:constan£ Thus,
éhe function r(s) deflnes a system of cone~frustum segments terminating
in a semi-infinite cylinder (see Figure 1). ‘

2. It is assumed that the vortex distribution y(S) on the stream
eurface Y = Yo can be represented by a continuous dlstributlon y(s) which
)baries linearly along each of these segments except the first; remains
eonstant along the (N + M)th; and varies as el s-% + c,8 along the first
‘(where ¢y and ¢, are arbitrary constants).

3. It is assumed that a pair of functions r = r(s) and y = vy(s),
which when substituted for R(S) and y(S) satisfy Equations [Al] and [A2]
at the shroud leading edge and at the midpeint of each of the second
‘through (W+M-1)th segments, will constitute a sufficiently accurate '
approximatibn to a~solution of these equations.

The validity of these assumptions will depena, of course, upon a
suitable choice of the spacing-of the N + M segmente;'quIuding choice
of sufficiently large numbere N and M.

The three assumptions stated above are similer to assumptions intro-
duced by Smith and Pierce (geference 12) in their ureatment of axially
symmetric, inviscid, irrotational flow about bodies of revolution. At

the present stage, the hope that these assumptions will lead to accurate

approximations to the exact solutions rests largely upon the notable
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success of the work of those amathors. (Smith and Pierce approximated
the body surface by a system: off cone-frustum segments. They employed a
distribution of ring sources, wlkich they took to be uniform over each
segment, and hence discontinuows at the junctures between ;;egments, and
applied the boundary conditioms at the midpoint of each segment. They
dealt with fully~-specified suxfimce geometry; i.e., with the ordinary
Neumann problem, so that iterasfon was not required.)

Following the second oﬁ'tﬁe above assumptions, it is cohvenient to
writevy(s) as thee sum of N-+ W overlapping pulse functions (triangular

pulses, except for the first amd last) as follows:

N+M )
(" .
véd = )y, (s) (A3a]
' i=1 : '
whefe
v (e) = Y1 {J.—i - -’-—} , O0O<s<s
. C - 8 2
L 2 , [A3b]
a o , otherwise )
g -8 . -
Yite) = = i-1
i(s) = Vg (si -~ 81-1), > ™., <8<s8,
5 L S o L
i\8gp1 - 83f g <8 <8, 1 <i<NM ’ [A3,C]
= O s twtherwise
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8~ 8 -
- N+M-1
Youu(8) = ¥, (""'jj‘““‘ ) , 8 <s8<s
N+M N+M SNHM ~ SeM-1 N+M N-+M
= Y » By <8 > [A3d.
= 0 s otherwise

(Note that Wi = y(si), except when 1 = 1)

With these definitions, the continuous function y(s) 1is completely
gpecified, for all values of s, by specifying a set of N + M\numbers, the
values of Qi.

(These definitions involve no further approximation beyond the approx-
imation introduced by the second of the above assumptions. They merely
introduce a convenient way of expressing this assumption.)

The integral equations

Y@ = j Y*(s,§) v.(s) ds
o

V@) = jo VE(s,8) y(s) ds

Vr(é) = I Vi(s,E) v(s) ds



now reduce to systems of linear algebraic equations as follows:

MM
YG,) = J; a4 7y

NM
VXGJ) = 2 bi,j -‘-Yj
i=1
M. .
vV.(GE,) = e, 4 ¥
R 121 1,31
where | |
a4 = %j‘ fo h(e,3,) yy(e) ds T
= Lo -
bi,j VJ Jo v *(s,8,)) yj(s) ds
1,5 © %} .fo Vv, *(8,8,) vy, (s) da

These integrals, in turn, are expressed more conveniently by further

defining
1,9 % %~ T f g
i,y = Puge TP 9 [as]
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where
ai,1~ = 0
SB ’
-5 (2 ) s
4,14 o T T e/ Y3 ds

: »

r s—s:_

a = ( - L ) Y*(s,8,) ds , 1< j<NHM
i,}- 8.~8 i
’ 8.-1 3 3-1
j
: 5+ .
3.+"8
a5 f . Sl Y*(s,8,) ds , 1 < j < N+M
»J 8, .8 i

5 54178

MM e
SN f‘ ( -8 ) ¥%(s,5,) ds

ey | FH M1

s | teE) @

Sy

[A5a]

(A5b]

[A5c]

[A5d]

[5e]

[A5£]

5\ ) actly the same as those
The expressions-for bi,ji and ci,ji are exactly

given for 3y 4k but wizh Vx*(s,ii) and Vr*(s,ii), respectively,

appearing in place of 1”%3,31).
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Thus, a main problem of the task of developing a practical method
of calculation consists of finding usable expressions for these influence

coefficients.

DETERMINATION OF THE INFLUENCE COEFFICIENTS

The influence coefficient ai,j gives the value of the stream function
at the point s = Ei due to the pulse function Yj(s), in the special case
Qj =1, (Similarly bi,j gives the value of the axial velocity component,
and ci,j gives the value of the radial velocity component at this point
due to this pulse.) In the great majority of instances, when j is equal

to neither unity nor N4M, and &, is outside the range of yj(s) (i.e., 1 # 3,

i
and i # j~1), the influence coefficients can be determined by straight-
forward numerical integration of Equations [A5], it being necessary oniy to
establish suitable rules to assure efficient and accurate performance of

the numerical integration by the computer. -In each remaiﬁing instance,
however, the definite integral defining the influence coefficient is improper
for one or more reasons, and special care is necessary... The various con~-
tingencies which arise are grouped in five sepéréte-cases, in the following

discussion.

-

CASE I. 8, WITHIN TRIANGULAR PULSE -~ The point denoted Ei falls

i
within the ranges of the pulse yi(s) and y1+1(s).

-

1'3 T3
Yax
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The flow in the neighborhood of the leading edge of the shroud is quite
gimilar to that in the neighborho_od of the leading edge of a thim airfoil

at incidencé. Just as in the probiem of the thin airfoil, as treated by
Glauerﬁ (Reference 4), it is necessary to take careful account of rthe fact
that the point ‘31, even though situated at the leading edge, is newertheless
to be considered an interior point of the shroud contour. This is facili-

tated by writing:

o -
= Ty g - 2 -
8 ¢ ™ Ty lim I (Ja a) Y*(o - ¢) do

0 °
5
a = T, lim g -
L2- - %4 @ fo 2 vo- o do D)
‘ s 1 = - .. _
= Y g - g - Y )
By T ‘fi i_f‘g Io‘ ( 5 a)vx*(" <) do

etc.
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Now, if series expansions of the influence functions (see Appendix B)

are substituted into these integrals, it is found that the resulting

texrms are readily evaluated, except for terms which lead to integrals
of the form

g
12‘; __.__._..__'\/g do
0 VT (0-e) .

With the aid of formulas given by Pierce (Reference 18), this integral
is8 evaluated as follows:

Let y = o/e ; then

b

] ==
(y-lh)ﬁ o (1-y)¢§“
But -
1 -
dy -
L a-y)/y fl (yfnﬁ
Thus _
o Ao (o-e) v J: i/e -y ﬁ 1oge1-&
-2 9-[[5 2 HE) + (A
Whence




3
- 3 8(354(L
a1+ < T {1°ge 5 [2 5+ (5 sin °‘) c
B i3 2_\= 3
- (165 st 25)5 ]
+|35 + (22 sinfe + =) 5 -
49 (3200 o eaoo) ¢ [A10a]
3 3 3
= 8fi- (L = U BU- A
al,-2~ r, loge 3[2 c-+(6 gin a)cr - (32 sino 64)° + ]
-3-- + — 21 -] "‘a
- 1370 (9 sinoz)o (128 /ina 35 )or + ] [A10b]
1l 823 (& 2 (3 stta - 535) 7 »
b1,1+‘ 2{log = [2 ¢ -\12 sin a)c +(80 gin"o ~ 320)0+ .o ]
- - -3- 3 -3—)" (_]:_. 3 __1-_ _3
[6sina (2 :s:l.noz+2 g + lzsina Ssina)o
(3 4. 3 . a 123 ).° -
(160 sin o - 50 sinfo + 6400)0- + ... [AlOc]
1 3f.(L NS SRS T
b1,2- = 3 {loge '6[ (12 sin a)o + (16 sin“o 64)0 + ...
3

1. .2 .l.)--(.l_.. a, . 13 -
+[Zsinq+(zsina+2 o lzsincw 7zsino:)o

1 1 132 :
+ (3‘5 sin"'a..-e- ginq + 5-5-6-)0 + ... ]} [A104]



%Ea- (Tg-asino() 38+;. ]

= L
1,1+ 2 {c“ @ log,

+ [6 - (':2}' sin oz)b'-l- (—%—5 sin2a+-%’z).'62

3 .4 213 _2 ‘ 410
(35 st o5 &in @) 5 + .. ]} [A10e]
c = 1 cos'cx log g[-l- 32 (—'-3 sin a) oa + . ]
1,2- 2 e ols 32
1 3 L ooin?e - 3\5
- [2+(2 sina)o- (12 sino 8)0
1 . 19 - 3 ] 0
+ (Foi’a- Tpena)s +. .. [A10£]

It will be found that these expressions (with only the given leading

terms of the infinite series) provide sufficiently accurate approximations

for our purpose, if G does not exceed 0.2.

CASE III. s 1 OUTSIDE TRIANGULAR PULSE ~- In this case, the integrals

appearing in Equations [A5] are proper, and can be evaluated conveniently

by numerical integration.

