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A Method for Numerical Calculation of

SLIPSTREAM CONTRACTION OF A SHROUDED IMPULSE DISC IN THE STATIC CASE

With Application to Other Axisymmetric Potential Flow Problems

by

Harvey R. Chaplin, Jr.

SUMMARY

The problem of the axisymmetric flow of an ideal incompressible

fluid through an impulse disc bounded by a thin shroud is considered.

A systematic calculation procedure is developed, suitable for use on

a large electronic digital computer. The shroud a'nd slipstream are

represented by a continuous surface distribution of ring vortices.

The correct slipstream shape is approached by successive approximations.

The results of calculations of the slipstream contraction ratio,

in the static case, for cylindrical, conical, and parabolic-cambered

shrouds, are presented. It is found that the slipstream contracts

less severely, in the case of very short cylindrical shrouds, than had

previously been supposed. Also for cylindrical shrouds, it is foutnd

that an excellent estimate of the slipstream contraction ratio can be

obtained from a comparatively brief calculation, essentially
- q

equivalent to a calculation from the linearized theory, provided the

estimate is based on the product of velocity and vortex density at the

j
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trailing edge rather than on the vortex density alone. These results

have practical interpretations, within the framework of the one-

di,:ensional shrouded propeller theory, in terms of shrouded propeller

static efficiency and thrust ratio. However, such interpretations

must be made cautiously until the proper experimental evidence is

developed. The theoretical results provide a useful guide for the

planning and evaluation of proper experiments.

The method of calculation is also applicable to axisymmetric flows

about (a) shrouded impulse discs at finite thrust coefficients, (b)

circular inlets, and (c) arbitrary annular and solid bodies of

revolution. Internal flows within circular ducts can be closely

approximated by the internal flows within very long shrouds. A few

calculative results are presented to illustrate these applications.

The accuracy of the method has not been definitely established

because, in most of the cases considered, there were no exact solutions

available for comparison. By all indications, however, careful

application of the method can yield results which are, for ordinary

engineering purposes, equivalent to exact solutions.

0ii
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NOTATION

propeller disc area, square feet

shroud exit area, Na2 , square feet

thrust coefficient, T/( rr Na2 p Us )

fractional error [(approximate value) + (exact value) - 1.]

ratio i / N

ratio y(S)/y(St.e.)

complete elliptic integrals of the first and second kind,
respectively

shroud chord, feet

numbers of cone-frustum segments used to approximate the

shroud and slipstream, respectively

power expended by the propeller, ib-ft/sec

limiting slipstream radius, far downstream, feet

curvilinear coordinate of a point on the shroud or slip-

stream surface, measured along the surface from the shroud

leading edge, feet

curvilinear coordinate of a point on a surface composed of

cone-frustum.segments, feet

total thrust, pounds

'propeller thrust, pounds

free-stream velocity, feet per second

axial and radial components of the velocity at a general
point

mean velocity at a point on the vortex sheet (that is,
mean of the surface velocities on either side of the
sheet) feet per second

iii
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Vi

V

V , V
Vx r

X, R

X,
Xi,

ri, si

ci, r v ai

xN' rN' sN

aiJ

bi,jci,j

a

bi,j-

Ci,j-

ai,j+

bi,j+

c i+ I

surface velocity, feet per second

axial veloc.ity within the far slipstream

axial and radial components of the velocity V, feet
per second

axial and radial velocity influence functions, feet.1

axial and radial coordinates of a point on the shroud or
slipstream surface, feet

axial and radial coordinates of a general point, feet

coordinates of the first point of the ith cone-frustum
segment, feet

coordinates of the midpoint of the ith segment (that is,

i k (xi + xi+l), etc.) except, when i - 1, coordinates
of the first point of the first segment, also the leading
edge of the shroud, feet

coordinates of the shroud trailing edge, feet

stream function influence coefficient, square feet (aijYj
is the value of the stream function at the point

(x-i 1i) , due to the pulse yj ())

axial and radial velocity influence coefficients, dimen-
sionless

partial values of the influence coefficients, corresponding
to the first part of the pulse yj (s)

(a i,j  aid- + aii,j+ , etc.)

partial values of the influence coefficients, corresponding
to the second part of the pulse yj ()

(ai j a i,j.+ , etc.)

_ 
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aI semi-vertex angle of the ith segment, radians (subscript
omitted when not required for clarity)

density of ring-vortex singularity distribution, divided
by 2r~, feet per second

i(s) pulse of continuously distributed ring-vortex singularities
defined over the ith and (i-l)th cone-frustum segments,

feet per second

characteristic value of yi(s), feet per second

Froude efficiency ('f = TU/P)

Ist static efficiency t st 2

slipstream contraction ratio (R / FN)

P fluid density, slugs per cubic foot

value of Stokes' stream function, cubic feet per second

stream-function influence function, feet
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INTRODUCTION

The advent of the high speed electronic computer has mgde it practi-

cal to solve many problems in fluid mechanics which would have required

prohibitive labor inan earlier era. The present investigation is con-

cerned with bringing the power of this modern tool to bear against

certain problems of the axisymmetric flow of an ideal incompressible

fluid which have resisted previous efforts at solution.

In Part I, the problem of the axisymmetric potential flow through a

shrouded impulse disc is considered. This is a boundary value problem of

a non-classical mixed type which had previously been solved only in cases

for which the second boundary condition could be disposed of by a simple

assumption. A systematic method of calculation is developed, tried out,

and discussed.

The motivation for the investigation of Part I comes from certain

practical problems of the shrouded propeller, associated with the concept

of slipstream contraction. However, Part I is confined primarily to con-

sideration of the mathematical problem of the shrouded impulse disc. The

practical aspects are discussed in Part II, in the context of the results

of calculations.

It is found that the method of calculation developed to solve the

problem of the shrouded impulse disc is also directly applicable to cer-

tain other problems; and that it could, by means of straightforward

modifications and extensions, be developed into a rather general and

powerful tool for axisymmetric potential flow calculations. These further

applications and possible extensions are also discv -d briefly in Part II.

L ~__~_ __ _____II__~__ __
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PART I - A METHOD FOR CALCULATING THE AXISYMMETRIC POTENTIAL FLOW

THROUGH A SHROUDED IMPULSE DISC IN THE STATIC CASE

The shrouded impulse disc is a mathematical idealization of the

shrouded propeller, wherein the fluid which passes through the propeller

is imagined to receive a uniformly discontinuous increase in total pres-

sure, and to flow downstream in a sharply defined stream tube, called the

slipstream. Further, the velocity is imagined to be free from azimuthal

components, and to be continuous everywhere except at the boundaries of

the flow; that is, at the shroud and slipstream surface.

This idealization obviously greatly enhances the possibilities of

calculating the flow in detail. On the other hand, many of the details

of the flow so calculated will differ markedly from those of a real flow

through a real shrouded propeller.

The question of the applicability of shrouded impulse disc results

to practical shrouded propeller problems will be discussed at length -

in Part II of the present investigation. Part I is restricted to con-

sideration of the mathematical problem of the idealized shrouded impulse

disc.

In the exact theory of the shrouded impulse disc, the shroud shape

is regarded as known. The flow and the slipstream shape are to be deter-

mined so that the shroud and slipstream are part of a common stream tube;

and so that there is a uniform discontinuity in squared velocity across

the slipstream boundary.

Previous theories'have provided approximate solutions of this prob-

lem, subject to assumptions which can be justified only if the slipstream

I __ _ I___ ~*_____ I_ ~C7_11 ~-T~- -1- 1~lr.~. _--__11-1_ ~i~----_~- ___I_ _~ T~1----------.~

I ., :1 .1



-3-

diameter is nearly constant. Therefore, these theories have been of

very limited value for estimating the slipstream contraction.

PREVIOUS THEORIES

Access to the technical literature related to shrouded propellers was

greatly facilitated by Sacks' and Burnell's (Reference 1) comprehensive

bibliography, which includes brief critiques of many of the important works.

Current practical understanding of the shrouded propeller is based,

in large part, on the one-dimensional momentum theory of the shrouded

impulse disc. A fairly thorough account of this theory is given by Kir'ger

(Reference 2). The essential elements are reviewed herein, at the beg'.nning

of Part II. A number of useful relationships between the thrust, pow.

expenditure, and forward velocity are deduced by applying the princip." s of

conservation of momentum and energy to the flow in the slipstream faryw".wn -

stream from the shroud. The one-dimensional theory gives no predictic of

the slipstream contraction, however, and, to apply the theory successfi,'ly

one must have prior information on the slipstream contraction from sowm

independent source.

A second theoretical approach, which can yield a prediction of the

slipstream contraction, is provided by the method of singularities. Thi'.'.,

approach to the shrouded impulse disc problem appears to have been first

developed to the point of application by a team of investigators in Germany

during the World War II period. A lucid account of the main features of

this work, with references to the original papers, was subsequently

published by two of these investigators, Kchemann and Weber (Reference 3.

The axisynmmetric flow about a shrouded impulse disc with negligible

shroud thickness and small (but not necessarily negligible) camber was
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represented by a distribution of ring vortices on a semi-infinite cylinder,

originating at the leading edge of the shroud. The vortex distribution was

assumed to be uniform downstream of the shroud trailing edge. The vortex

distribution along the length of the shroud was solved for, applying the

boundary condition (equivalent to that applied by Glauert (Reference 4) in

his thin-airfoil theory) that the flow at a point on the cylinder contain-

ing the singularities should be parallel to that at the corresponding point

on the shroud. The solutions actually obtained were carried out by a

numerical process, in which the boundary condition was satisfied at a

finite number of points along the shroud. A second boundary condition,

equivalent to the Kutta condition of airfoil theory, was shown to be

satisfied merely by requiring that the vortex distribution be continuous at

the trailing edge. (The numerical process involved the use of tables of

the stream function and velocity components for an isolated vortex ring

(Reference 5), based on the solution for flow around a vortex ring, which

was given in terms of the complete elliptic integrals by L1 b (Reference 6).)

It was argued that the solutions obtained in this manner afforded valid

approximations in all cases in which the stream surface defining the shroud

and slipstream deviated little from the cylinder on which the singularities

were placed. This requirement was shown to be satisfied, in general, when

the thrust coefficient was small. In the case of high thrust coefficients

(including the static case), a valid approximation was assured only if the

shroud was cylindrical and of sufficiently long chord to assure a slipstream -

contraction ratio of nearly unity. Thus, the application of such results to

the prediction of the contraction ratio was severely limited.

This general approach to the problem is usually referred to as

i .'2 '"

9 ~fs
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"linearized shrouded propeller theory." The linearized theory h~us been

further developed by a number of more recent investigators, who Pave also

considered some of the effects of shroud thickness, finite center iodies,

and propellers with finite numbers of blades and non-uniform loadliig.

However, the limitations on application of the linearized theory to the

prediction of slipstream contraction have not been alleviated. Few an

account of these developments, the reader is referred to Morgan (Neference 7).

Despite the known limitations of the linearized theory, it haas neverthe-

less been applied by some investigators to the calculation of sl~iaptream

contraction of the shrouded impulse disc, even in the static case- because

no alternative method of calculation was available. The most exteasive such

application was by Kriebel, Sacks, and Nielson (Reference 8), us~u6 a

technique devised by Burggraf (Reference 9). They treated thin coplindrical

shrouds of sufficiently short chord that the flow around the shroutd could be

considered essentially two-dimensional. (This work is particularIv

interesting, in that it is the only case in which explicit analytienal

solutions have been obtained.) Helmbold (Reference 10) presented rmesults

of numerical calculations (for shrouds with chords of 0.5, 1.0, and. 2.0

propeller radii) in which the boundary condition was satisfied at Ecnly three

points along the chord.