Simpson's rule (Reference 19) is particularly well suited for numerical
integration by electronic digital computers because of its simplicity and

the resulting flexibility with which it may be applied. This rule may be

expressed ’ y1+2h
fa(y)dy = -3-»[fn(y1) + 4fn(y1+h) +. fn(y1+ 2h)]
y -

1
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The approximate equality becomes exact if the fourth derivative of the
integrand is zero over the interval of integration. Moreover, so long as
the fourth derivative is finite, the fractional error incurred by applying
the rule can be made as small as desired, by confining application to
sufficiently small intervals, 2h. Thus, an integration over a given in~-
terval is split into integrations over an appropriaté number of ''subin-

tervals' as follows:

Tk PR T A ot
.r fay) dy T Z fn(y) dy ]
yl i=1 yi

kel
= z _3..1. [fn(yi) + 4fn(y, +hy) + fo(y, + 2hi)]
i=1 '

where each subinterval, Zhi’ is to be chosen sufficiently small to assure
the desired degree of accuracy.

In the present case, the Integrands which are invblved in Equations
[A5] are well-behaved functions except for singularities of the influence
functions situated at the point denoted Ei. The most unfavorable circum=-
stance (since we have excluded those cases in which the point Ei is
encountered in the interval of integration) occurs when Ei is collinear
with, and near one end of the line segﬁent along which the integration
is performed, and the integrand has a simple pole at s = Ei. (The nature

of the singularities of the influence functions is most readily apparent
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in the series expansions, Appendix B.) Therefore, we consider the

integral
y£+ 2hi Zhi
J ldy = 1oge (1 + —;—) (Exactly)
Y y i
i
h
.4 [1 4 1
=313 T + —=——— ! (By Simpson's rule
3 Yy vy + h1 vy + Zhi] )

The fractional error is

-1 -1
21, 2(pal) i(re 2
h 6 - 3 y 6 1+ —;—
e = i i i -1
2h
log 1 + —i )
Iy
2hi
The fractional error is seen to be a function of ;—- , the ratio of the
i

length of the subinterval to the distance between the nearer end of the
subinterval and the location of the pole of the integrand. .Some values

of e are given in the following table:

2h

— i Fractional
¥y Error, e
0.2 0.000018
0.4 0.000113
0.6 0.000409
0.8 0.000970
1.0 0.001865

2.0 0.011379
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) For the present case, it is chosen to evaluate Equations [A5] by
Simpson's fule, in the form given by Equation [A11], with the subin-
tervals Zhi chosen to be of equal width within each particular interval.
Thus |

v, =y
_ %N
2h, k= 1

It is further chosen to select the number of subintervals, k-1, as the

smallest (non-zero) integer satisfying the condition

2hi = < 1/2 dmin

where d . 1s the distancg from the point §, to the nearest end of the

line segment over which the integration is performed.

8§

Finally, it is chosen to select the spacing of the points 8y, 80 that
none ofvfhe peints 31 shall fall closer to any point of any other line
segment (that is, other than the line segment containing 31) than 0.7

times its distance from the nearest end of that other line segment.
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(Application of the procedure described above involves accurate
. * * *
numerical evaluation of the influence functions V¥ , Vk , and Vr at
discrete points along the path of integration. The method employed for

this purpose is described in Appendix D.)

CASE IV. Ei QUTSIDE SINGULAR PULSE =~ In this case, the singular=~

ities of the influence functions are located outside the interval of

1/2

integration; but the singularity of yl(s), of order s "7, 1s located at

one end of the interval.
!

,,./
!

Since the point 8, 18 in general not collinear with the line segment over

i
which integration is performed, and may be either close to or distant from

this segment, it is not practical to expand the integrands in series.
Numerical evaluation is practical, however, by the following device:

Consider, for example, the influence coefficient
82

¢y 1e i (%Z - i—;) V*(s, By) ds

As an approximation, this can be written

. P E s “
L * Tr(005,) ] (j;:"?z')ds + ]

2, (8
2 8_ 3
(/3 - &)t o
[¢] Bsz

2
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where the error arices from neglecting any fractional change in Vr*(s,ﬁz)
over the interval 0 < 8 < Bsz. This exrror can be made as small as desired
by choosing the coefficient B sufficiently small. The first integral can
then be evaluated analytically, and the second can be evaluated numerically,
by Simpson's rule, after splitting it into appropriate subintervals. (In
an instance in which Vr*(s,ﬁz) is dominated by a singular term of order
(&2 - s)nl, the fracitional error in the first integral will not exceed that
of the approximation

Iﬁ (s"% - 8)(L +8) ds = Ie (s_% - g) ds

o o
It is chosen to take B = 0.0l1. Then this approximation becomes

0.20061634 = 0.19995

Thus, the fractional error in the evaluation of the first integral would
be of the order 0.003; and the coniribuiion of this error to the total
fractional error in the evaluation of 9,1+ would be acceptably small.)
With regard to application of Simpson's rule to the second integiul,
the permissible width, Zhi, of the ith subinterval of the second integral
is“related to the closest distance from this subinterval to any singular-
ity of the integrand. If the width of the subinterval is taken equal to
its closest distance from 81 (the site of a singularity of oxder s’llz),

then, to the approximation that the integrand is dominated by this singu-

larity, the fractional error in evaluating the integral over this cubinter-

4
Y
e =

val is

4 1
+ ——
/1.5y, fﬁf} - 1= 0.0005

1
e 4
v/yl,
l?l L
| = gy
yﬁ
1
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Taking B = 0.01 in the first integral, the width of the first subinter-
val of the second integral can §e 2h1 = 0.01 sé . It is convenient to
progressively increase the width of successive subintervals, so that the
number required is not excessive. Thege considerations are applied in

the following choice of & formal procedure for calculation of the influence

coefficients, in the case at hand:

~ 7
8 y -
) - n (22 Tk wx(y,, B
a; 14 = 0.19995 ¥*(0, 5,)s) + Z _k ( 5 "3 ) (%> 34)
| =3 k%2

; 8 y, + h ) )
2 k k -
+4( - ¥*fy. + h , 8
yk+hk 8, (k k i)
8 y,. + 2h
2 - ok k) yr(y +2n, %
+( y ¥ " s )Y (v + 25 By) [a12]
where
h1 = 0.00495 82
ke
h = 2 ', ., 2sksé
) h7 = 0.18315 s,
y, = 0.0Ls,
Yo = Y1 + 2hk~1 , 2<k<x<7
The coefficients bi 1+ and ¢, 14 are given by exactly similar expressions,

in which Vx* and Vr*’ respectively, appear in place of Y¥*.

CASE V. Ei CUTSIDE SEMI~INFINITE PULSE ~~ In this case, the integrals
‘ppearing in Equations [A5] are improper because the upper limit of inte~

aration extends to infinity; that is,
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-]

o wne T YR8 ds
SN+M

by T L VHe,8) ds
W

-]

C1 e J v *(s,3;) ds
TN

The series expansions of the influence coeffigients used in the preceding
cases, are useful only over intervals collinear with the point"éi , and
not extending too far from this point. Alternative (asymptotic) expansions,
valid at points sufficiently far removed from the point Ei, are possible
and are developed in Appendix C. Thus it is possible to evaluate a portion
of any of the above integrals by numerical integration, from SN to a
point s’, sufficiently far removed from,'éi to assure validity of the asymp~
totic expansions; and to evaluate the remaining portion, from s’ to
infinity, by analytic term~by-texm integration.

In the course of developing this procedure, however, and attempting
to test its accuracy, it was discovered that a purely numerical procedure,
much better adapted to automatic computing, is feasible. This consists of
dividing each integral into an infinite number of subintervals, so that
the successive subintervals increase in width in geometric progression.
With appropriate choice of the width of the first subinterval, and of the
ratio betweén the widths of successive subintervals, Simpson's rule can bde
successfully applied, so that the infinite integration is approximated by

an infinite summation of alggbraic terms.
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The actual procedure to be followed is chosen as follows:

K
£f n A
v <) 3 [ V(o By) F AP T By By) P V(v + 2y Ei)]
k=1

where

hy = 217 [x(“mﬂ) - x(y) ]

.5)¥1p

=2
]

1

Yo = Vgt Wy,

and where the kfth term of the summation is the first term encountered
which is smaller than 0.000001.

The coefficients bi,N+M+ and Ql,lﬁﬂtf are evaluated by the asame procedure,
replacing ¥¥* by Vx*, and Vr*,rrespectively.

(still another possibility for the handling of this case was considered;
namely, replacing the semi-infinite uniform vortex cylinder, by its "equiva~-
lent" uniform sink disc, as discussed by Kiichemann and Weber (Reference 3).
In principle, this would be the best approach, because onlylproper definite
integrals would be involved. waever, this approach was rejected because
it would have required an additional computer subprogram to evaluate the in-
fluence functions for ring sinks.) .

AC’ JRACY CHECKS

Before attempting calculations of slipstream contraction, preliminary

cnlculations were undertaken to uncover any significant errors in the



e
influence coéfficients given by the brocedures prescribed in each of the
five cases. First, a procedure for numerical evaluation of the influenée
functions was developed and checked, as described in Appendix D. Tﬁe
numerical integration procedure prescribed for Case III was checked by
" applying the procedure exactly as prescribed; then applying it again, but
taking five times as many subintervals; then comparing the two results.
Precisely the same technique was used to check the numerical integration
procedures prescribed for Cases IV and V.

The analytical formulas given for Cases I and II were checked by
first applying the formulas over a certain interval; then divid%pg that
interval into subintervals, applying the formulas over the singular sub-
interval, and integrating numerically over the other subintervals; ghen,
comparing the two results.

No discrepancies lafger than a few tenths of ome pergent were en=
countered in any of these checks. (Checks of the formulas given for
Cases I and II were confined to cone-frustum segments for which the segment
length was, at most, two-tenths of the radius at the segment midpoint.
The accuracy of these formulas would, of course, deteriorate, if the
segment length were increased very much.)

In addition, qualitative checks were made in all five cases by means
of hand calculations using the tabulated properties of ring vortices, and
certain special ring-vortex distributions, given in References 3 and 5.
The resuits of these checks were also quite satisfactory. (Precise checks
by this technique were not attempted, because the tables thémselves are
not very accurate. The object of these checks was merely to preélude the

possibility of major errors.)
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It was concluded that the procedures prescribed for calculation of

the influence coefficients in each of these five cases were satisfactory.

.

RESUME OF THE CALCULATION PROCEDURE

It is desirable, at this point, to give a concise, step~-by-step
summary of the procedure which was employed in the calculations.

The exact problem involvés finding the shape of the slipstream of a
shrouded impulse disc with a thin shroud of given shape and size. 1In
principle, the flow field can be exactly represented by a distribution of
ring-vortex singularities on the shroud and slipstream surface, in which
case a solution of Equations [Al] and [A2] would constitute an exact solu~
tion of the exact proBlem.

It has been assumed that the exact problem can be replaced by an "approx-
imate problem" in which the flow field is represented by a continuous distri-
bution (of a certain restricted functional type) of singularities on a
continuous surface composed of NM cone-frustum segmenﬁs (the first N of
which approximate the shape of the shroud, and the N#Mth of which is a
gemi~infinite circular cylinder); and, further, that an exact solution of
this approximate problem would afford an approximate solution of the exact
problem. It follows that an approximate solution of this approximate
problem will also afford an approximate solution of the exact problem.

The governing equations of the approximate problem (analogous to

Equations [Al] and [A2] for the exact problem) are:

N-1 N+M

(@) = Zl UiVt ) My FytY s lsiswael [l
= 3N
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: F, +F 1+F
- i i+l - Nt+1
v {Si) ("—-‘-‘-—-————-2 ) = V(su)(-—-z—-_—-> , N+l € 1 < NHM-1 [AZI]

where

_ 2 _ 2 _ 1%
V(SQ [Vx (si) + Vr (si)]

MM - )
VX. @i) = le bi,j Yj

MM
Y (20 gjzi °1,3 Yy

Let us assume that a shroud shape has been given; that a set of points
(xi s ri) ,7 1<1ix N+1,'éefining a continuous system of cone~frustum
segments which approximates the given shape has been selected; and further
that a continuatuon of this set (xi, ri) », N2 < 1 < N#M, representing
a first estimate of the slipstream shape, and a set of numbers (Fi) ’
N+l < i < N+M, representing a fifst'estimate of the slipstream relative
vortex distribution, have been selected. One can then proceed as follows:

1. Calculate the cﬁordinates 8, of the points (xi, ri), using the

-~

relations: .

rd

s, = 0 -

‘ 2 2 s
8y = 87t [("1 =% ) o+ (g -ry) ]
2. Calculate the influence coefficients a , b , and ¢ for the
i,3° 1,4 i,j

values 1 € i < NMM-1 and 1 < j < N¥M by the procedures specified in the

immediately p.eceding sections.
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3. From Equation [Al'] » for 1 < 1 < N, from a set of N siuultanec..
linear algebraic eq;xatiéns in the N unknowms, 'Qj, for 1 < j < N3 and solv
for these values of ’?j. (In the actual calculations subs:quently describe
this solution of simultaneous equations was performed by a standard sub~-
routine (Reference 20) of the automatic computing fécility émployed.)

Tabulate the remaining members of the set ¥y j? using the relation

53 =F ¥y » ML < < MM

4. Using Equations [Al’] and [A2’], tabulate the quantities

¥ (3)

N < 1 < NMM-1
v(3) V(3)

(If these were uniform sets, then the most recently specified sets of
values of x4, Ty, and W(iwould constitute an exact solution of Equations

[A1’] and [A2'].)

5a. Replace the most recent estimate of the slipstream relative

vortex distribution with the following new estimate:

: w1~ °n PTARY
- . ' - ,
FLo= 0L F (St oo T, (e GN+2)} , WL S 1€ W

where

841 ~ 8441

G:’t = V(EN) (31+1"81)V(§1) + (si-si-l) V('éi_l) » Ml<is<wm




5b. Replace the most recent estimate of the slipstream shape with

the Eollowing‘new estimate:

Q -1
"o - i
ry r, [:Qi 0.06 tanh ( 009 )] s M2 ,S NM-1

U =
TN T TMel

where

Q, = (v 7 %n) Yy
I N O TP I TR I O

5¢. Return to Step 1 and begin a new cycle of calculation.

(Note: In regard to step 5b, it was originally planned to perform
the r-adjustment by means of the simpler and wmore natural formula r{ = riQi‘
It was found, however, that the values of Qi tended to oscillate around
unity on successive cycles of calculation, converging toward unity rather
slowl&, if at all, after the first two or three cycles. The more artificia:
formula given for Step 5b makes‘essentially the same r-adjustment as the
simpler formula when Q1 differs substantially from unity, but "damps out"
the small adjustments which would otherwise retard final convergence. Whil
the given formula was quite satisfactory for purposes of the limited series

of calculations undertaken for this dissertation, further improvement

L4



at

-88-

in the rate of convergence could undoubtedly be achieved by systematic
modification of this formula.)
This five-step cycle of calculations is to be repeated until the

two sets of quantities calculated at Step 4

-4

3
Y (3
N < i< NHM-1

Y(EQ WEQ

both approach uniformity, indicating that an exact solution of Equations

[A1’] and [A2’] is being approached. When it becomes apparent to what

- uniform value vV this set y(Ei)V(Ei)is converging, to within the required

accuracy, the calculations can be terminated. (Strictly speaking, of
course, even if the iteration process were continued without limit, and

if the sets under discussion became absolutely stationary, they would still
not be absolutely uniform, because the successive adjustments at Step 5

are based on linear interpolation between conditions at adjacent points

Ei and Ei-l’ rather than on conditions at individual points Ei. The
remarks of this paragraph, and the next, ave thus to be interpreted in a
practical sense, not in a rigorous mathematical sense.)

The estimate of the final uniform value yV of this set is then taken
as an approximation to the uniform value of y(S) V(S), S = S¢ o, » which
would be found from an exact solution of the exact problem.

The required estimate of the slipstream contraction ratio follows

from this estimate of V, as follows: It is shown in Reference 3 that:

It
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- then
Y oy
HE) = v RET

Thus the slipstream contraction ratio is given'by

The five-step calculating procedure itself has been completely speci-
fied, in a form suitable for direct translation into a digital computer
program. ‘

| The steps preceding initiation of the calculation procedure (that is,
the selection of the number and location of points to represent the shroud
shape and first estimate. of the slipstream shape and relative vortex dis-
tribution) remain largely a matter of personal judgmen£z~»0ne arbitrary
rule has been introduced in the interest of simplifying the calculation
procedure?

| a. No segment midpoint should fall closer to any point of any other
segment than 0.7 times its distance from the nearest end of that other
segment: i
Beyond this, it has been pointed out that:

b. The accuracy of calculation of theiinfluence coefficients may

deteriorate if the length of a segment (other than the N+Mth) exceeds,

say, twenty percent of the distance ?i of its midpoint from the axis of

symmetry.
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c. The efficiency of the calculation érocedure'is impaired (that
is, it will take longer to complete the calculations) if the lengths of
adjacent segments (other than the N+Mth) are not of the same order of
magnitude.

Beyond this are still less precisely defined considerations, such as:

d. The accuracy of the final result will presumably improve as the
number of segments is increased.

e. The lengths of the segments should presumably be relatively/
shorter in regions where the vortex density, y(s), and/or the slope of
the stream surface Yo are expected to change rapidly. The neighborhoods
of the leading and trailing edges, and of points éf rapid curvature of
the shroud, are presumably such regions.

The decigion on when to terminate the calculations also remains
largely a matter of-personal judgment. Only a general description has
been given of how one should decide whether or not the iteration process
has proceeded far enough. '

It is possible that experience gained through long usage of this
method of calculation might eventually lead to the formulation of further
‘specific rules to diminish or remove these elements of personal judgment.

The preceding discussion was limited to the static case. HoweG;r,
the extension to the case of finite free-stream velocities is quite trivial
Equation [A1’] gives the stream function as the sum of the contributions

of N+M vortex distribution pulaes;‘one adds to these the contribution

]

% U }i of the free stream. Similarly, Equation [A2’] gives the axial

vlocity component as the sum of MM terms, to which one simply adds U.
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The only other modification required is in the formula

which was used to estimate the slipstream contraction ratio in the static

case. With U not zero this becomes

2y, -

Ehagfha + 4myV
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APPENDIX B

SIRIES EXPANSION OF THE INFLUENCE FUNCTIONS
TOR A NEARBY RING VORILE

The influcnce functions for an isolated vortex ring of strength 2,

as given by Kiichemann and Weber (Reference 3), can be written

1]

E

bl )

Y*(x :iar:‘i‘)

[(1 - 5“2) R(k) - E(k)]

- = 1 L 2(k - D -
V_*(x,%,r,r) = K(k) - [1 + = ]E(k)I
x Jex - %2 + G+ 0)F { G- R+ @ - 07 > [B1]

- - X - X 2r r
Vr*(x)x:r,r) #F:/(x - _}_{)2 + G + r)z { K-(k) = [1 + (x - 3-()3 + (-i. - r)zJE(k) }

where

Jx-%2 + @+ 1)?

and K(k) and E(k) are the complete elliptic integrals of the first and
second kinds, as defined and tabulated by Jahnke and Emde (Reference 21),
for example. “‘

It i8 convenient to define the variabies c and o as follows (see

the sketch): \

Q
il

/(x -%)® v (r - ;i")a

133
H]
<o}
e
B
—~
a3
]
sl
N



The influence functions are rewritten as follows:

y¥*(o,a) = 2T Jl + o(sin @ +0/4) [( ..'l;.a_) K(k) - E(k)]

1 1
* P
Vx (0,0) 2r A/f+ o(sin o + o/4)

[K(k) + (;2; sin ¢ + sinq - cosaa)E(k)]

Vr*(c,oe) . cosa 1 [c K(k) - (o + 28in o + %) E(k)]

Zx JL+ o(sinia + gl/4) J

where

o P I ,
=1 1+o(ein a + 0/4) 1=k
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It is desired to expand these functions into infinite series, validr

for small values of 0. Appropriate expansions of the elliptic integrals, .

as given by Curtis and Sparks (Reference 22), can be written:

Kk) = '12‘ log, (i—?a)[l +(_%)° k'2+(;_:%)ak"’+ (;22)2k,6 .. .. ]

3 .
[ B e G (2 ) G o v B ]

E(k) = —;— 1oge(i—%)[-% k,z;(%_ %k'4+(%—:-3-)2 %k'vsj. ) ]
La\3
e O B ) v e ) ]

Substituting these expressions into Equations [B2], suitable series expansions
of the remaining factors which appear are readily obtained with the aid of

formulas given by Pierce (Reference 18) as follows:

k? = %f- [1 - (sin o) a+(ﬁ.n°a- 71;)03 - (ain‘a——;'sin a) o

+ (sin‘a-%ain’a-l- —:-g a‘ -(sinsa- sinaa+-i-6'sin cf)o3 + .. ]

‘ ' 1
1o:>ge -i—% = loge %— + [(stn a)-o -(%' sirfa - 71;) d° + (% sin’q - % sin 0)03 -

- outa-dedar )

+(-§- sin'%-%tin’a-*%g sin a)cs + .. ]

B

.
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N1+ 0 (sin o + 0/4) = l+(%sina)o-(%sin“a-%)a‘ +(%gsin°a- -g-z-aina)oa-l-.
1

P — = 1-(%sinq)a+(%sinaa--;-)aa-(%sinaa- '::—G'Gina)aa'i'---

A +o(sin o + o/4) : ’ .