To whatever extent such calculations might be valid, most ofe e

earlier analyses using the linearized theory also produced results 'hich

could be interpreted to give information on the slipstream contraced-on in

the static case; but such interpretations were not offered by the eearlier

authors. For example, Kchemann and Weber (Reference 11, Figure 7)

presented for cylindrical shrouds of chord/diameter ratios zero townity a

~1~_1 _____
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graph of a nondimensional variable which is directly interpretable, in the

static case, as twice the contraction ratio, less one. These authors made

no such interpretation, however; and, in fact, stated in regard to their

representation of the slipstream by a uniform vortex cylinder that ".

the flow at advance ratio zero, of particular importance for the propeller

with annular fairing, cannot be dealt with by this assumption."

FORMULATION OF THE PROBLEM

In this section we will formulate the problem of calculating a

stationary irrotational flow of an incompressible, inviscid, homogeneous

fluid of infinite extent through a shrouded impulse disc, in the static

case. We will restrict ourselves to the case of a shroud which is a

surface of revolution, this being the simplest case of practical interest.

Effects of gravitational forces and other extraneous forces will be

neglected, as is usual in problems of this kind.

We will use the cylindrical coordinate system (x, r, 0). It is evident

from symmetry that none of the properties of the flow will depend on the

azimuthal coordinate, 0, so the coordinates of a general point can be

specified (x, r), provided that, when two or more points are specified

without the aximuthal coordinate, they will be understood to lie in a

common meridian plane.

The shroud can specified by an equation

r = R(x) , x Xt.e.t.ee

r

4 iAxis of Symmetry

St.e.

_~___1_ __~__ r__~l ____T__ _~~r____ --~~ ~9 r --- --?1-- Ir--*-_~~p--n-.----n-~1~_11_~_ 1
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The function R(x) need not be single-valued. To avoid ambiguity, we will

define a curvilinear coordinate S, measured along the shroud from the

leading edge. The shroud can then be specified by the single-valued

equation.

r = R(S) , 0 S S St.e.

For the present, let us assume that the slipstream boundary is a

simple continuation of the shroud surface, so that the shroud and slipstream

boundary together constitute a continuous semi-infinite surface of revolutior

describable by a single-valued function

r = R(S) , 0 S

although only the portion of this function which describes the shroud is

known initially.

We regard the shroud as a rigid and impervious physical surface;

whereas, as previously stated, the slipstream boundary is regarded as a

hypothetical surface along which the normal velocity components vanish, but

across which we admit the possibility of a discontinuity in tangential

velocity. The role of the impulse disc now becomes apparent for, under the

assumptions thus far stated in the present section, Bernoulli's equation

p + k p(ua +4) Po

would apply, with the same constant po, along every streamline of the

flow. Thus a discontinuity of velocity across the slipstream surface

-r T --- ~ -- " --L------ - ------C1-~---~- -- I- --- .- ----- - ~- -~----- -- - -r7i, -- -- --- - - - --- ---- - -- ------- - :1-------7
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would imply a discontinuity in pressure, which is physically unreason-

able. This difficulty is avoided by postulating the existence of a

closed surface, the impulse disc, which is bounded by a closed line on

the surface of the shroud, and which, together with the shroud and

slipstream surface, divides the space into two regions, as follows:

The first region includes all of the points on the outer suface of

the slipstream boundary. Within the first region, Bernoulli's equation

applies in the form

P + k P(u + v2) = Po

The second region includes all of the points on the inner surface of

the slipstream boundary. Within the second region, Bernoulli's equation

applies in the form:

P + k p(U2 +9 ) = Po + AP

Now, a discontinuity in velocity across the slipstream boundary is

permissible, provided the discontinuity in squared velocity is equal to

2 Ap/p, for there will then be no discontinuity in static pressure.

On the other hand, if we now adopt the assumption that all velbcity

components are continuous across the impulse disc, it is evident that

there is a uniform discontinuity in static pressure across that surface.

We can argue that this is physically reasonable, if we consider the

impulse disc to represent a propeller, on the grounds that an approximately

similar difference in the static pressure is found between points just

ahead of, and just behina, a real propeller.

It will be recognized that, under the asuamptions which have been

-*1------- -~---~-~ . -i- -. ---~- ----~7- 7~--1-- -----1 .- I---I -- ( ~ *----rcl~b- ~-O--~---CII-c(-*li- *~-*rrCTr
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introduced, we will be dealing with that class of fluid flows known as

potential flow. Thorough treatments of the formulation and solution of

the basic flow equations for such cases are given by Lamb, Reference 6,

and appear in innumerable other books on fluid mechanics, applied

mathematics, and potential theory. However, for the sake of clarity and

completeness, the complete mathematical development of the problem will

be outlined, starting from the equations of continuity and irrotationality.

To avoid repetitious citation of references, it will be understood that

Lamb can be referred to for all aspects of this development not unique to

the present problem.

The governing equations of the flow are the equations of continuity

and irrotationality:

.i - %. au + -(rv) 0 [13
•r -ax r ar

= o
ar ax [ 12]

It is convenient to introduce Stokes' stream function, Y (x,r), defined

so .that

U C

v .11' [1']
r bx

T(x,r) = fr u(x,r') r'dr'

(We denote these relations as Equations [l'] because, as can be verified

by direct substitution, the existence of the function Y(x,r) is a

sufficient condition that the continuity Equation Ll] is satisfied).

Our boundary conditions can now be expressed

Y(x,R) = To , 5 x [3]

F" * I - -m'-
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li [ua(x,R-e) + v2 (x,R-e) - u2 (x,R+e) - v(x,R+e)] = 2 A
P

for x t . e .  x.

Now, evidently the function R(S) is bounded, because if R increased

without limit, the velocities within the slipstream must vanish and

Equation (4) could not be satisfied. Moreover, it is evident that, as

x increases without limit, the velocities outside the slipstream must

vanish, so that the flow within the slipstream becomes uniform. This

provides a relation between the quantities To and AP , for, if we denote
P

the limiting velocity by u, and the limiting radius by R,, we have

'o = - u0 Ra 2

from Equation [3]; and

u2
0  = 2Ap/p

from Equation [4]. Whence

R =  To v2/(Ap/p)

Thus we are free to specify only one of the quantities, o or ,
P

arbitrarily, in stating the problem. We will choose to specify To

arbitrarily. (It may be noted further that the value given to Y~o

together with the arbitrary scale in which the shroud dimensions are

given, serves merely to establish a scale of velocities. It will not

influence the slipstream contraction.)

Let us now examine the assumption that the slipstream surface is a

simple continuation of the shroud surface. This assumption could be

justified by analogy with the Kutta condition of airfoil theory, but

it appears that there is a better justification. Suppose the slipstream
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surface met the shroud surface at a point other than the trailing edge.

r

Evidently, the velocities must vanish in the corners on both sides of

such a juncture, and Equation [4] could not be satisfied. Moreover, we

see that the slipstream not merely must meet the shroud at the trailing

edge, but that the function R(S) must have continuous first derivatives

at all points S ' St.e.. Otherwise, we would have a corner, at which the

velocities would vanish on one side of the surface and become unbounded

on the other side, and again Equation [4] could not be satisfied. (One

can conceive of cases in which these simple arguments would not hold.

For example, a shroud might have a cusp between the specified leading

and trailing edges, at which the slipstream might meet without violation

of Equation [4]; but such exceptions are evidently without practical

interest.)

Now let us collect the pertinent relations together. Equations

[1] and [2] can be replaced by a single equation expressing the condition

of irrotationality in terms of the stream function.

+ . 1 e s =0

The boundary conditions can now be expressed

i- -- ----r-- -1---- -- -~--~'~-'cc -
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4

T(x,R) 0 o < x [3]

s 0 [ua(x,R-e) + va(x,R-) -ua(x,R+e) - v2(x,R+e) = a constant [4']

for xt.e. 5 x. The velocities u ana v are given in terms of the stream

function by Equation [1'].

Given a shroud, and the boundary value T of the stream function,

one is to find a solution Y(x,r) of Equation [2'] which has the value

4 To on the shroud surface, and which satisfies the condition [4'] along

the rest of the stream surface T = Yof

Equation [2'] is readily solved by the method of separation of

variablest and has solutions of the form

Y(x,r) = r(Akek x + Bke - kx) Jl(kr)

where J1 is the Bessel function of first order and first kind, and where

k can assume any value whatever, real or complex.

We require solutions corresponding to velocities which are continuous

and bounded everywhere except on the surface

r = R(x) , O x

whereas it is found that individual solutions of the above type correspond

to velocities which are unbounded at infinity. However, it is shown in

Reference 6 that, by superposition of infinitely many of these elementary

solutions in the form of a definite integral, a composite solution

r -k I x-3
=(xr) = rr e Jl(kr) J 1 (k) dk

(with k real) can be formed, which corresponds to velocities which are

_Ill______i___lCI__CIICr___ - --- ___
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bounded and continuous at all points except on the circle (x,r). In

fact, this expression gives the stream function at a point (x, r) due to a

discrete vortex ring of circulation I at the position (x, r). (There are

other solutions which satisfy this condition; for example, the stream

functions of ring vortices and ring doublets. However, since we have to

deal with a boundary condition on the discontinuity of tangential velocity

across a surface, it will be seen that the ring vortex is a natural

choice.)

Lamb also gives an equivalent and more convenient form of this

solution, in terms of the complete elliptic integrals. A concise review

of Lamb's derivation is given herein in Appendix E. The result is:

Y(R, ) 2 (1 - k2)K(k) - E(k) [5]
27 k 2

where K(k) and E(k) are the complete elliptic integrals of the first

and second kinds, with modulus

k 4rF
(x-i)a + (r+?)

We can now construct a solution of Equation [2'] which has the re-

quired properties, as a superposition of infinitely many solutions of the

type given in Equation [5], in the form of another definite integral. In

other words, we can consider that T(x, r) arises from a distribution of

coaxial ring vortices on the surface r = R(S). Since we are concerned

only with points on this surface, it is convenient to write Equation [5]

in the form

dY() = y(S) dS **(S,N) [5'

where Y(S)dS has taken the place of 2, and is the circulation around

the element of surface between S and S + dS, divided by 2n; and the

~3. ---- 1 -f -L- ~-"-
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function **(S,S), which we shall call the stream-function influence

function, represents the remaining factors of the right-hand member

of Equation [5].

The rather awkward notation of Equation [4'] can be avoided if we

note that the magnitude of the velocity discontinuity across the surface

r = R(S) is precisely 2rr y(S). P
S2T y(S) dS = f (u dx + v dr) = (V. - V) dS

SV i = V + y

S\ Vi /
Vo  = V -TY

Vi - V0  = 4r y V

If we denote the mean tangential velocity at a point of this surface

by V(S), the discontinuity in squared velocity across the surface is

[v(S) + y(S)]a - [v(S) - y(S)] = 4TTy(S) V(S) [6]

The axial and radial components Vx and Vr of the velocity V can

be obtained by differentiating the stream function according to

Equation [1']. The results are given by Reference 3. We will write the

results here in the form

dVx(S) = y(S) dS Vx*(S , S)

dVr(S) = y(S) dS Vr*(S, S)

analogous to Equation [5'] above. Detailed expressions for the axial

and radial velocity influence functions are given herein in Appendix B.