.The desired expansions of the influence functions can then be obtained

by a straightforward process of multiplying together the expansions of
the various factors, as indicated by Equations [AZ], and collecting

terms in like powers of 0. The results are:
v (g.a) = 'i-{% log, -f-;é’-[l +(% sin a)c - (% sinfq - —:{E)c’ +(%E sin’e - %sin a)u’ + .. ]
: -[2 +(-;- sin a)c-(% sinfq - }._6)°’ +('l% uina-%ain a)o’ + .. ]}

v *a) = %:; -;'lose %[I -(% sin a)c +(% sin’u--i—s)o’ + .. ]

,  [83]

+‘[(2 sin a)-(l; - cos’a ~ (7]; sin’q - -:- sin a)o + (% sin‘a - % u.n’a+%)d" + .. ]}

v *(o.0) = -%’:—-“{-21- log, %[% o -(% sin a)d’ +.. ]

-[%‘l’ si.na-(% ai‘.naa-%)o+(% sin’a - % gin a)f + .. ]}

We are not concerned with investigating the conditions for convergence
of these series, because we will be using only the given leading terms, as
approximations. The limitations necessary to assure accuracy of the approxi-

mations, for our purposes, are discussed elsewhere.,
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APPENDIX C

SERIES EXPANSION OF THE INFLUENCE FUNCTIONS
FOR A DISTANT RING VORTEX

For the problem of evaluating the stream function and velocity
components induced at a point by a uniform distribution of ring v;rtices
on a semifinfinite cylinder, it is convenient to have series expansions
of the iﬁfluence functions for an isolated ring vortex (Appendix B, Equa-
tions [Bl] which are valid at points sufficiently far removed from thg.
ring vortex in question.' It is necessary to conéider only expansions of
thé Y* and Vx* funqtions, since there is a convenient exact solutioﬁ which
, may be used to find the radial velocity induced by a semi-infinite dnifofm.

vortex cylinder; namely,

V&) = - f:-;% [(1 - 12—‘3) K(k) - E(k)]

r

where

K = - 2. /i«
J& - %2 + @ + )

7 an& (x, r) are the coordinates of a point on the leading edge of the semi-
infinite cylinder, and (%, T) are the coordinates of the point where the
radial velocity is measured. This formula is given by Reference 23, but

with an error, presumably typographical..

Introducing the notation:

a = 417
b=t +r

, )
CET -1

L

L]
]

»l

Ax
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Equations [Bl] can be written

y*(Ax) = ﬁ% [(1 - '1-2{'3> K(k) - E(k)]

- 1 ~ c(b - ¢)

where . .
' a
e = x)® 1 +(b_>2
Ax

Appropriate series expansions of the complete elliptic integrals

are given by Pierce (Reference 18) as follows:

<0 = § [1+(3) e (3 e+ (e ]
s = [1- () - (Y - G99 -]

With the further expansions

e g @@ @]

1

‘ JAx)E4H°

N 2 - 4 - e -
= w0 - Fen? v Eao - e+

&3 - oo (1 -(2) +(

%
%10
N
»
. ]
—~
%lo
~
——

one is again in position, simply by multiplying together the various

factors and collecting like terms, to obtain the results:

-

> [c1]

-
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y*(Ax) = %[%(Ax)-:a - (32221’2 - 128) (Ax) + . . ] ]
vV k(%) = %[(% + & - bc) 0" S [e2]

The given leading terms of these series will provide an adequate approxi-
mation when Ax is sufficiently large. When r and T are roughly equal (As
is always the case in the present investigation), an approximation within
t is afforded by the given leading terms, provided Ax/b 4

about one percen

The fraetional error tends to zero when Ax/b increases without limit.
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APPENDIX D
NUMERICAL EVALUATION OFV THE INFLUENCE FUNCTIONS

In those cases in which an influence coefficient was detérlx;ined by
a numerical integration along a deﬁin;té path, it was neceésary to obtain
numerical values of the influence functions (}*, V¥, and V%) at discrete
-\points along this path. This was done by direct applicatioﬁ of the
fofmulas given ip Appendix B, Equatioms [B1]. Values of the complete
elliptic integrals appearing in thoée forniulgs were obtained as follows:

1. The squared modulus of fhe ellli‘bt}.c 1ntegrais was caleculated:

P o= 4Tr =1 - k?
(x-sz)a + (r+r)3

2a. If K < %, the following series expansions given by Pierce

(Reference 18) were applied:

i ‘ e _a. _
k) = I {( 1-3:5. « « @n=1)) k?% |t
K(k) 2 {1 +§ [( 2.4.5 . e (2’:13—1 ) ]}
n=1 : St : L .
L1 N 135 '(2 1) szn
= - *3+5. ¢« - n-
B = 3 {.1 hZ1[( 246+ ~ + (2n) ) 2n-1]}

The summations were terminated at a value of n for which neither summand
was greater than 107,
2b. 'If K > %, the following series expansions given by Curtis and

Sparks (Reference 22) were applied:

o= 3 ()]0 3 (1w g v ]
n=1 *GeDe o+ o n 3

g 4 e ™
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™ 3 2n
1 16 1.3-5. + « (2n-3 2n-1 k'
E(k) =5 log, (=% 246 - - (20-2) n + 1
k’ n=1
@®
- (L3 - @n-3)y 2n-l (ot
n=1 246" - -(2n—2)) 2n 1.2 3.4

2 1 2
(2n-3)(2n-2) + (2n-1)(2n)) kf n]

The summations were terminated at a value of n for which none of the

four summands was greater than 107 .

Values of the complete elliptic integrals ccmputed in this manner
were found to aéree, to five significant figures, with the values given
by Dwight's '"Mathematical Tables,'" over a range of values of the squared

modulus, 0 < k® < 0.9999998.

(Note: The series given in paragraphs 2a and 2b are equivalent to

those given in Appendix B and Appendix C, respectively.)
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APPENDIX E
DERIVATION OF THE STREAM FUNCTION FCR AN ISOLATED VORTEX RING
The following derivation is adapted from one given by Lamb,
Reference 6. Lamb's derivation was imtermingled with a more general
discussion of vortex motion. For this reason it was felt that a
concise review of the essential steps might be helpful. |
Consider the motion of a fluid of infinite extent due to a vortex
tube of uniform vorticity, in the forms of a torus centered on the
x-axis. Let us seek to express the velocity at any poinE as the curl
of a vector function S(x,y,z)
V=7x%
Continuity will be satisfied, since 7-¥ = V.(V X §) = 0, by definition.
Taking the curl of both sides:qf this ®equation

7 %X F

i

TX (7%X8)

7(7-8) - 7§

Since only the curl of g has significamce, we may add to, or subtract
from S any irrotational vector functiom we please. In particular, we
may arrange that 78 = a constant, amdl so write

e = -7 xV

-

P

In the present case, we will have '723 = 0, except within the torus,
where 78 will be at every point a vewxtor of constant magnitude, and in
the direction normal to the x-axis, a=d the radius, and forming a right-
hand set with them. An analogous prufslem occurs in the Newtonian
potential theory, where the scalar equation

'73¢>= - LTn
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applies at points occupied by matter of density n, and 73¢'='0

elsewhere. It is well known that a solution is

6 (x,5,2) = m -’L(?—‘-;l&)- dx dy dz

where p is the distance between the points (%X, ¥, z) and (x, y, 2z),
and the integral is taken over all space occupied by matter, By analogy,

we have a solution
! 7 Xy
3 = JII 0 dx dy dz

where the integral is taken over the volume of the torus, If we let
the cross-sectional area of the torus tend to zero, while keeping the

product of the area and the curl equal to a constant, say F , we have (

2n
°

1
4 p

The vector function S is related to the scalar function ¥ as explained
below,

We have, by Stokes' theorem
AN
§'S'-575=Lr('7x§)-dx=”v-d§'
4 A ‘ A
The right hand member is the flux across the area A, Choosing A to be
the plane area enclosed by the circle (x, ), we have
%y

§ §-3d = 2 I uydy = 2n Y¥(®, T)
2’ (o]

since, by definition,
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3
Y(&x,%) = J‘ ux,y) y dy
0 .

(See Equations [1'].)

-

It is evident from symmetry that, since I' is a vector of constant

magnitude tangential to the circle (x,r), so, along a particular circle
x,%), S will be of constant magnitude and tangential to this circle,

in the same sense as T' . Hence, from the last equation

Hence
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where

r = |7

X
p = [(x-':'c)? + (r ces 8’ -~ ) + (r sin e/)a]

Rearranging terms we obtain Equation [:] of the main text:

wan = TATE[(1-F) w0 - 5]

where
m/2 da‘
K(kK) = _[ J1 - Peinfg
o
n/2
E(k) = I J1 - Psine do
Py .
ka = 41‘-1".‘

(x-%)° + (+%)3

That is, K(k) and E(k) are the complets elliptic integrals, of the
first and second kinds.

The Equation [5] t«;as derived from & velocity.field which is con~
tinuous and irrotational, except on th= circle (x,r), and hence is

necessarily a solution of Equation £277.
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wable 1 - Data From a Twenty-Iterative-Gycle Calculation for a Cylindrical
Shroud. £ = 0.2, 'f‘N =10, Wr=24, M=41,0=0
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000500000
001000000
0+02000000
0403000000
0004000000
0005000000
0906000000
00700000
0208000000
0+090N0000
0. 10000000
0011000000
012000000

0613000000

(e 140ND0O0
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032000000
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00459863
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0+383804
0359968
0339399
04321057
003089026
00295141
00285924
0275365
0,268966
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0252370
0.208639
0239478
00232638
0.232518
0,226330
0222702
0222479
Ne222144
0,22168%
0220802
0219179
06217734
0.216464
0.214296
06212477
00210928
0.,209570
0.208358
0207252
0.205263
Ne20303u
0201010

Y 00197337

0.,194027
0191041
0.188347
0+185934
0,1R2766
0180051
06177737
Nel175761
0178067
Ne 172607

00171345.
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06169291
00168451
06167712
N.167058
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04165963
043165501
0016508%
Nel164714
0164377
0e164071
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Teble 1 (Continued)
(c) Second=Cycle Output

3

1.,000000
1.000000
1000000
1000000
1.000000
1000000
1000000
1000000
1,000000
1.000000
1000000
1.000000
1000000
1.000000
1000000
1.000000
1.000000
1000000
1000000
1.000000
14000000
1000000
1,000000
1.000000
1000000
06999968
0999621
0999807
0999528
0999187
0998800
06997939
0¢99701%
0996060
0995084
0.994104
0e9931%4
0991235
0988940
09868738
0983028
0979713
0976901
0974530
0972882
0:970160
0968320
06966923
00965871
0965100
0964548
0964147
0963872
0.963710
0963622
0963582
0963589
09563624
0963665
0963714
0963772
0.9563812
0963824
0963786
00963786
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0e996423
0991058
0984923
0977599
04966793
0958691
0950679
0936522
00925474
0916032
0907673
04900252
0893734
0882393
04870235
0859977
00842722
0828173
0816297
0806723
04799416
0791294
0785350
0781372
04778825
0777333
007765%0
0776336
0776430
0776791
0777316
0777934
047785%0
0779240
0779849
0780417
00780924
0.781280
0781353
0781498
0781498

YEOVE

. 0089219
0089443
0089939
00090215
0090622
00090773
0091950
0091399
00091722
0091997
0092247
0.092487
02092684
00092943
0.,093227
0093457
0093638
06093760
0093728
00093557
0093279
0092769
0092111
0091392
0:09Nn662
0+089948
00089254
0088603
0088004
00087446
0.086930
00086459
00086028
0085638
0085287
0084974
0080688
0.084U37
0084228
0084076
00083955,

Y(si)
04500000

- 04500000

04500000
0500000
0500000
04500000
0500000
04500000
0500000
04500000
04500000
0+500000
0500000
04500000
04500000
0500000
04500000
0500000
0500000
0500000
04500000
0500000
04500000
0500000
0.499991
00500033
0500086
0500212
0500454
04500761

0.501266

0502023
04502798
0503577
0.50434%
04505089
0506130
04507504
0+5087%0
0510020
04510662
0510368
04509353

0.507798 .

0.505482
0.502203
0.498743
0.495272
0.491%910
0.488728
0485751
0.482990
0480450
Q.478128
Oel76013
Q74110
Qsl 723069
0+47080%
O.d469414
Co.l68168
0.467070
0.466123
0+465316
O.4648)3
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1266501
1.254028
0.8601092
04634064
0530733
0.U56591
0,421703
00381036
0361582
00336685
0.323336
0308016
00296127
0286836
0274256
0273028
0255299
0258411
Ne244207
0.24689%
n.231124
N,238464
0.,228856
00228698
(e227880
0226653
06225250
00223878
0.221103
0,219250
0217418
00214181
Ne211654
0.,209494
0.207583
0+205685
00204398
0.201801
06169021
0196678
0e¢192728
0.1R9001
0.18668%
Qe 184498
0182828
04 1R0967
00179608
0178698
0.178116
0377770
0177604
Ne177546
0177564
00177650
06177770
04177912
04178062
Ne178210
04178350
0178480
0178596
00178677
04178694
0178726
0e178726

Table 1 (Cmtinued)
(d)- Third-Cyzle Output

¥y

1000000
1000000
1000000
1000000
1000000
1.,000000
1,000000
loOOOOOQ
1.000000
1.000000
1000000
1000000
1000000
1000000
1,000000
1000000
1000000
1000000
1000000
1000000
1000000
1,000000
1.,000000
1000000
1000000
049595949
09966264
0e999RN9
0e9998NU
06999124
0998688
06997722
06996676
0995587
Ne994u80
0993371
0992270
0990134
0987608
0+585279
0.981202
0977791
0.974980
06972664
0e97Q7UQ
04968345
00966649

Ve365284

0964176
0.963287
0e962568
0961961
0961456
04961036
0960678
0960364
0+960096
09598645
0959630
0959460
00959300
0.959147
0958997
0958824
0958824
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B:996765
991913
T=OR/RY 147
™974979
no62748
553087
Lou3nza
™925195
™11827
.899716
0: 889446
880332
872578
1859650
1. 845919
X-335114
318114
T. 803883
792570
Y. T7R3U38
Yo 776226
Yo 767479
XeT7460141
X27542048
T 749268
T 745097
T 741498
I» 738303
T 735444
To 732906
Yo730620
Y.T728528
T»726626
Te724891
To723292
TeT21832
Te 720524
Y2719320
Te718118
Te 716949
IaT16949

Y(@E)VE))

04090103
0089857
0e0901372
0090269
0090466
0.09NUBY

0090647

0091064

0091334

0091585
0.09180¢

0092004

0092185
0092367
00092576
0092764
0082782
0092838
0092813
0092773
0092776
0092809
0.092973
0«093184
0.093458
06091779
0.,0984128
0094495
00094874
0095250
00095615
00095972
0096314
00096635
0096938
0097218
00974068
0097689
0097876
0098057
0«098218

Y(Ei)

04500000
0500000
0500000
0+500000
04500000
0500000
0500000
04500000
0500000
C+500000
0500000
0500000
0+500000
0500000
0500000
0500000
0500000
0.500000
0500000
0500000
0+500000
0500000
04500000
0500000
0+500002
0.499938
0499978
0.500028
0.500114
0.500266
Ce«SNOU7R
0500827
0501219
0501636
0.502019
0e502419
0503017
‘0503759
04504486
O0«505327
Oe5058068
0.50597%
Ve505874
0+505¢68s
Qe5N5UGYL
0.505208 .
0.505082”
0.505147
Qe5058u
0.505892
04508496
0«507191
0507951
0.508808
0e509651
0.510826
0511372
0+.512180
0512965
.0e513678
0514314
0.51487%
0«515319

0.515708
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14271917
1,256058
0.868049
006344314
0e531470
00462507
0.82174A8
0304453
04362553
00341738
04323672
00310633
00297019
0,290412
0.276336
00273387
00259623
0,261068

002045839 -

00251166
0233806
0.283518
0229782
0234388
Ne 233629
0,232492
00230672
0229523
00225656
0223392
0¢2210348
0.216854
04213627
0e210882
0208478
0200339
0,204521
0201491
0198273
04195740
00191756
Ne188420
00185769
0.18362R
0.181938
0179888
04178168
0.176774
Ne175619
Ve 174642
06173798
04173049
06172379
Ne171784
Nel71248
0170758
0.170312
Ne 169904
00169531
0.169188
0.,168882
06168600
0168318
0.1680u4
ne168084

Table 1 (Continued)
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(e) Fourth-Cycle Output

b

1.0006000
1000000
1.000000
1000000
1000000
1.000000
1.000000
1000000

1000000

1000000
1.000000
1+.000000
1000000
1000000
1000000
1000000
1000000
1.000000
1.000000
1000000

"1.000000
1,000000

1.000000
1,000000
1000000
0999073
06999938
09990822
0999518
0:999133
0:998600
06997709
0996636
04995518
0994330
06993237
N.892101
00989903
0987312
0.98899¢
0,980847
0977833
00974890
0972772
0971082
00969144

"0e967761

0,966778
0966066
049655587
0963205
0964950
0964782
0964682
0.9€4627
0964600
0964604
Ne964624
Ne968639
0964660
0.9648694

0964715

0964719
0.964660
0964640

Fy

06997240
0993101
. 09846846
049788536
0985327
04954610
OeQU3UI3
-0e9240314
0909034
00896102
0.88402%
0875097
0.866754
0833150
0.839009
0828282
0.812182
06799102
0789167
0781378
0775448
0768486
00762973
0758849
04755708
06783334
0751536
04750150
04749097
0¢748340
O 7UT779
0747350
00747052
. 0e7U6842
0. TUB6T2
00746535
0746439
070632}
0+746040
04748738
0e7u5738

Y@ IV(E,)

00091112
0009N902
0090681}
00090794
00090908
0090864
0090964
0091263
00091296
0091420
0.051523
00091603
00091698
0091786
0091856
0091935
0091834
0091777
0091611
0091436
0.091294
0091092
0090891
0090656
0.090430
Qe 090206
04089979
00089754
0089532
00086311
00089091
0.088884
0088683
0088490
0.088308
0.088140
0.087¢84
0.087841
0087712
0087615
0087567

Y(Et)