We can now express the boundary conditions Equations [3] and [4'] in

terms of solutions of the differential equation (Equation [2']), with the

aid of Equations [5'], [6], and [7]:

(S) = " *(S,S) y(S) dS = *o S 0 [

7d

3']

________ il.yt,
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y(S)V(S) = a constant, S 2 St.e.

V(S) I'VX*(S,S) Y(S) dS] + [Vr*(S,) y(S) dS 4

We must not lose sight of the fact that, in these equations, the

influence functions Y*, Vx*, Vr* have specific meaning only in terms of

a specific function R(S), since the same thing may be said of the

variables S, S themselves, and that the function R(S) is known initially

only up to the point S = St.e.. Equations [3'] and [4"] thus constitute

two equations in the two unknown functions

R(S) , S> St.e.

-y(S) , S ~ 0

It is evident, from the discussion of previous theory in the

preceding section, that we cannot expect to find nontrivial analytic

solutions of the pair of Equations [3'] and [4"). Ptevious investigators,

even by neglecting the second boundary condition entirely, and retaining

a single equation equivalent to Equation [3'], have succeeded in obtaining

analytic solutions (or numerical solutions, for that matter) only by means

of still further simplifying assumptions regarding the representation of

the slipstream; and even then, only in cases of small thrust coefficients

or of cylindrical shrouds. We shall therefore proceed immediately to

attempt solution of the problem by numerical approximation.

METHOD OF SOLUTION

We have seen that the successful previous treatments of the shroud-

ed propeller and the shrouded impulse disc by the method of singularities

proceeded on the following scheme: A sufficiently strong assumption was

.--.~-.-I -~~... ~ -- - - -- ..-~c-~-=;.Y; l'; ~~~'n'T"y~----- :;;------------ --
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made on the mathematical representation oG the slipstream that the

bou.dary condition on the shroud itself could be expressed by a single

definite integral equation with finite l hits of integration. This

equation yielded a solution which wtas assamed, subject to appropriate

restrictions, to be approximately consisteant with the two boundary

conditions on the slipstream.

We will begin with the same scheme; but then, since we must antic-

ipate that, in general our first solution will not be consistent with

the boundary conditions on the slipstreax, we will seek to improve the

mathematical representation of the slipstream by successive approximation.

A systematic calculating procedure along this line, suitable for

execution on a large electronic digital cvmnputer, is developed in detail

in Appendix A. For the sake of continuity, the essential elements of

this development will be indicated brief1ti, here.

The following simplifying assumptions are introduced:

1. It is assumed that the distribution of vortices on the shroud and

slipstream can be represented by a conti mwous distribution y(S) on a

continuous system of cone-frustum segmenzs (N of which approximate the

shroud shape and M of which approximate the slipstream shape), the

function y(S) being further represented by a superposition of N+M simple

pulse functions as illustrated in Figure 1.

2. It is assumed that, if such a r-epresentation is found so that

the boundary condition Y=T o is satisfied at the leading edge and at the

midpoint of the second segment and each sAcceeding segment except the

last (which is taken to be semi-infinite in length), and so that the

second boundary condition of the slipstream (V= a constant) is satisfied

------------ r~-~----i*-- - ---------- T-C-----i--------- ~ --------- ^- ~-- -r*----* r~ --
'A ic--



- 17-

at the midpoint of the Nth through (N+M-l)th segments, this representation

will constitute an approximate solution of the exact problem, Equations [3']

and [4"].

These assumptions are justified initially by the fact that similar

assumptions, introduced by Smith and Pierce in their treatment (Reference 12)

of the Neumann problem for bodies of revolution, led to excellent

approximations in the cases which they considered. (Smith and Pierce

represented bodies of revolution by stepwise continuous distributions of

ring sources on systems of cone-frustum segments.) Further justification

will be provided, after the fact, by demonstrating that the method of

calculation developed herein also gives excellent approximate solutions,

in certain cases for which exact solutions are known.

With these assumptions, the stream function and mean velocity

components at a point s = s of the system of cone-frustum segments (where

Si is a point on the leading edge, and otherwise si is a midpoint 
of the

ith segment) can be expressed by linear algebraic equations,
N+M

=(y - jZ aj Yj [8]
Jul

N+M
Vx( i ) = E bi,j Yj

j=l

N+M 9
Vr( i) Z ci,j YJ [9]

V( i  )=Eva (;) V (;i)]

where yj is a variable characterizing the vortex density of the pulse

yj(s); and the influence coefficients alj, bi,j and Cj depend only

upon the geometry of the system of cone-frustum segments.

II___ _ ~_ _ _~ ~~~ _~__ _ 1 __
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The development of practical and accurate procedures for calcula-

ting these influence coefficients, given the shape of the system of

segments, constitutes a main problem of the present investigation.

This problem (which resolves itself into five distinct cases, depending

upon the nature of the pulse Y (s) and the geometric relationship of

the point s to the cone-frustum segments over which this pulse is

defined) does not lend itself to brief discussion. The interested

reader is referred to the detailed development in Appendix A.

Now suppose we have been given a shroud and the constant boundary

value o, and have chosen a system of N cone-frustum segments which

approximates the shroud. As a first approximation, we choose a con-

tinuation of this system (M additional segments, the last of which is

a semi-infinite cylinder) to represent the slipstream. Further, we

choose a set of numbers (Fi "i/n , N+lEi N+M) to represent a first

approximation to the shape of the vortex distribution on the slipstream.

The influence coefficients now become known constants; and in Equation [8],

the last M+1 terms of the summation reduce to a single known constant

multiplied by yN . Application of Equation [8] to the first N points

Si results in a system of N equations in the N unknown variables yj,

which can be solved for the values of these variables consistent with the

condition

(s) o , 1 i N

Now, Equations [8] and [9] can be applied to learn how nearly consistent

our first approximation is, with the boundary conditions along the slip-

stream (which we have thus far neglected). That is, we tabulate the
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sets of quantities

N+1 < i < N+M-1
Y(; V(9 i )

If the first of these sets were uniformly equal to Yo and the second

were uniformly equal to Y(sN)V(N) we r:uld consider the problem solved.

In general, of course, this will not be the case, and we will seek to

improve the first assumption on the sha-e of the slipstream and the

shape of the vortex distribution on the slipstream. If we have a

method of doing this, we can, of course, repeat the procedure described

above as many times as we like, improviTg the assumptions after each

cycle of calculation, until we have a srlution as nearly consistent with

the boundary conditions on the slipstream as desired.

The problem of deducing an improveE estimate of the slipstream

shape and vortex distribution is approadf ed under the following tenta-

tive assumptions:

1. It is assumed that the radial cordinate of a general point on

the slipstream surface is a single-valuel function of the axial -

coordinate. Thus, the successive estimates of the slipstream shape need

differ only in the radial coordinates.

2.' It is assumed that, if the kth estimate, wherein the radius at

the ith, segment midpoint was taken to be rk(ii) , leads to a boundary

value Y, Si ) at this point, then a new eFtimate

r kl(S) = rk(si) i oyk(S)

will lead'to an improved approximation; r=, if not, then some new

estimate lying between these two values rf r( i) will lead to an improved

C-T-r--
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approximation.

3. It is assumed that, if the kth estimate leads to a boundary

value Vk(Si) at this point, then a new estimate F i 
= Vk(SN)/Vk(Si) will

lead to an improved approximation.

The first of these assumptions is rather obviously justified in

cases of practical interest.

The second assumption is a generalization of the result that, for

an infinitely long cylinder of uniformly distributed ring vortices, the

value of the stream function at the boundary is proportional to the

square of the radius (since the internal velocity in such a case is

uniformly 2ny , independent of the radius). Thus the expression given

in the second assumption can be expected to give a correction of the

right order of magnitude; and in any case, it is in the correct sense

to move the vortex tube for the (k+l)th cycle of calculation toward the

location which the stream tube T=Yo occupied at the kth cycle.

The third assumption reflects the consideration that the velocity

at a point of the boundary of a long vortex tube is changed only

slightly by a change in the vortex density in the immediate neighborhood

of the point. For ekample, while the mean velocity on the boundary of

an infinite uniform vortex cylinder is rrY, it can be shown (Appendix A,

Equation [A7c]) that the mean velocity at the midpoint of a short

uniform vortex cylinder, with a length of two-tenths its radius, is

only about 0.44y,. Thus, on the long cylinder, the effect of halving the

vortex density everywhere within one-tenth radius of a given boundary

point is to change the mean velocity at this point by only about seven

percent.

_2__1___1__11*_____
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Thus, while a procedure for successive estimates based on these

assumptions may not be strictly and generally justified$ the r-adjust-

ment and F-adjustment indicated are at least plausible, when considered

separately. It is much more difficult to justify applying both adjust-

ments simultaneously. Especially, it might be expected that adjustments

in the shape of the vortex tube would affect the mean velocity on the

boundary appreciably. Indeed, we need not make the adjustments

simultaneously; we can make them individually on alternate cycles of

calculation. However, it was found by trial that a process of simultan-

eous adjustment is more efficient, under ordinary circumstances, and

gives successive solutions which converge satisfactorily toward consis-

tency with the boundary conditions on the slipstream. This procedure

is described in detail in Appendix A.

In summary, we have replaced the integral equations [3'] and [4"],

which express the boundary conditions at every point of the shroud and

slipstream, with sets of algebraic equations (see Appendix A, R4sum of

the Calculating Procedure, Equations [Al'] and [A2'] which express the

boundary conditions at finite numbers of control points along the shroud

and slipstream. Moreover, we have adopted a cyclic calculating

procedure, at each cycle of which we use an "interim boundary condition"

a(+i)N ai j j 1N

j=l j=N

which applies at the control points of the shroud only.

The main features of this procedure are

I. Selection of a first approximate representation

i I I
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(xir i  W 1! i N+M)

(Fi , a - i N+M)

of the shape of the shroud and sltpstream and relative vortex distribution

along the slipstream.

2. Calculation of the influema e coefficients a,, bi, j and c

3. Solution of N equations im N unknowns, from the "interim

boundary condition" to yield vaihas of *j, 1$ j < N.

4. Evaluation of the err r i" the boundary conditions along the

slipstream, by calculating

( i) N ! i N+M-I

These must ultimately become un Iama sets.

5. Calculation of imprdved estimates

(xi,ri Z +2 i 5 N+M)

(Fi , fW i < N+M)

of the shape and vortex distribu&on of the slipstream. The cyclic

procedure is to be continued unami the errors, as evaluated at step 4,

are suitably small. The detaila of the procedure are developed and

summarized more explicitly in A~endix A.

PRELIMINARY CALCUIATIONS

A limited series of calcusations of slipstream contraction was

undertaken, with the dual objgtives of (a) confirming the feasibility of

making such calculations by, the procedure proposed and (b) providing

improved quantitative knowledge of slipstream contraction, for future use

in shrouded propeller theory al design.

For this- purpose, the cahumlating procedure outlined in the preceding

2

3

4

I

iii
i f
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section and developed in detail in Appendix A was translated into a

FORTRAN language computer program for compilation and execution by the

LARC digital computer system of the David Taylor Model Basin. The FORTRAN

coding was performed by the writer, with substantial assistance from Model

Basin staff mathematicians, especially Mr. Dan M. Walker. For each

calculation, input data were supplied to the LARC system in the form of

punched cards presenting the N+M pairs of initial coordinates (xi,ri) and

the M initial values of F . Results were received from the system in the

form of printed tabulations presenting the current values yi , ri, Fi '

y(si)V(si), and Y(i ) at the end of each iterative cycle, plus certain

supplementary data, at the end of the last cycle, from which the surface

velocities at each point (xi,ri) could be found if desired. The target

boundary value, lo, of the stream function, was defined by the program to

be one-half. The slipstream contraction is, of course, independent of

o, and velocities scale linearly with Yo

Early trials of the computer program were directed toward a very

brief investigation of the convergence of the iteration process, and

toward obtaining a preliminary notion of the number and spacing of cone-

frustrum segments required for adequate representation of the shroud and

slipstream.

CONVERGENCE - As discussed in Appendix A, the first formulation of the

iterative calculation procedure overestimated the required adjustments

in slipstream radius at the end of each cycle, and did not produce

acceptable convergence. However, after several fruitless efforts, a

simple modification of the procedure (wherein the r-adjustments were, in

effect, first estimated by the original formula, but then multiplied by

_ __~____
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a variable factor, ranging from one-third for very small adjustments to

nearly unity for large adjustments, before being applied) was found which

did produce satisfactory convergence. This is illustrated by Figure 2,

which presents for comparison the results from the first, second, fifth,

and twentieth cycles of calculation, for a short cylindrical shroud

(/rN = 0.20). Tabulated results, from the first ten cycles of this

calculation, and the twentieth cycle, are presented in Table 1.

As is evident from Table 1, the calculations could well have been

terminated long before the twentieth cycle. However, an early decision

was made to run all of the calculations of slipstream contraction for

twenty iterative cycles, for the following reasons: The LARC computing

system has no provision for on-line inspection of intermediate results.

It is therefore necessary to decide in advance when the calculation will

be terminated. (The alternative possibility, of programming the computer

to terminate whenever some specified convergence criterion was satisfied,

was rejected because no sufficiently simple and reliable convergence

criterion was evident.) Moreover, once the computing sequence has been

terminated, there is no convenient way to restart it, where it left off.

Finally, it was considered desirable, in these first applications of the

computing procedure, to carry the calculations on for a liberal number of

iterative cycles in order to guard against the possibility that a sequence

of successive solutions which appeared to be converging might not con-

tinue to converge, or might converge to a different destination than would

be guessed from the first several cycles.

The convergence of successive solutions illustrated by Figure 2 and

Table 1 turned out to be typical of that which occurred for all iterative

-- CC I~--r *C a*--rrr~O~nre ~h - ---
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calculations reported herein, -_th the following qualification: The

convergence was somewhat more -_-pid for longer shrouds (larger ratio

/iN), and somewhat slower for Zhorter shrouds (smaller ratio /rN ).

(In fact, for the shortest shr:;d attempted thus far, 1/1 N = 0.05, it was

not evident that the solutions -,ere converging, by the end of a twenty-

cycle calculation in which the alipstream was represented by a uniform

vortex cylinder at the first c---le. Convergence was finally obtained

by starting the calculation o~e again, with a better first estimate of

the slipstream shape and vortie distribution.) For very short shrouds,

unless a good first estimate i used, substantial changes occur in the

"curvature" of the vortex she-, as measured in the meridian plane, just

downstream of the trailing ed-e of the shroud, during the first few

cycles of calculation. (The rridian-plane section of the vortex sheet

consists of straight-line segmaats, but is understood to approximate a

smooth curve, whence the conceTt of "curvature.") Under these

circumstances, the assumption iplicit in the iteration process - that

r-adjustment will affect Y(s) -rimarily, and not affect V(s) very much -

does not hold true, and the sul-ation is kept from getting out of hand

only by "damping" the r-adjus-:rnts as discussed in Appendix A. Un-

doubtedly, the present method :ould be applied to still shorter shrouds

than attempted herein, by usi-; heavier damping, and careful first

estimates; but, if it were desired to approach zero chord length, it

would probably become necessaz7 to take direct account, when estimating

the r-adjustments after each rycle, of the effect of these adjustments

on V. Undoubtedly, such a pr:oedure could be devised. However, there

is no known practical interest, at present, in shrouds of chord shorter

"-. I woo
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than perhaps 0 .4iN , so this question was not pursued in the present

inve tigation.

REPRESENTATION OF THE SHROUD - In most of the calculations presented

herein, the shroud was represented by a surface composed of 24 cone-

frustum segments (N_= 24). In order to have reasonable assurance that

this provided an adequate representation, one of the early calculations

was repeated, but with N = 12. The results of the two calculations are

presented for comparison in Figure 3. The close correspondence in all

features of the two results is regarded as strong evidence that the

representation with N = 24 was adequate for the simple shroud shapes

studied. The estimates of slipstream contraction ratio afforded by the

two calculations were equal within 0.2 percent. (The same evidence might

be used to justify making the succeeding calculations with N = 12.

However, the saving in the expense of the calculations would not have

been significant, so the more accurate representation was used.)

REPRESENTATION OF THE SLIPSTREAM - The spacing of segments immediately

downstream of the shroud trailing edge is necessarily similar to that

immediately upstream, because of the consideration (previously dis-

cussed) that the widths of adjacent segments should hot differ drastically.

Further downstream, all of the variables involved in the calculations

vary more and more slowly, along the slipstream, so the successive segment

widths can safely be increased, gradually, to the maximum allowable width

of about twenty percent of the local radius. The main choice to be made,

as to the representation of the slipstream, is how far downstream to

continue the system of cone-frustum segments before terminating it in the

final (N+Mth) semi-infinite, segment.

iZi: c
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In most of the calculations presented herein, the N+Mth segment was

begun at XN+ M 
= 4 rN , where x was measured from the shroud leading

edge, and rN was the radius of the shroud trailing edge. In order to

have reasonable assurance that this provided an adequate representation,

one of the early calculations was repeated, with the same segment spacing

but a reduced number of segments (reduced M) such that XN+M - 2 rN . The

results of the two calculations are presented for comparison in FIgure 4.

The close correspondence in all features of the two results is regarded

as strong evidence that the representation of the slipstream with

= 4 N was adequate. The estimates of slipstream contraction ratioN+M N

afforded by the two calculations were equal within 0.1 percent.

It can be noted from Figure 4 that, if one elected to estimate the

slipstream contraction ratio by taking rN+M as an estimate of the limiting

slipstream radius (or by taking YN+M as an estimate of the limiting

slipstream vorticity, analogous to the usual practice in the linearized

theory), the result would depend comparatively strongly on how far down-

stream the system of cone-frustum segments was carried. This dependence

is largely avoided by basing the estimate of the slipstream contraction

on the quantity yV.

(In this connection, it can be noted from Table 1 that, in the

particular case represented there, the value of y(gN)V(sN) from the first

cycle of calculation--in which the entire slipstream was r.epresented by

a single semi-infinite cylinder, as in the linearized theory--would

already have provided a rather good estimate of the slipstream contraction.

The postsible significance of this circumstance will be investigated

fuirther in a later section.) i
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COMPUTING TIME - For any one of the calculations for which results

are presented herein, the time required for the LARC Computer system

to perform the calculation can be roughly approximated by the formula:

(Time in Minutes) (Number of Iterative Cycles)

2
N+M + ( N + 2L 60 30/ ,

The program will accommodate values of N up to 50, for iterative

calculations, and up to 98 for single-cycle calculations. In either

case, N+M cannot exceed 100.

(The program can be modified very easily to permit values of N up

4 to, say, 90, for iterative calculations. However, N+M cannot be in-

creased very much without fairly extensive modifications. In any event,

as is apparent from the above formula, the calculations rapidly become

more expensive as the numbers N and M are increased.)

REMARKS - It may be well to point out that it has not been proven

that solutions of the exact problem, (Equations [3'] and [4"]) exist; nor

that,.if a solution is found, it will be unique. The facts that a

numerical procedure has been found to yield apparently very close

approximations to such solutions, and that these results seem entirely

reasonable physically, constitute circumstantial evidence of existence

and uniqueness, but hardly proof. This evidence will become stronger

(but not conclusive) in a later section when it is found that the same

numerical procedure also yields extremely close approximations to exact

solutions of other problems, for which existence and uniqueness are

well known.

This situation finds parallels in many other applications of

-~~CprI rrc nl
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mathematics to physical problems. There is always the undeniable

hazard, in such cases, that approximate methods of analysis may yield

"solutions" of a problem which has no solution. This hazard is far

outweighed by -adcances in knowledge which such methods, -in company

- ny_ ysical intuition, make possible.
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PART II - APPLICATIONS AND EXTENSIONS

We have considered the problem of the axisymmetric potential flow

of an incompressible fluid through a shrouded impulse disc, and have

succeeded in finding a practical method of obtaining approximate numer-

ical solutions.

We have treated the problem of the shrouded impulse disc asa special

case of the more general problem of the axisymmetric potential flow about

an arbitrary surface of revolution. We may suspect, therefore, that our

method might have more general applications. This possibility will be

examined in a later section. First, let us consider the possible applica-

tions of theoretical predictions of slipstream contraction to the problem

of the shrouded propeller.

APPLICATIONS TO SHROUDED PROPELLERS

It was mentioned at the outset that the original motivation for the

present investigation came from certain practical problems of the shrouded

propeller.

It is found experimentally that shrouded propellers are more efficient,

in terms of thrust delivered and power expended, than free propellers, in

the static case. This advantage is of great practical interest in connec-

tion with "vertical take-off and landing" aircraft. It has been best

understood, in terms of the concept of slipstream contraction, from the

one-dimensional theory of the shrouded propeller.

nw.



-31-

THE ONE-DIMENSIONAL THEORY OF THE SHROUDED PROPEL -- The assump-

tions introduced in Part I, in the section on Formulataon of the Problem,

are consistent with the assumptions of the one-dimensnal theory of the

shrouded propeller, often referred to as "simple momenian theory." Under

these assumptions, a number of useful relationships for the shrouded

propeller can be derived very simply, without conaiderng the details

of the flow. A treatment of this theory was given by ErUger, Reference 2,

who also obtained experimental data tending to confirm some of the main

conclusions.

One objection to the one-dimensional theory har been that most of

the relationships deduced contain the slipstream contr tion ratio as an

unknown parameter, which must be estimated in order to apply the theory.

In the past, there has been no very sound basis for making such estimates,

except when 0 was known to be nearly equal to unity.

Since we now have a tool for calculating slipstream contraction, it

is of interest to review the essential features of the eme-dimensional

theory.

The Static Case -- In the static case (zero free-stream velocity),

the energy, dynamic pressure, and momentum of the slipstream are entirely

due to the action of the shrouded propeller.

A p/t
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rThe momentum flux through a section of the slipstream, far downstream, is
4

T = pV 2 At

The propeller thrust is

T 1 pV. 2 A
p 2 j p

The kinetic energy flux is

S3/2/ 2 t
P = I pV At  = T /2p

Therefore, the static efficiency is given by

T3 / 2

st = T32 [10]
2p-A t P

For a propeller without shroud, the total thrust and propeller

1
thrust are equated, and it is deduced that = - . Thus the shrouded

propeller enjoys the advantage of a static efficiency, better by a

factor of /2- than that of the free propeller, according to this theory.

(The'static efficiency"is not a true efficiency, but a parameter which

plays the same role for the shrouded propeller which is played by "figure

of merit" for the hovering rotor.)