0.500000
0300000
0,500000
0500000
04500000
0500000
04500000
04500000
0+500000
0500000
0,500000
0500000
0500000
0500000
0500000
0500000
0500000
0.500000
04500000
0500000
0500000
0.500000
0500000
0500000
0.4699994
0.4699077
04899962
0:49996%
0489659
0.499990
0500002
0.500080
0500163
0500252
04500351
0.500459
0¢500612
0500809
04500987
0.501160
0.5010114
0500579
04500003
0.4989327
O.4938439
0.407248
0ol4%556018
0494778
0493600
O«l492468
Oelo138s
0.460358
O.48938%
Q.488468
O487604
0486798
0+.4R846036
C.485353
Oel84726
0.484159
0.,483637
C.l4R318y
0482772
0.48255%8



ODNONEWN - (o

Yi
14269060
14263636
M eB856072
Ne643949
0.522209
04469546
0112426
04392607
0355942

0.3484056 .

n,e322808
0,310298
0207629
0s28764%
0.27838%
0272738
0260087
0259569
02873389
Ne2U98N7
0.234390
0.201478
0238547
n.234i{10
Ne233464
00232494
0,231030
0,2290885
00225992
0.22348%
0,220867
0e216324
0.212814
0:209786
0.207169
Ne20U869
0¢20291%
Ne109731
0.106420

T . 0193909

Ne 190140
04187077

0.18475%-

0e182928
0e1R1532
0179910
04178619
0e177654
06176919
Ne176363
00175942
0175617
Ne175371
0.175100
Ne} 75062
04174062
0174892

N, 174343,

00174803
0374771
0174748

Ne1 78721 .
Nel74658

0.175536
Ne 174584

Table 1 (Continued)
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(£) Fifth-Cycle Output

Ty
1.,000006
1000000
1.000000

1000000 -

1.000000
1000000
1000000
1 000008
1,000000
1000066

14700000 -

1000009
1+000000
1000000
1.000000
1.000060
1000000
1000000
1000008

1.000000

1000000
1.000008
1.000000
1000000

1000000 .

0999976
0.99994%
0999845
0999552
09991 TR
04998749
09977700
0996708

0995582

0.99443y
0993287
0992142
00989909
0.987266
0984836
0980647
06977316
0978661
0972548
0970855
0968920
0967860
0+.9665%3
0965801
0965248
0.964822
0964486
0Qe96L223
0.968640
0¢9638%0
0963702
0963588
0963492
0963392
00963303
0963230
0963158
0963088
09629548

0eQ62954

0+998U96
06996239
0991613
0.983635%
0970279
0959335
0.9u79504
0928225
0912686
0899572
0.888072
0.877886
08869197
0855091
0.8U40415
0829330
0.832872
0799559
0789465
0781430
0775108
QeT6TUB3
0761169
04756164
0+752042
0.7488590
0745661
0e7U3115
Qe7U08H2
067368933
0737202
04735642
0«730245
0732977
0731791
0730724
0729778
00728902
0728006
00727081
00727081

YEIVE,)

0091507
0091229
06091179
0091047
0.091166
0091033
G+991060
0.091243
0091154
0091188
0091209
0.,091228
00912858
0091343
04091392
0091498
0091469
0091552
0091536
0.091538
0091577
0091617
0091725
0.091812
0091918
0052042
0.092174
0092334
0092460
0092609
0609275%
009290}
0093042
04093178
0093309
00093437
00093548
0e09365)
0093734
00093820
00093917

¥G,)

0.,500000
0500000 -
04500000
0500000
0500000
0500000
00500000
04500000
00500000
0500000
0500000
0500000
0500000
0500000
06500000
0,500000
00500000
0.500000
0500000
0.500000
0500000
0500000
0500000
04500000
0+500000
0499982
0.49994s
0.499901
0499891
0499862
0,499804
0499801
0.499807
0.43380%
0.40084n
0.409857
0.466923
0500060
06500221
0.500474
05006314
04500700
0500708
04500706
0500694
0500891
0.500678
0500737
0500891
0.50107u
0.501310
0.501588
0501899
0.502234
04502613
0.502990
04503350
0.503721
0.50L073
0e504419
04504733
0504993
0.505224
0505448
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‘14271653

1.261810
008560971
0.680558
00525443
00468872
0.816131
00389289
0.358224
0383261
0322768
0.312304
00295908
0291081
0.276124
N,273313
00262290
0.25882%
0251251
No28U392
Ne201633
0:233672
0.280628
00234003
0233734
0233203
00232120
00230252
Ne.227126
0.220564
0.221688
092!7202
0213691
0.210578
0207883
0205498
0.20346%
0,200162
00156727
04194132
00190280
0.187163
0e 184801
04182920
Ne1B8LlUAN
06179658
0178177
0e17700%
0176040
Ne175232
Ao J 7447
0173981
Ne173428
0172972
0e172%67
04172202
0.171874
0171577
0+171300
0.171050
0170829
04170624
00170414
Ne170198
Ne170198

Table 1 (Continued)
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(g) Sixth-Cycle Output

o
1000000
1000000
1000000
1.000000
1000000
1000000
1.000000
1.000000
1000000
1000000
1000000
1,000000

1000000

1000000
1000000
1.000000
1000000
1000000
1.000000
1000000
1000000
1000000
1000000
1000000
1000000
0699978
N9990Uul
0599844
09995589
0999190
0.,998749
0997816
06996788
0.9934u8
0.,99U300
0993361
0992217
0.989981
0987334
0984896

Ne9B0723 -

04977408
0e97UBY7
Ne972772
0971161
0969366
0968143
0967350
0:9667%7
0.966327
0:9660%6
Ne965842
0e965738
Ne965643
0965617
0.965586
0.9658%80
09865887
0.96%%80
04963883
0965501
0.96%%86
0865870
0.965U85%
Ne965488%

B

04998900
0997250
0930622
0988657
0975544
0964492
0953223
. 00933692
0918148
0+904662
0.893058
00882767
04873951
0¢8%980%
Qe 884U50
0833128
00816602
0803498
0793747
0+786300
0780186
06773207
0¢76756%
0763298
0759880
04787150
Qe 754064
078317}
0751708
0790518
0749808
0.7UB6U0
Qe747044
0eT74T3U3
0706783
0746281
0e7u5858
Qe74547%
0+ 7U4978
0eT7UHU20
0744420

YEIV(E,)

04091708
00091607
00091543
06061253
00091324
0091203
00091197
0091324
00091213
00091233
0091226
0.091221
06091247
0009128%
0001343
0091404
00091380
0091382
0091303
Qe 061230
0091186
0091096
00091030
00090523
00050824
04090733
0090634
0090538
0609044}
00090344
00090248
0090161
04090074
0089964
00089904
0008983}
00089763
0089697
0089634
00089596
00089598

Y(ﬁi)

04300000
0+500000
04500000
04500000
0500000
0500000
0500000
0500000
04500000
0500000
0500000
0.500000
0500000
0500000
0500000
0500000
0500000
04500000
0500000
06500000
04500000
00500000
0500000
04500000
0500008
0.469999
04500009
0+499992
Qsl49997
0406931
0.80989%
0499856
0.409818
0.4959790
0.49978>
0.469774
0499772
0.409789
0.49979%
0.499859
0499799
0.40063%7
0¢499409
0.U00168
0.498862
0.408384
049788y

0.46735%0
Q.l0687S
Q.406418
Ce Q5968
0.465530
0495813>
O.404739
Os40437s
0.4604031
0403717
Qelio3U04
0.49313%
0492868
0462654
Oe402464
Qe492284
0sU0221n
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Table 1 (Continued)
(h) Seventh=Cycle Output

e

o

S e S g

ODNPAREUN -

Yy Ty Fi Y(Ba)v(ﬂi) Y(si)
14271061 1,000000 0.500000
1.258481 1000000 0+500000
04866262 1.000000 0.500000
0.63504R 1000000 0500000
04530384 1000000 0.%00000
0461876 1.000000 0500000
0,022413 1.,000000 0.500000
04382048 1000000 0500000
00364708 1000000 0500000
0.33910% 1.000000 0500000
0,324460 1.000000- 0.500000
04308764 1000000 0500000
Ne300068 1000000 0500000
0284999 1000000 0:500000
0,281494 1.000000 0.300000
Ne267821 1000000 0500000
0.285322 1000000 0500000
N.28362% 14000000 0.500000
Ne25322? 1000000 04500000
Ae2823%3 1000000 04500000
Ne 280902 1000000 0500000
0,236942 1.,000000 0.500000
Ne232144 1.000000 0500000
0.232609 1000000 0091379 04500000
Ne2323%3 1000000 0968483 0091356 0.500000
0,231966 ‘04999971 0.9946708 0.091438 0.500030
0231388 06999938 06903768 0000137} 0.500024
04229970 09998348 0e987656 00091528 0.50001%
Ne226920 0+999547 ‘De975060 0091357 0.500053
‘Ne2243U0 04999174 0964639 0.091300 0.500041
Ne221728 0e99878¢ 0983791} 0091416 0.500038
Ne217188 Ne99T80OG 0eOINEI6 0091300 0500021
0+213569 0996749 04919129 0091297 0500014
0.210432 0.995648) 0.905%726 0091276 0.500028
0207732 NeO9UBOL 0894086 0091275 0.50002%
0:20933¢ 0993384 0883698 000913048 0.500017
0,203288 0e992209 0.87876% 0,091343 0.500032
Ne 199928 NeQ89948 0860088 0e 091364 0500071
N 196U268 0987303 0884797 0009145} 0500120
0193702 0.984A8u0 0833261 00091423 0.500273
N4 189049 0.980822 0.816334 0,091502 0500343
Mo 184900 0977200 0803064 0091474 0.500377
Ne 18832 097869} 0793214 0091465 0:50039%
04182852 0972639 04785001 0061498 0500427
N.181478 0971017 0.779278 0+09150% 0.500u78
04179838 0969211 0771976 0091564 0.500478
00178547 0967988 04786016 04091589 00500508
0.,177850 0eQ67150 0761364 0.091627 0.500524
Ne) 76788 0966588 0757541 0091678 0.500802
0176120 0966123 0734352 0091732 0.50086A
04173611 ¢ 0965826 0751676 00091791 0.300762
0.,175194 0.965597 0.7u938% 0.091853 0.50083a
04174884 0+965429 07874809 04091916 0.501023
0174877 0968310 0725708 0091975 0.501172
V2174384 0965217 0e704202 0092036 0.501322
N.178140 - 0.96513% 0702858 04092097 0.50148¢
0173078 0965077 0701879 0.092153 0.5018650
0o 173838 0965033 0700622 00092209 0.501802
0.173708 04964980 0739634 04092261 0.501962
0173591} 0968038 04738738 0092310 0.502083
0,173u03 0,964898 04737040 0.092353 0.502232
001734008 0904838} 00737227 0092385 0502351
0173288 0964808 0736448 0092428 0502828
0e173158 0068687 0735618 Q.O92§93 0.502533
0,173158 0960687 0.,735818
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£
192724807
1.252387
n.870623
N.631619
0535832
0457771
0.425033
Ne37932%
0.371280
0.331458
0.331871
0+300666
0,303313
0.,2RA3148
Ne2RUSOB
N.268419
0,270628
0250191
0258779
0,236930
0.2u972%
0.224583
0247917
0,2324633
0232327
0231867
0.231188
0.229761
00226831
0e.224407
0.221883
0.217404
N.213819%9
0210702
0207994
00205577
Ne 203409
0200088
04196528
Ne103844
00189918
00186824
0.184328
00182710
0181286
0179587
0178200
Opl??lle
00176229
04175487
0,174868
Mel74332