The ratio of total thrust to propeller thrust is given by

T/T = 2 0 At/A [ii]

It is sometimes cited as an advantage of the shrouded propeller

that the total static thrust exceeds the thrust of the propeller. This

is not in itself an advantage, except insofar as it is symptomatic of

the real advantage of a superior static efficiency. The thrust on the

shroud appears largely as a suction pressure around the leading edge,
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with the result that there is usually an adverse pressure gradient in

this neighborhood. This may be quite severe unless the shroud is rather

thick, or is made artificially thick during static operation by means

of flaps or inflatable sections.

The shrouded propeller's superior static efficiency is of great

interest in connection with Vertical Take-Off and Landing (VTOL) aircraft.

For propeller-driven VTOL aircraft, the operation of the propellers is

essentially static during landing and take-off, at the times when the

propeller thrust must offset the entire weight of the aircraft, and the

maximum power is required.

If shrouded propellers are employed, to reduce the power required

for take-off and landing, a penalty is incurred in terms of the weight

and drag of the shrouds. From this standpoint, it seems advantageous to

make the shrouds as small as possible. On the other hand, if the shrouds

are too small, they may be less effective in preventing slipstream con-

traction. Moreover, it was suggested by Kriiger, Reference 2, that a long,

divergent (diffusing) shroud might produce a slipstream expansion, and

provide an even greater advantage. Thus, it is of great interest to the

designer to know the effects of the shroud geometry on slipstream con-

traction in the static case.

The Case of Finite Thrust Coefficients -- When there is a free-

stream velocity, only a part of the energy, dynamic pressure, and momen-

tum of the slipstream are due to the action of the shrouded propeller.

UU
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The mass flow through the propeller is pVj At 0, so that the

portion of the momentum flux ascribed to the action of the shr=:ded pro-

peller is

T = pV At j (Vj -U) [12]

The propeller thrust is

T = (. pVj 2 - .pu2)A C131

The portion of the kinetic energy flux ascribed to the action cf the

shrouded propeller is

P = PV At 0 (Vj2 - U2 )P 1 v [14]

The thrust coefficient is

CT U 2 A 2  U U
2 At

V

U
[1 + I + 2 CT/]

The Froude efficiency is, from Equations [12] and [14]

TU 2U
F - P V. + U

and by application of Equation [16] becomes

1i+
i2 [I + V/ + 2CT/

Whence

[15]

[16]

[17]

- 11. ........ .
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The ratio of total thrust to propeller thrust is, from Equations [12]

and [13]

T 2v-j
Tp V j+ U

and, by application o-f Equation [16] becomes

II= 2 l + [18]
T 3+ll+2CT/rTp 3 + q1 + 2 CT/1

For a free propeller, the ratio T/T is equated to unity, giving

the relationship between 0 and CT, which is plotted as the dashed curve

in Figure 10b. The contraction ratio for the free propeller approaches

unity as the thrust coefficient approaches zero, as would be intuitively

expected.

Equation [17] may be written, for low thrust coefficients

CT
1 - , C << 1 [17']

Thus, it is seen that

a. At low thrust coefficients, there is substantially less differ-

ence between the slipstream contraction of a free propeller and that of

a shrouded propeller than there is in the static case.

b. The slipstream contraction ratio has a weaker influence on the

Froude efficiency, in the case of low thrust coefficients, than it has on

the static efficiency, in the static case.

Both of these considerations tend to indicate that, even when the

drag of the shroud is ignored, there is little advantage in shrouding the

propeller-unless the performance in the static case is important. When

the drag of the shroud is considered, the shrouded propeller is found to
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be at a definite disadvantage, at low thrust coefficients, so far as the

Froude efficiency is concerned. However, in some applications, the

shroud may take the place of stabilizing or lifting surfaces, or provide

sound reduction, so as to retain an advantage despite the drag.

Experimental Evidence -- KrUger's experiments, Reference 2, and all

subsequent experience (see Reference 1) confirm the general conclusions

of the one-dimensional theory, using I 1 for the shrouded propeller,

as regards the advantage of the shrouded propeller over the free pro-

peller in the static case. Moreover, in the case of reasonably long,

nearly cylindrical shrouds, the total thrust is found to be divided approx-

imately evenly betw.een the shroud and the propeller, as expected from this

theory.

We were concerned, in Part I, with developing a method to predict in

detail, under assumptions consistent with those of the one-dimensional

theory, the effects on 0 of shroud geometry variables. It would seem

that it must be possible to establish the more important of these effects

by proper experiments. However, while the shrouded propeller literature

(see Reference 1) contains a great quantity of experimental data, one

finds no correlations of these data wherein these effects are systemati-

cally identified.

Since it can hardly be believed that no such correlations have

been attempted, during two decades of shrouded propeller research, it

may be appropriate to speculate on the reasons why none are found in the

literature. First of all, one cannot measure the slipstream contraction

directly, because the slipstream (in the sense in which we are using this

word) does not really exist. Instead, one must measure effects which

jj
i; I
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imply slipstream contraction, such as changes in the static efficiency

and the ratio of propeller thEtst to total thrust. However, these quan-

tities may be influenced by a, great many other variables besides slip-

stream contraction. These include the numerous variables of propeller

geometry and location, centerbody geometry and location, and shroud

support strut geometry and lcmation, as well as viscous effects on all

these components and the shroud. Even iwhen two experiments are performed

with essentially the same mode*l, a change in the geometry of the shroud

might--in addition to changing the slipstream contract ion--also change

the flow through the propeller and around the centerbody, and change the

character of the boundary layers on any or all components. Obviously,

comparative interpretation of experiments with different models is still

more uncertain. The large effacts which occur when the shroud is added

to a free propeller, or removed from a shrouded propeller, are compara-

tively easy to observe and' Eterpret; but if one compares a propeller

with a long shroud to one wikh a short shroud, or one with a cylindrical

shroud to one with a divergent shroud, the differences in measurable

quantities which might properly be associated with differences in slip-

stream contraction may be of the same order of magnitude as--or even much

smaller than--numerous other possible effects. Experimental isolation of

these effects is possible only by means of very painstaking measurements,

if it is possible at all. It has evidently not yet been accomplished, to

any significant extent. Bpefully, future experiments may be planned

and interpreted more- succesa filly, with the advantage of better theoretical

information on the effects, oal shroud geometry.

In summary, very sigpificant differences in performance are found,

experimentally, between free propellers and shrouded propellers, in the
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static case. The general character and magnitude of these differences

are explained very conveniently and successfully in terms of the concept

of slipstream contraction. It seems reasonable to expect that some of

the important effects of variations in the shroud geometry of a shrouded

propelle: might also be conveniently and successfully predicted in terms

of the concept of slipstream contraction. The available experimental

evidence neither confirms nor denies this expectation. At the minimum,

knowledge of the effects of shroud geometry on the slipstream contraction"

of shrouded impulse discs should be useful for planning and interpreting

new shrouded propeller experiments. At the maximum, if experimentn con-

4 firmation is forthcoming, this knowledge might be extremely useful in the'

design of shrouded propellers for VTOL applications.

It is the author's opinion that the predictions of the one-dimensional

theory regarding changes in static efficiency associated with changes in

shroud geometry, using values of the slipstream contraction ratio calcu-

lated by the present method, will be found to be reasonably valid; pro-

vided,

a. There is no flow separation from the shroud.

b. The pressure rise across the propel,ler disc is approximately-

uniform.

c. Any changes in the efficiency of the propeller itself are either

prevented, by adjusting the propeller geometry, or are accounted for

separately.

It should not be imagined that, even if this opinion is confirmed, the

design of shrouded propellers would then become straightforward. The

uncertainty regarding the slipstream contraction is only one of a large

I -~ ----- ~ ~- 1~~- - - I- - - - - - L-- -~----~-~~- ~------~ --- -- ~-3 1
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number of complications which plague the shrouded propeller designer.

(Perhaps the greatest of these is the difficulty of predicting the

circumstances under which flow separation will or will not occur. It

will be seen later that the present method of calculation, by providing

information on the velocity distribution over the shroud, might possibly

provide the ba'sis for a future approach to this problem.)

SYSTEMATIC CALCULATIONS OF SLIPSTREAM CONTRACTION -- In order to

provide some immediate quantitative information on the effects of shroud

geometry on slipstream contraction, a limited series of calculations was

undertaken for certain interrelated families of cylindrical, conical, and

parabolic-cambered shrouds.

The Static Case -- It was of particular interest to obtain results

for cylindrical shrouds, in the static case, because the previously

available estimates of slipstream contraction, from the linearized theory,

pertained to cylindrical shrouds.

The results of twenty-iterative-cycle calculations for cylindrical

shrouds, over a wide range of chord/radius ratios, are presented in

Figure 5. Also presented, for comparison, are:

a. The estimate provided by the linearized, short-chord theory

of Kriebel, Sacks, and Nielsen (Reference 8).

b. The estimate available from the first cycle of calculation by

the present method, based on !N-M ; that is,

N+M rN

* h "'*
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c. The estimate available from tBe, first cycle of calculation by

the present method, based on y(-N)VCNJ ; that is,

rN IT y N)V(-IN)

In the calculations by the present method, the slipstream was

represented, at the first cycle of calculation, by a uniform vortex

cylinder, just as in the linearized theory. Thus, the estimates available

from the first cycle of calculation are essentially linearized-theory

estimates.

These estimates are based on the relationship

o = u R

o 2 =o

where u is the limiting velocity withba the slipstream, far downstream, and

R is the limiting slipstream radius. In the linearized theory it is

assumed a priori that y is constant along the slipstream, and the rela-

tionship

u0  = 2n y(=)

leads directly to the estimate given im "b" above. However, one is not

compelled to continue to assume a posteriori that y is constant along

the slipstream. The relationship

together ith an a posteriori 4assumpti that yV is constat along the

together with an a posteriori assumptiza that yV is constant along the

J, ~ ~t~:at~~ ' ::;
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slipstream with the value calculated at .the trailing edge, leads to the

estimate given in "c" above.

The results given in Reference (8) were derived without any modifi-

cation of the a priori assumption concerning the representation of the

slipstream, and so would be expected to merge, at small chord/radius

ratios, with the first-cycle estimate from -N+M. It is seen in Figure 5

that this does, indeed, appear to be the case. (The identification of

this estimate with lN+M is, of course, somewhat arbitrary since, at the

first cycle of calculation, all of the 's from i = N to i = N+M were

equal.)

As anticipated earlier, Figure 5 shows that a comparatively good

estimate is afforded by the value of y(iN)VaN) at the end of the first

cycle. From the special vantage point afforded by hindsight, it seems

quite reasonable that an extrapolation along the slipstream to infinity

should be based on the quantity y V, which is supposed to be uniform alone

the slipstream, rather than on the quantity y, which is not supposed to

be uniform.

The only available and comparable results of previous theory for

larger chord/radiuslratios were those of Heimbold (Reference 10), which

were obtained from linearized-theory calculations in which the boundary

conditions were applied at only three axial stations along the shroud.

Thus, th y are not really representative of the linearized theory. As

a matter of fact, however, Helmbold's results, which were for chord/

radius ratios of 0.5, 1.0, and 2.0, agreed rather closely with the results

of the present twenty-cycle calculations. Helmbold did use the value

of y V at the trailing edge for his estimate of slipstream contraction.
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Vortex distributions for certain of the cylindrical shrouds, taken

4 from the twentieth cycles of calculation, are presented in Figure 6.

It is easily shown that in the case represented (jo = 0.5, = 1.0), the

function y(S) for a semi-infinite shroud must approach the- value 1/2n.

This asymptote is shown on Figure 6. A line is also shown whbich repre-

sents the variation y(S) - S - k, which must necessarily pTnvail at the

leading edge of any thin shroud, and which evidently prevails for a

significant distance downstream from the leading edge. It would seem

that, as cylindrical shrouds of shorter and shorter chord ame considered,

the functions y(S) change smoothly, and only slightly,, firm that which

r would be found for a semi-infinite cylindrical shroud'. AJla it would seem

that, for cylindrical shrouds of sufficiently long chord,. representation

of the entire slipstream by a uniform vortex cylinder coui4 be justified,

even in the static case. (This latter conclusion is also awported by

Figure 5.)

Twenty-cycle calculations of slipstream contraction wee carried out

for a few members of a family of diffusing conical shrotafe and a family

of parabolic-cambered shrouds. These families were chosen mo that the

cylindrical shrouds of Figure 5 would be limiting-case m e ers of both

families. Moreover, corresponding members of the conical amd parabolic-

cambered shroud familes were chosen to have equal trailing-edge divergence

angles; namely, tan yN = 0, 0.08, 0.16, and 0.24, in the various cases.

The results are presented in Figures 7 and 8 and in, TzEble 2. It is

seen that shrouds with positive trailing-edge divergence angles can

provide significantly more favorable contraction ratios.

TI__J PICI*I___CUI_1__IPPrrC___C ,
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Weinig (Reference 13) gave an approximate formula for estimating

the effect of trailing-edge divergence on slipstream contraction; namely,

1
0 0.45 N (This formula was based on two-dimensional free-1 - 0.45 ai

boundary calculations. The application to axisymmetric flow was justified

on the basis of an investigation by Trefftz (Reference 14), who showed

that approximately the same contraction occurred in the flow through a

circular orifice, as in the flow through a long narrow slit.) The

formula is compared with present results in Figure 9. It is seen that

the formula gives a fairly good approximation in cases of long-chord

conical and parabolic-cambered shrouds.

The Case of Finite Thrust Coefficients -- While only the static case

has been considered in the preceding discussion (since it is in the static

case that slipstream contraction is especially interesting), the extension

of the method to include the case of axisymmetric flow in a free stream

is very easy. This extension was included in the computer program. (If

the free-stream velocity is U, it is necessary only to add Ur2 to the

expressions for stream function, and to add U to the axial velocities.)

The computer program was arranged to permit specification of a non-

zero value of free-stream velocity, U. This allows calculations for arbi-

trary finite thrust coefficients, by the same procedure employed in the

static case. (It is not possible, by the present method, to specify the

thrust coefficient CT precisely; but U is specified precisely, and it is

easily shown that

C 4 YT 2 0
T U rN U

Thus, CT can be specified approximately before the calculation, from a

preliminary estimate of the slipstream contraction 0, and can be deter-

m: d precisely after the calculation.)

---- - -- -- - ------ ---- ------- ~~-~I~-*-~~-~-"I --~- I~'~' '-~ -1 ~--~~~c~c~;l~---~~~~'7-1 c~"-'~I-~ -------,-
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Results of calculations sufficient to provide a preliminary indi-

:qtion of the variation of slipstream contraction with thrust coefficient,

for , cylindrical shroud of chord/radius ratio 0.40, are presented in

Figure 10a. The slipstream contraction ratio was plotted versus the

1
reciprocal of the thrust coefficient, so that the static case, - = 0,

CT

could be included on the graph.

In the calculations with finite thrust coefficient, the shroud was

represented by twelve segments (N = 12), and the slipstream was represented

with XN+M =  2.05 rN. The calculation with finite thrust coefficient is

much easier than in the static case, because there is less difference

between the initial and final slipstream shapes, and because the quantity

VCsi), along the slipstream, contains the constant component U, and hence

is less sensitive, fractionally, to the successive r-adjustments.

Figure 10a shows the (perhaps) surprising result that, as one moves

away from the static ( = 0), to finite thrust coefficients, the slip-

stream contraction ratio 0 at first declines; and then, as 1/CT is in-

creased (CT decreased) further, 0 increases again, approaching unity

asymptotically. While this result was not expected, it is readily under-

stood, in terms of the evolution of the static pressure, on the outer

surface of the vortex sheet, in the neighborhood of the shroud trailing

edge. Consider, for example, a case in which the mean axial velocity

within the shroud is held constant and equal to unity. At zero free-

stream velocity, the axial velocity at a point just outside the slipstream

boundary near the trailing edge will have a negative value, say, -8. To

the first approximation, at finite free-stream velocities, the axial

velocity at this point will be U - B(1-U); and the gage static pressure

at this point will be p U2 (1+ ) U - . This quantity is

IN
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negative at U = 0, goes to a maximum positive value at a snall value

of U, and approaches zero again as U approaches unity (that is, as CT

approaches zero). Thus, in a range of large but finite thrust coeffi-

cients, the static pressure in the neighborhood of the trailing edge is

perceptibly higher than ambient; and the mean internal axial velocity,

across the trailing-edge plane, may well be lower (compared with the

limiting velocity, far downstream, where the static press-re becomes uni-

form and equal to ambient) at some thrust coefficient, in this neighbor-

hood, than at higher or lower thrust coefficients. Thus, it should not

be surprising that the slipstream contraction ratio could be at a minimum

at a finite thrust coefficient.

This result lends emphasis to the fundamental and perceptible differ-

ence between the classical "free streamline" problems (in which a uniform

static pressure is imposed along the "free" surface, and 1ence only the

flow on one side of the surface need be considered), and the present

problem (in which the static pressure is continuous across the "free"

surface, but may vary along it, and hence a flow field which occupies all

space must be considered).

(It might be pointed out that it has been elected to consider, herein,

that the static pressure is continuous across the slipstream surface, and

that the quantity V , and hence the total pressure, are 1aiformly dis-

continuous across this surface, the uniform jump in total pressure corre-

sponding to an equal jump across an impulse disc spanning the interior

of the shroud. This viewpoint is most nearly consistent with the physical

processes of a real shrouded propeller. However, one could elect, with

exactly equivalent results, to consider that the slipstream surface con-

sists of a rigid, impervious membrane, across which there is a uniform

4*c"cl~nnncl-rr~n
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jump in static pressure, the total pressure being uniform throughout the
4-4

entire field. In this case, the concept of an impulse disc need not

enter at all, until one wishes to justify the application of the results

to shrouded propeller theory.)

For a cylindrical shroud, at the first cycle of calculation, the

shape of the vortex distribution is independent of the forward velocity,

U, since the shroud is automatically coincident with a stream surface of

the undisturbed free stream. Hence, the induced velocity at any point has

a fixed direction and a magnitude proportional to, say, y(N) Thus, one

can write

i C (L&rN) Y () + U

o [C2 (trN) )+ U/2 rN

whence

Y( N)(V N)- U/2 + U !2- U/22 r 2 rN

/

For each chord/radius ratio, the constants C and C can be determined

from the first cycle of the static-case calculation, and the slipstream

contraction can then be estimated for any arbitrary value of U. The

estimate obtained in this way is equivalent to the first-cycle estimate

from yON)VOSN), obtained from a calculation in which the desired U is

specified. In fact, in Figure 10a, the upper dotted curve was deduced

from the first cycle of the static-case calculation, and was found to

practically contain the points with triangular symbols, which were obtained

from the first cycles of the finite CT (finite U) calculations. (In the

absence of all errors, that line would contain those points, exactly.)
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prone to have flo~e separation. However, this difficulty might be

circumvented by use of inflatable leading edges or other devices.

OTHER APPLICATIO S AND EXTENSIONS

The emphasis in the preceding discussions has been placed on the

calculation of slipstream contraction. However, the method developed

for calculating slipstream contraction involves the construction of a

close approximatA . to an entire flow field bounded by a surface of

revolution. We nmar thus consider applying this method to other problems

of axisymmetric potential flow, including some for which slipstream con-

traction may be ad little or no interest, and even some in which a slip-

stream is not irroarved at all.

While explo-ing the possibilities of further applications, the

opportunity will Be taken to apply the present method to some problems

for which exact solutions are known. In this way we may obtain a few

direct checks onM Idt accuracy.

INTERNAL FLOW IN CIRCULAR DUCTS -- Axisymmetric flow through a section

of circular duEaLtnl, of arbitrary radius distribution, can be approxi-

mated very readilty, simply by representing a long "shroud" which has

the desired radius distribution along a part of its length. It is

advisable to let the shroud continue for some distance upstream and

downstream of the section under study, to minimize end effects; and to

specify values of IN and O which avoid any strong leading-edge singular-

ity, for the same reason. (A specification such that Y = Ua should

serve nicely, unc4er most circumstances.)
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For an example of this application, a duct studied by Thwaites

(Reference 15) was chosen. Thwaites considered a class of potential

flows for which the radial coordinate of an arbitrary point on a given

stream surface is a periodic function of the axial coordinate. Thus,

one of the stream surfaces may be chosen to represent the wall of an

infinitely long periodic duct, for which an exact solution for the

internal flow is available.

Of course, it is not possible to represent an infinitely long

periodic duct by the present method, because an infinite number of cone-

frustum segments would be required. However, only the solution for a

single half-period of the internal flow is required, since the rest of

the internal flow then follows by symmetry.

For the present example, as shown in Figure lla, three half-periods

of the duct were represented, on the assumption that the flow in the

middle half-period would be essentially the same as for a truly periodic

duct. (The duct represented is from the third of the three examples

presented in Reference 15.) As shown in Figure lla, the results of cal-

culations of the velocity distribution on the wall, by the present method,

agree extremely well with Thwaites' results (by the exact method, for a

truly periodic duct).

Thwaites' practical interest in this periodic duct lay in the assump-

tion that the flow within a half-period of the duct would approximate the

flow within a transition section, of the same shape, joining two cylindri-

cal ducts. By the present method, of course, such a transition section

can be represented directly, as shown in Figure llb. It would appear, on

the basis of the results presented in Figure llb, that Thwaites' assumption

was reasonable; although, of course, the velocity distribution in the
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immediate neighborhoods of the junctures with the cylindrical ducts is

perceptibly different from that in the corresponding neighborhoods of

the periodic duct. (Thwaites' interest was in effusing transitions,

whereas the example of Figure l1b represents a diffusing transition.

However, since we are dealing with potential flow, this makes no material

difference.)

At the first attempt to calculate the flow through the periodic duct,

a noticeable discrepancy was found between the velocity distribution given

by the present method and that given by Thwaites, in the neighborhood of

the section of minimum radius. Thwaites' calculations were then partially

rechecked, and a single ordinate -- the minimum radius itself -- was found

to be very slightly in error. Specifically, it is given by Reference 16

to be 0.487, whereas a more nearly correct value is 0.4858, less than one-

fourth of one percent different. Using this value, excellent agreement

was obtained, as shown in Figure lla. This incident points up a need for

extreme care in specifying the coordinates x., ri for applications of

the present method; and suggests that, in many practical applications, the

accuracy of the results may be limited by the precision with which the

coordinates can be determined, rather than by errors inherent in the

method itself.