'De173872

0173478
0173128
0172812
0172839
Ne172293
0.172063
06371838
06171670
00171503
00171322
0,171129
0e171129

Table 1 (Continued)
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(i) Eighth~Cycle Output

,ri
1000000
1.000000
1000000
1.000000
1000000
1000000
1000000
1000000
1.000000
1000000
1000000
1000000
1.000000
1000000
1000000
1000000
1000000
1.000000
1000000
1,000000

1000000

1.000000
1000000
1.000000

1000000

0996973
Ne999930
NDe.9%99844
06999562
0999192
04998774
0.997832
0.9986780
0995681

NeO9UBHY

Ne59%4181
0992249
00990032
0987377
0.984913
0980702
0977397
NeQ74828
00972810
0971228
0969483
0968325
Ne9075460
0967029
0966646
0,966438
06966271
Ne066164
Ne966099
0966061
0566030
0966013
0966020
0,666008

09660018
00265998
0965078
Ne965944
0969861
0965861

Fy

009907384
D.903u58
0988986
0583462
0971168
0960573
0909926
0931178
04916003
009026514
0891040
0.880809
04871991
0857333
0842051
0.830488
Qe813832
0800322
0790899

04783304 .

0777375
00770!55
04764782
0760494
0787016
0784174
0.751858
0e749918
04748278
0746908
0.745722
00744602
Oe743819
04743053
0eTU2343
0,741710
0e7U1153
0e7U06HS
0780048
0.739368
07393808

v(EIV(E))

0.001013
00910063
00091396
00091261
06091363
00091291
00091282
00091390
00091269
0091269
0+091256
00091248
00091247
06091272
00091274
00913042
0091294
0091334
00091263
0.091211
0091199
00091150
04091130
0091068
00001018
00090978
0090928
00090880
00090839
00090798
00090754
0090714
0090677
0000636
00090602
00090569
0,090838
00090509
0090477
0+020864
0.,090489

'S

Y(§1>

0500000
00300000
0500000
0500000
0500000
0500000
0.500000
0500000
0.50000n
04500000
04500000
00500000
0.500000
0500000
04500000
04500000
0.500000
0500000
04500000
0500000
04500000
04500000
0500000
0.500000"
0.499998
0.499991
0499080
0499070
0.,409042
0+499952
0e40993n
0.409917
0.409897
0e49986%
0.469833
0.499826
0499807
0499782
0.469769
0.499798
0496711
0.409633
0.4908527
0e409U}S
0469280
0409043
0.498852
0,40863A
0s498431
0.498208
0.498022
0.4678068
Q497642
04407471
0.467302
0.807159
0.497020
0.496877
0406764
0.496640
0.106%61
QeliObUTs
04496382 -
0.496367



VOOUWMESESFEFFPEEFEVUULUWUUWUUWUUUWNNRNNRDNN RN R - - e o g b e o o pe
\ANH'91)@~thl=\ﬁV-'Oi’0“0\”8\‘”"3(’@*10!’5\‘0*—9‘)0'404;E\d”r‘0~0m'00£lﬂklnh-l*

S8

VLW
oomIGM

oo
L

&3

OO
w e

Yy
1.270074
1.260353
N.860U34
0,640344
0,525406
0.466176
0.U4166268
0350584
00385112
0346906
0.317994
0.316176
Ne291004
0.2048754
0273336
N.278944
00258086
00261792
D.245253
0.250829
N«233098
Ne2U2606
N.229599
0233399
0232768
0.231872
0,230828
00229539
0226670
Ne224196
0,221741L
0217338
0213798
0.210678

0,207968

00205580
0,203522
0200100
0166534
0193834
0189901
0.186841
04184598
06182822

n.181438

0,.179807
0178499
NelT7U98
0176887
0.,176023
0.17548%
04175029
LYS S LTV Y4
0.176327
Nel7805%
0.173840
06173608

© NG 173428

04173262
00173114
0172984
001728686
0.172726
0172572
0172572

~117-

>

Table 1 (Continued)
(i} Ninth-Cycle Output

i

1 000!

1.000000
1 «00000:»
1.00000
1.00000
1.0000048
100000
1 00000CD
1000000
1.00Q0GED
100800
1.0000MD
1 0000
1.000000
1.000000
1,00000D
1« OOBTVOD
1.00005D
10000
1.,0000mD
1000000

1e00C0MD

1000000
1000000
1 «0H000D
099597
-0 t-5 s
0999828
0 O9OSILT
098917
0998785
0«97
09967
e I0SHER
0. 998I3N
099338:2
00992273
098953y
0.987327
0.9888%:2
0.9806:06
0977308
0974750
0.9727m>
07121
0909 %m1
08B YIS
0e967TH:TH
0 ETTS
N GESRIMY
09662587
0« 6605TH
096535
0.9630R1
O SERIRNS
0 965PTD
0988575
0+96585971
02636558
0965431
0965501
Q.QQSEE,Q
. 965324
095628
N 9628

Fy

0.597828
0994569
0950671
00985459
0973563
00962894
00952051
00933213
0918017
0304749
0.863266
0883024
Q874116
0859340
0.843924
0832196
0815117
0.801884
Q792155
Oe724438
0,778384
0771217
0e765u28%
0760934
0757240
0.754174
0751629
0e7U945%

0747594 .

0.746008
0« 744597
07433368
0742247
0.781279
0740380
Oe739569
0738842
0738184
04737466
06736685
0e736488

YEIV(E,)

0091545
0091402
0091493
0091290
0091385
00091296
00091312
0,001458
0091368
00091374
0091341
0.091324
00091342
0,091380
0.091380
0,091460
0091429
00091489
0.001447
0091431
0091458
02091450
0.091888
04091492
0091507
00091533
0091558
0091580
04091608
00091633
0091657
00091686
0091718
0091737
0091762
00091786
04091806
06091827
04091838
0,091859
00091918

Y(Ei)

04500000
0500000
00500000
_0.500000
0500000
04500000
0500000
0,500000
00500000
04500000
00500000
0500000
0500000
02500000
0500000
0300000
0500000
04500000
0+500000
0.500000
05600000
0500000
0520000
0.500000
06492997
0500013
0.500029
0.5000u4
0+500057
0.500041¢
0.500079
0500087
0.500074

0.500093

0.500073
0.5001014
0.50012%
0.500150
0.500154
0500247
06500278
0.50028%
04500318
0.500336
0500364
0.500391
0500426
0500468
050049
0.500532
0.500572
0500651
0500708
0.500774
0.500822
0.500910
0:500992
0.501054
0.501126
0.501171
0501234
0501308
0.501304
0501392



OBNOVEUN =

Yy
12713353
1.298608
0:585692
0.635234
0.530549
00462688
00419093
00387701
0359217
Ne 382057
0.324140
00303984
00299204
00287723
00278590
Ne270808
00262117
0257866
00250952
0s243708
0.239481
06235581
0,233050
0233106
0232599
0231840
0230931
Ne229716
0e22694U7
0,224456
0e221926
0.217537
00213998
Ne210902
N.20822%
0.205838
00203761
0.,200347
0196724
0193990
0¢190009
Ne186624
N+184656
Ne18285%7
Nn.181446
0e179778
06178428
Ne)T77378
0,176817
Ne175200
Ne 174702
0174268
00173898
04173870
0173276
Ne 173022
06172796
N.172587
00172308
00172228
0,17207%
Ne1T7190R
0171728
Nel17172%

Table 1 (Continued)
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(k) Tenth-Cycle Output

1
1000000
1.000000
1000000
1.000000
1000000
1000000
1.000000
1000000
1500000
1000000
1°+NH00000
1000000
1000000
14000000
1,000000
1.000000
1,000000
1000000
1.000000
1000000
1000000
1000000
1.000000
1000000
1000000
Ne 9990846
06999927
0999818
Ne999821
0.999143
0998722
Ne997769
0996713
Ne995608
09948478
0099333}
Ne992181
04989038
0987276
04984799
Ne0808RE
0977286
0974604
0972682
0971099
0e969%49
Ne96RI%Y
0967URS
00966078
00966632
0966418
0966262
0.966160
0966102
Ve 966049
0966039
0.966020
0966018
06956003
00965997
Ne 265992
0,%65963
0965954
0965844
0363844

F

‘04997812

04993780
0988629
0982495
Ce970573
0960284
0+9U%60
00930477
0915384
0.,902304
0890992
0880799
0871798
0:856989
08414663
00829968
0812910
00799787
0790181
0782557
06776607
0769610
06763964
0759610
0756079
0783193
0750823
Os.7u8811
0747092
0e7U5643
0704397
0743293
0e7u2333
Ne 741494
Ne 740743
0740038
0732420
0738854 .
0738221
0e737518
0737518

YEIVE,)

0091216
0+091101
0.,091383
04091339
04091496
0091400
06091364
0091533
0091449
0091442
0.091416
00091389
0.091418
0093463
0.0914848
0091511}
0091468
0091508
0:,091443
04091406
0091408
0.091371
04091371
00091336
00913114
00091288
0091262
0091238
04091220
00091201
0091181
0.001160
Ne091144
0.09112%
0091109
0.091094
0091078
00091066
0091047
0091045
0091080

¥(8,)
0.500000
0300000
0500000
0.500000
0560000
0500000
0500000
00500000
0500000
0500000
04500000
00500000
04500000
04500000
0.500000
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0500000
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00500000
04500000
0500000
0500000
0+ 500000
04500026
0500004
0.500n41
04500051
04500092
04500108
04500094
0+500118%
0500129
0.500138
0500140

04500158

0500156
0.500160
0500149
0500493
00500178
04500129
0500068
04500051
0.500021
0499930
0.499834
0.4690738
0.4906UNn
Qe U098SUY
0.499457
0.46937a
0.,46929
0496212
0.49914s%
0.499074
0409034
0.498959
0.460889%
0408836
0.498804
0.,408760
0.498687
0.408732
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51
52
53
54
55
56
57
“58
59
60
61
62
63
64
65

*y
04000000
0.,005000
0,010000
0.020000
04030000
0.040000
0,050000
04060000
0.070000
0.080000
0,090000
0100000
04110000
f,120000
0,130000
01480070
150000
0,160000
0170000
04180000
re190000
M,195000
~+197%00

"0.199375
Ne200625
n,202500
0205070
04210000
Ne2200%0
0,230000
Ne24 0000
Ne260000
0,280000
0,300000
0320000
T 04380000
0,360000
0400010
04450000
04500000
0.600000
0700000
04800000
T 0500000
1.000000
1+150000
14300000
T 714450000
1.600000
"7 1.750000
1900050
T 24050000
2,200000
2.3500%0
2.500070
2.650000
24800000
24950000 ~
3+100000
3,250000
%,400000
34550000
3.700000
3.850000
4,000000

T

1,000000
1.000000
1,000000
1.000000
1.000000
1.000000
1,000000
1.000000
1,000000
1.000000
1.000000
1.000000
1.000000
1,000000
1.000000
1.000000
1.050000
1,000000
1.000000
1.600000
1.000000
1,000000
1.000000
1.0n0000
1.000000
0.999657
04909923
00999817
04999518
0,999141
04998717
04997761
04956708
0,993598
0994461
04993320
0.992162
04989899
04987260
04984766
0.9804A2
0.977216
0.974642
0972633
0,971035
00969300
04968202
0.967485%
0.966963
0.964628
04966413
0966258
0,966173
04966117
04966072
D.9660u5
0+966032
0966026
0.965997
0945088
0.96%976
0.965936
0965954
#.965809
0.965809

Y
1.269665
1.261699
0,860013
0.640107
0526870
0.465122
0,416988
04388368
04360364
04342079
04321737
Oe311728
04297068
0,288489
0,277282
04272803
0.261355
04257333
04251294
0.204734
0.238240
0.235811
0232826
0.234459
0e233421
0,231863
0.231058
06229945
00226735
-0.224264
00221826
00217432
04213896
0,210816
0208196
0205836
04203702,
04200238
04196718
04193963
04189907
0.186860
04184626,
04182834
06,181418
04179757,
00178443
0e 177420
0.176578
0.175886
04175310
04174822
0,174411
00174057,
04173742
04173467,
0.173230
04173016
0172818
04172645,
04172487
0e172348,
04172204
04172020
0,172020

b

04000000
04007500
0.015000
04025000
04035000
04045000
0.055000
04065000
04075000
04085000
0.095000
04105000
04115000
0.125000
0.,135000
04145000
04155000
04165000
04175000
04185000
04192300
0,196250
04198438
04200000
01201563
0.203751
0+207501
0e215004°
0+225010
-0,235018
04250034
04270059
04290089
0.310120
04330152
0.350185
0.380234
0425301
0.475367
0.550844
0.650516
0.750559
0.850586
0950602
1.075614
14225621
1375624
1.525625
1,675626
34825626
10975626
20125626
2,275626
2.425626
2.575626
2.725526
2.875626
3.025626
34175626
3.325626
3.475626
3.625626
3,775626
3,925626
0.000000

Table 1 (Concluded)
(4) Final (Iwentieth-Cycle) Output

v
T+2n #=+=

04000000
124013343
64551842
44306665
3e317649
24762868
2,405936
2.158437
1966182
14812671
1,696353
1604567
14520221
1.449968
1,395153
1.,380128
1,287070
1.251960
1.207944
1.161174
1.126238
1,103045
1.092163
1.081505
1+080242
1.079515
14074577
14070274
14061789
1,055513
14048560
1.038622
1+031540
1,025727
14020651
1.016610
1.012398
1.006498
1002402
0997863
0,998112
04990853
0,988893
0,987749
0.986529
04985734
0.984856
04984325
0.983964
04933638
04983428
0.983239
04983052
04982956
04982859
04982757
04982657
04982605
04982568
0.982484
04982529
04982355
04982398
04982939
04000000

*
ain Qm is the sine of the angle between the axis of symmetry and
the velocity V, considered a vector.

’
*ain o

00062358

04147602
«0.06H4486

0,005643
~0e012457

0+007284
«0,015210

0+006419
«0+003285

04012065
-0,012417

0+006940
=0+004749

0,004493
«0,011213

0+013181
=0.008146
«0+001137

0.005081

0.00Un14
«0.003945
«0,004133
=0:023321
«0:015608
«0:014347
«0.021464
«0e028474
«0+032537
«0.040048
=0.,0u4109
«0e0UBUIS
-0:053639
=0.056242
-0,057627
«0.057734
»0+057394
«0,056348
«04+052990
«0,0U49003
«0.0U2115
«0,032220
=0+025066
=04020027
=0+015653
«0.,011229
«0.007406
«0.008952
«0+003215
«0,002090
=0¢001360
=0.000878
«0+000592
«0,000388
=0+000238
«0+000166
«0.000148
«0+000105
«0.000088
=0.000167
«0+000191
=0,000309
«0+000395
«0+000566
«0+001538

0,000000

sin Qﬂ

04000000
04000000
0,000000
04000000
00000000
04000000
0,000000
04000000
04000000
04000000
0.000000
0+000000
04000000
0,000000
0,0600000
01000000
04000000
04000000
04000000
04000000
0+000000
0,000000
04000000
04000000
=04023013
-0,013384
-0.021278
~0¢029850
=0¢037691
«0,042339
0047781
-0+052759
=0.055360
-0.056600
~0+056959
-0.057816
~0.056483
~0+052701
«0.0U9819
«0+042800
=0.032646
0025737
«0+020085
=0.015977
«0.011562
~0¢007324
(4004912
~0+003343
-04002236
04001431
«0.001032
~0+000367
*04000376
-G+000303
'=0+000178
~0.00008S
~0+000041
~0+000193
=0+000062
=0+000075
=0.000273
0+000122
=0+000968
04600000
0,000000

vB V)
0517916
0.438584
0307662
0239184
04203586
0+181245
0.165678
00158170

0144759 |

04136501
0,130709
04125660
04120873
0.116767
0.113475
04110080
04106706
0,108372
0:101379
0.098054
0.095376
0,093499
040920614
04091020
0+091311
0.091619
0.091341
04091522
04091395
0.091388
04091537
0.001437
0.091443
0.091482
04091416
0.091424
0.091a98
0.091459
04091507
04091495
0.091521
0.091151
0.091426
0.091433
0,091413
0.091819
0.091391
04091380
0.091373
0.091363
04091359
0.091353
0.091345
04091383
0.091340
0.091335
0.091329
04091327
0.091327
0.091321
0.091327
0.091312
02091318
04091370
0,000000

16
0.500000
04500000
0.500000
04500000

04500000
04500000
0500000
0.500000
0+500000
04500000
0.500000

04500000
0+500000
04500019
0,500008
04500031
0.500081
04500045
0.500056"
0+500074
0.500073
0.500073
0.500096
0500069
0.500098
04500096
0+5000%2
04500100
04500110
0.500093
0.500086
04500073
04500066
0.500064
0.500035
04500031
0.500012
0.500000
04399970
0.499956
0.899949
0.499948
0,49992%
0.499908
0,495908
0.499895
0.4998%4
0.495887
0.899878
0.499878
0.499874
0e499845
0.499868
0,000000
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Table 2

Summary of Results of Cslculations of Slipstream Contraction
in the Static Case

Slipstresm Contraction Ratio, ¢
Cylindrical Coxfcal Shrouds Parabolic~Cambered Shrouds
Shrouds
z/than °n 0 0.08 |0.16 | 0.24 | 0.08 | 0.16 | 0.24

0.05 | ((0.835)) |

0.10 0.884 ((1.008)) 0.945
0.20 0.934

0.40 0.974 1.016}1.062 1.111 1.000 1.027 1.056
1.00 0.998 1.041(1.087 | 1.136 1.030 1.064 1.099
2.00 (1.136) (1.117)

The results are for twer y-iteratlve-cycle calculations, except
that data in single parentherzs are from ten-cycle calculations, in cases
giving rapid convergence; ani data in double parentheses are from ten-
cycle calculations, with gooZ estimate of slipstream representation at
first cycle, in cases giving slow convergence.
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