CLOSED BODIES -- The development of the method of calculation, detailed

in Appendix A, was specifically limited to a flow bounded by an open

surface of revolution. This limitation arises primarily from the handling

of the leading-edge singularity (Case II and Case IV of the Determination

of the Influence Coefficients, Appendix A). It was expected from the

beginning that an effort would eventually be made to extend the method to

i~;T^---- --- "~---~;Ij
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include solid ani annular bodies of revolution. However, it was only

realized in retr:apect that this extension could very easily have been

included in the :-iginal computer program, and in fact consists primarily

of simply bypassiag the segments of the program dealing with the leading-

edge singularity- Proposed methods of doing this, and of dealing with

other less serious obstacles in the present computer program, so as to

permit calculati--~s of flows about closed bodies (literally, closed vortex

sheets) will be mtlined in a later section, along with other possible

extensions.

The represertation of a closedbody by a distribution of vortices

over its surface appears to have been applied rather rarely to practical

problems, althou, the validity of such representation has long been

recognized. Lamib stated, in Reference 6, Art. 151, that " . . . every

continuous irrotz--ional motion, whether cyclic or not, of an incompressible

substance occupyimg any region whatever, may be regarded as due to a cer-

tain distribution of vortices over the boundaries which separate it from

the rest of infinfte space." We do not wish to review here the intricate

reasoning by whicl Lamb justified this statement, but the elements of

the argument reqeired for our less general case are rather simple, if we

may appeal to cer:sin well-known theorems of the potential theory. First,

note that the florabout a closed body in a uniform stream can be re-

duced to the flow about a body moving through a fluid which is at rest

at infinity. Next, we note that, in Lamb's words, "No continuous irro-

tational motion is possible in an incompressible fluid filling infinite

space, and subject to the condition that the velocity vanishes at infinity."

From this it foll-7s that the whole velocity field is determinate if the

curl of the velocity is known at every point; for, suppose there were two

I
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velocity fields V, 2 satisfying a given specification on the curl, and

vanishing at infinity, then the field V3 a 1 V V2 would have vanishing

curl everywhere, and would also vanish at infinityl and hence, by the

above theorem, would vanish everywhere. Let us suppose our body to be a

closed surface filled with the fluid. We have assumed the motion outside

the surface to be irrotational, and to vanish at infinity, and we now

suppose the motion within the surface to be irrotational also, except in

a thin stratum of thickness, t, next to the surface. Now, any possible

motion of the outside fluid, consistent with our assumptions, can be

associated with some - not necessarily unique - distribution of curl

within this stratum; in other words, with a space distribution of vor-

ticity. The argument is in no way changed if we let t tend to sero, so

that the space distribution of vorticity becomes a surface distribution

of vortex density. Now if we return to the stationary surface in a uni-

form stream, and require that the normal velocity vanish on the surface,

we have, by another well-known theorem of the potential theory, that the

velocity vanishes everywhere in the region enclosed by the surface. In

this case, the vortex density at any point of the surfa~e is equal in

magnitude to the velocity just outside the surface, divided by 2r. If

the velocity field is unique, the distribution of vortex density is also

unique. Since the space outside an annular airfoil is doubly connected,

the velocity field is not uniquely determined unless some suitable con-

straint - such as the Kutta condition - is placed on the circulation

around the airfoil.

Vandtey, Reference 171 calculated plane-symmetrical and axisymetric

flows about closed bodies by representing the bodies by surface distri-

butions of vortices.

[]
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Without any modification of the present computer progpnm, we may

seek to approximate the flow about a closed body by repres~ting a

significant part of its surface by a vortex sheet.

Circular Inlet -- A very simple example of this appliication is

afforded by the problem of calculating the velocity distribution on the

inlet to a thick semi-infinite pipe. (This problem may be nfiought of

as an idealization of the problem of calculating the flow ae the inlet

of a jet engine or a shrouded propeller.) We may hope to approximate

the flow at the inlet by representing the inlet profile, a, portion of

the outer surface of the pipe and the whole interior surface -of the pipe

by a vortex sheet. Essentially, this amounts to representing the pipe

by a shrouded impu'lse disc with a shroud in the shape of the specified

portion of the pipe surface and with a very long chord.

An example is presented in Figure 12. A circular pipe odf internal

radius ;N and thickness 0.16125 N , with an inlet profile cormposed of

a quarter-circle and a quarter-ellipse, was represented as skeftched in

Figure 12. The tick marks on the.sketch identify the joints taE the

system of cone-frustum segments chosen for this representatio~n

Squared velocity distributions on the inlet for the static case,

and for the case of free-stream velocity equal to seven-tentIbw of the

mean internal axial velocity, are presented in Figure 12. Thw scale of

velocities was chosen so that the mean internal axial velocityr was unity.

Also shown in Figure 12, for comparison, are results of calcula-

tions, for the static case, by the method of Smith, and-, Peiw Reference 12).
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In those calculations, the outer surface of the pipe was continued down-

stream past the "trailing edge" shown in the sketch and then in to the
4

axis, capping off the pipe in the form of an urn. The inner surface was

capped off by a sink disc, on which was prescribed a uniform normal

velocity. (These calculations were performed on the IBM 7090 computer

at the David Taylor Model Basin, using a modified version of a computer

program which had previously been made available to the Model Basin by

the Douglas Aircraft Company). As pointed out by Reference 12, the

method of Smith and Pierce is not fully successful in calculations of

inlet flows, because the boundary conditions are applied to the normal

velocities rather than to the stream function, and a cumulative "leakage

of fluid" can occur through the walls of the duct. (The normal velocity

at the center of each segment is required to be zero; but the mean normal

velocity along the segment is not necessarily zero.) This is presumably

responsible for the unrealistic decrease of surface velocity, below

unity, along the inner duct wall. It is seen, however, that the agree-

ment with results of the present method is rather good, along the inlet

profile itself.

Annular Airfoil -- We may carry the idea of the precedtpng paragraph

a step further, and seek to approximate the flow about a closed body of

finite dimensions by representing the major portion of its surface by a

vortex sheet. We will call such a representation a "nearly closed"

surface. A particularly natural application of this idea is the applica-

tion to an annular airfoil, because an annular airfoil may be regarded as

a shrouded impulse disc in the limiting case of zero thrust coefficient,

and hence zero vortex density on the slipstream surface.
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As discussed previously, in connection with the calculation of slip-

stream contraction in cases of finite thrust coefficients, the thrust

coefficient can be made to come out nearly to zero by proper choice of

To and U. The specification on U can then be modified on successive

calculations to make the thrust coefficient -- and hence the vortex

density on the slipstream -- as nearly zero as desired. Inasmuch as the

shape of the part of the vortex sheet representing the slipstream will be

immaterial, once the vortex density has vanished, it is unnecessary to

iterate for the shape of the slipstream.

The results of a calculation in which the flow around an annular

airfoil was approximated are presented in Figure 13. Also shown are

experimental data from Reference 16. The agreement between calculated

and experimental velocity distributions is seen to be satisfactory. (The

airfoil represented in the figure was that given in Reference 16. It was

ten percent thick, with four percent camber, on an NACA a = 0.8 mean line,

and had an NACA 66-010 thickness distribution over the forward 45 percent

of the chord and parabolic thickness distribution over the after 55

percent.) As sketched in Figure 13, the cone-frustum system was begun

on the upper (outer) surface of the airfoil at the 96-percent-chord

station, extended forward, around the leading edge, and back along the

lower (inner) surface to the trailing edge. Then, in order to establish

the trailing-edge flow in a direction more representative of that which

would obtain with a closed airfoil, a 2.5-percent-chord extension was

added in the direction of the airfoil mean line extended. (It is believed

that, unless some such measure were employed, the gap in the upper surface

at the trailing edge would produce an effect similar to that of a reflexed
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trailing edge, and the nearly clos'od airfoil would have appreciably

less circulation than the corresp di Qsed 4 .1owever. only tra

arrangement sketched in Figure 12 was tried.)

The results of this example of the "nearly closed" annular airf:Ll,

and the preceding example of the circular inlet, strongly suggest thit,

by proper extensions and modifications of the present method, axisyrMtric

flows about arbitrary finite annular bodies, including thick annularair-

foils and impulse discs with thick shrouds, can be approximated very

closely. Previously, only linearized-theory methods were available For

these problems. The linearized theory is limited to rather thin, nsarly

cylindrical bodies, and cannot correctly represent the velocity distzibu-

tion around the leading edge, because of the leading-edge singularity

which is present in that theory. This velocity distribution is of

practical interest in connection with the problem of leading-edge f2aw

separation.

Sphere -- The results of calculating the velocity distribution on

a "nearly closed" sphere are presented in Figure 14.

The method of representing the sphere is most easily described in

the following terms: A shrouded impulse disc was represented, with the

shroud coinciding with that portion of the sphere sketched in Figure 14

from 8 a 0.01 radian to Q = (Tr-0.01) radian. At the rear, a short

transition to a cylinder of radius 0.0075 times the radius of the rihere

was added, and then a semi-infinite uniform vortex cylinder "slipst-eam,"

of this same radius, completed the representation. There was thus inr

internal flow through the sphere, but Yo and U were chosen so that the

mean internal axial velocity at the maximum cross section was only O * U.

F--- -...........-------------- -*C--IC_- L -*--e+----- ,-IL-~~~- ~-- -~-..-n~---t -,
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It was assumed that this internal flow, and the extremely thin

"slipstream" would have negligible effect, except in the immediate

neighborhoods of "nose" and "tail" of the sphere.

It is seen in Figure 14 that the results of the calculations agreed

extremely well with exact theory, except in these nighborhoods.

FURTHER POSSIBIE EXTENSIONS -- The computer program which v'as developed

for the present investigation does not permit full exploitation of the

potential applieat-ioneof- th6 ethod, The following improemnta tq-the

program are contemplated for the near future:

1. Provisions for representation of a clood Afnidula body by a

cloed myntem of cone-Ifrustum eagmettes rather than by a "lnearly ulosd"

systeam, by allowing the points a1 and @N to coincedo& T-etative pldna

includer

a. Rmoval of the proeett liitation (dideadsed in Cn III of

the datermination of influence co a ficient) on allwbld proxiqty of

the midpoint of one sepient to another seient.

b. in the case of an annular body with ditpateaiM (that t, a

shrouded impulee dioe with a shroud of rbittary fitnite thckneoo),

repladomtent of the singular pule YI(a) by a 9iaungila puloa, afid

definition i* a S2/2. (The twatilng etde will be @osidved to t a

the point §1, jut downtreamt of the ePotinxesint pokiti §I nd tjN&

., In the aae of an eular tfoil ottithout a gipoveam,

Iposigtetion ofthe Kutts mtodLtion by @eeLfyng Y aYN a 0 j and

raplriseet of 4 by the beundaty valu to of the@ dBPEam 9la(tin, as ad

unktidimi vaitLbl@ ii the solusiot Of N4 dtimltanwous equAioi (the

ttiitig 6de wL4l be eoaidemed t0 li al the sei idet poi t §j at §#s
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2. Provisions for representation of a closed solid body by a

closed system of cone-frustm segments, by allowing the points s1 and

sN+ 1 to lie on the axis of symmetry. Tentative plans include

a. Replacement of the singular pulse l(s) by a triangular

pulse, and definition i S2/2. (The pulse N+1(s) will be suppressed

by specifying FN+l = 0.)

b. Optional definition, TO = 0.

c. Removal of the present limitation (twenty percent of the

mean segment radius) on the permissible length of a segment. (This

limitation is presently imposed because of applying analytic formulas

for the influence coefficients to entire segments, and can be removed

by applying these formulas only to a short mid-section of each segmentl,

and integrating numerically over the remaining portions of the segment.)

3. Provisions for calculating the velocity components and stream

function at arbitrary points in the flow field, not on the system of

cone-frustum segments.

4. Provisions for calculating the flow about a system of two or

more coaxial bodies, such as, for example, a shrouded impulse disc with

a leading-edge slat, or with a centerbody.

The above modifications and extensions appear to be fairly trivial

in difficulty, although the improvements in utility of the method of

calculation would not necessarily be trivial.

Another extension which would appear to be of potential value, but

is not trivial, is the following: Provision for successive modification

of the shape of a section of a closed body of revolution to approach a

prescribed velocity distribution. Since, in the representation of a

-I
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closed body by a surface distribution of vortices, the vortex density

distribution is directly proportional to the velocity distribution,

this representation would appear to be especially well suited to this

problem. (A semi-infinite body is a closed body in this context.)

This class of problems includes certain classical free-streamline problems

(wake flow, cavity flow, flow through an orifice, etc.) in which the pre-

scribed velocity is uniform, as well as other possibilities, such as the

design of laminar-flow annular airfoils, design for minimum adverse

pressure gradient of separation-prone components such as inlets and

diffusers, and many others. Although these problems might seem simpler

than the slipstream problem to the extent that the vortex distribution

is given along the unknown boundary, the problem of successively adjust-

ing the boundary shape to obtain converging solutions would in general

be much more difficult. Moreover, in many cases, the question of the

existence of a solution would be a matter of real practical concern,

since one can easily specify a velocity distribution which is impossible

of attainment.

_ _ IIIII~EII~L~L
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,.CONCLUSIONS

The following conclusions have been drawn:

1. A practical method of obtaining approximate numerical solutions

of the mathematical problem of the axisymmetric potential flow through a

shrouded impulse disc,, using a high-speed computer, has been developed.

In particular, it is now possible to examine in detail the theoretical

effects of shroud geometry on slipstream contraction.

2. The assumptions of the theory of the shrouded impulse disc are

consistent with those of the one-dimensional theory of the shrouded

propeller. That theory has been extremely useful in the past, even

though it was necessary to use rough estimates of the slipstream contrac-

tion for its application. It is a reasonable presumption that the one-

dimensional theory will be still more useful, now that it is possible to

make detailed predictions of the slipstream contraction. However, a

definite conclusion on this must await experimental confirmation.

3. The results of systematic calculations of slipstream contrac-

tion for families of cylindrical, conical, and parabolic-cambered shrouds,

in the static case, -have been presented.

4. It is found that the slipstream contracts less severely, in "the

case of very short cylindrical shrouds, than had previously been predicted.

5. In the case of cylindrical shrouds, a good estimate of the slip-

stream contraction in the static case can be obtained from linearized-

theory calculations, by using the calculated discontinuity in squared

velocity (which is proportional to the quantity NV) across the slipstream

at the trailing edge. This technique was.used without substantiation by

at least one previous investigator, but has not been used by more recent

~--rrrra~-?rr,:~,,,;,._~~.~U'- ".~7-Y1 I~-F -T---lri*~---~r.l I -l-rr-~---li-~-_ I~-- ri---- -----~-i-----7-ii-- 1-T---~-~--.- r~--~Tir I n- -r?^r*r--.q~- -r~--r-~--r~~---.l-Ti-~--i- l~ I
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investigators. However, there is no possibility of similarly accurate

estimates from the linearized theory for non-cylindrical shrouds,

because the linearized theory cannot apply to the static case unless the

shrouds are cylindrical.

6. The computer program developed for the shrouded impulse disc

problem is generally applicable to axisymmetric potential flows about

and through arbitrary open surfaces of revolution. A sample calculation

of the velocity distribution on the interior wall of a long duct of

varying radius agreed extremely well-with a previous exact solution.

7. Annular and solid bodies of revolution can be approximated by

"nearly closed" surfaces of revolution. A sample calculation of the

velocity distribution on an annular airfoil agreed quite well with ex-

periment. A sample calculation of the velocity distribution on a sphere

agreed extremely well with exact theory.

8. By means of fairly straightforward modifications and extensions,

which are discussed briefly, the present method can become a rather

general and powerful tool for making axisymmetric potential flow

calculations. In particular, it appears that problems of flow about

arbitrary thick annular bodies, with circulation or slipstreams, not

amenable to treatment by previous methods can be treated accurately and

conveniently.

II
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APPENDIX A

PRACTICAL METHOD OF CALCULATION

It is desired to develop a systematic calculating process, suitable

for execution on an electronic digital computer, for approximate solution

of the equations

Y*(S,S) y(S) dS = Yo

y(S) VCs) = a constant

SS O0 [Al]

S t.e.

v(S) - [Vag + Vr

V = V(S) y (S) dS

vr () j V *(S, ) v(s)as

> [A2]

where it is understood that the influence functions T*, V *, and V *x r

have definition in terms of a function R(S) with a range 0 : S. However,

this function is given initially only in the range 0 < S < St. e .

This becomes practical if each of the functions R(S) and y(S) can be

characterized adequately by a finite number of variables. To this end,

the following simplifying assumptions are introduced

- I

1
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1. It is assumed that the function R(S) can be represented with

sufficient accuracy by a function r(s), the graph of which is composed

of N + M straight-line segments. The first segment originates at the

leading edge of the shroud, s = S = 0. The midpoint of the Nth segment

doincides with the trailing edge of the shroud, = SN , = St.e.

the (N + M) th segment is semi-infinite at r = rN+= constant. Thus,

the function r(s) defines a system of cone-frustum segments terminating

in a semi-infinite cylinder (see Figure 1).

2. It is assumed that the vortex distribution y(S) on the stream

surface ' = T' can be represented by a continuous distribution y(s) which

aries linearly along each of these segments except the first; remains

constant along the (N + M)th; and varies as cl s- + c 2 s along the first

(where cl and c2 are arbitrary constants).

3. It is assumed that a pair of functions r = r(s) and y = y(s),

which when substituted for R(S) and y(S) satisfy Equations [Al] and [A2]

at the shroud leading edge and at the midpoint of each of the second

through (N+M-l)th segments, will constitute a sufficiently accurate

approximation to a solution of these equations.

The validity of these- assumptions will depend, of course, upon a

suitable choice of the spacing of the N + M segments, including choice

of sufficiently large numbers N and M.

The three assumptions stated above are similar to assumptions intro-

duced by Smith and Pierce (Reference 12) in their treatment of axially

symmetric, inviscid, irrotational flow about bodies of revolution. At

the present stage, the hope that these assumptions will lead to accurate

approximations to the exact solutions rests largely upon the notable

_ ...-... ---- -;-- r ------------ -----cll-'ciiLI~"-~c~L~~
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success of the work of those authors. (Smith and Pierce approximated

the body surface by a system4of cone-frustum segments. They employed a

distribution of ring sources, mhich they took to be uniform over each

segment, and hence discontinu s at the junctures between segments, and

applied the boundary conditieon at the midpoint of each segment. They

dealt with fully-specified: svamace geometry; i.e., with the ordinary

Neumann problem, so that ittration was not required.)

Following the second of'tOe above assumptions, it is convenient to

write y(s) as theaesum of NS+ overlapping pulse functions (triangular

pulses, except for the first .a=d last) as follows:

N+M

i-1

Y () " - -_.. , 0< s < a2- a < a 2

H W , otherwise

is i+1 i , ra < 1 < si+ 1  > 1 < i < N+M

S 0' ,., otherwise

[A3a]

[A3b]

A3c ]

where

IFPf
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8 N - i

Y'N+M s  -- N+M - SN+M-1 SN+M < s < SN+ M

-N+M ' SN+M < s [A3d]

otherwise

(Note that 'i = Y(s) , except when i = 1)

With these definitions, the continuous function y(s) is completely

specified, for all values of s, by specifying a set of N + M numbers, the

values of *i.

(These definitions involve no further approximation beyond the approx-

imation introduced by the second of the above assumptions. They merely

introduce a convenient way of expressing this assumption.)

The integral equations

VC) = o

Vx Gs =Jo

V Cs) =r

V*(s ,j)
x

y.(s) ds

y(s) ds

V*(s,y) y(s) ds
r
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now reduce to systems of linear algebraic equations as follows:

ai,J Yj

VxCji)

x j) bi,j 
J

ci,j (j

*(,j) dj(a) de

1

Yj

1

YJ

V x* (a(s) yj() ds

Vr*( i) yj (s) de

These integrals, in turn, are expressed more conveniently by further

defining

i iJ+

+ bi,3+

ci,J

[A4]

SCi,ji- + ci,j+

I., Iw M, - - - .. . . . .- -- . - - . , .. . ..---- :,-,----i,., ..... .. J ,- ,,f i--F _ _ _= .....c "' '.' " d- ; i-P- l:.t

NS X

N+M

j-l

YX i-i

Vr i )

where

a ij

ci,

aiJ - ai

a bid-"
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where

ai,1, =a,1-

irn - ) * (, '1) dss 2

1 < j < N+M

1 < j < N+M

[A5b]

[A5c]

(A5d]

[5e]

[A5f]

s j-1

j)t(s, )dsji ],-

( s' N+M- 1
' 4- SN+M- I1

ai, NM+ =
SN+M

The expressions for b and ij are exactly the same as those

given for ai,j: , but wiri Vx*(s, i) and Vr*(s ,i), respectively,

appearing in place of Y* , i).

[A5a]

ai,1+ Sf

S.sj
r

= J
S.-'3

i, j-

i, j+

a i,N+M-

If

9N+M

SN+M-1

Ij+1

T* *(s ,i) da
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Thus, a main problem of the task of developing a practical method

of calculation consists of finding usable expressions for these influence

coefficients.

DETERMINATION OF THE INFLUENCE COEFFICIENTS

The influence coefficient ai,j gives the value of the stream function

at the point s = i due to the pulse function yj(s), in the special case

Yj = 1. (Similarly bi j gives the value of the axial velocity component,

and ci j gives the value of the radial velocity component at this point

due to this pulse.) In the great majority of instances, when j is equal

to neither unity nor N+M, and i is outside the range of yj(s) (i.e., i $ j,

and i / j-l), the influence coefficients can be determined by straight-

forward numerical integration of Equations [AS], it being necessary only to

establish suitable rules to assure efficient and accurate performance of

the numerical integration by the computer. In each remaining instance,

however, the definite integral defining the influence coefficient is improper

for one or more reasons, and special care is necessary... The various con-

tingencies which arise are grouped in five separate cases, in the following

discussion.

CASE I. si WITHIN TRIANGULAR PULSE -- The point denoted i falls

within the ranges of the pulse yi(s) and Yl+l(S).

8- a

/ .r il

sl il i

r

- II I "'r"' r I II I
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\ -/

1 = 0

a
r1

s
2

The flow in the neighborhood of the leading edge of the shroud is quite

similar to that in the neighborhood of the leading edge of a this airfoil

at incidence. Just as in the problem of the thin airfoil, as treated by

Glauert (Reference 4), it is necessary to take careful account of the fact

that the point 1, even though situated at the leading edge, is nevertheless

to be considered an interior point of the shroud contour. This is facili-

tated by writing:

a1,2- 9 y*( - e) da

bl,+ = i1,1+ ~

(A9]

ax
0'1 O

etc.

__ II_ __ ___ _~___~___II

al + r" lira I T* (cy- ) doy
- a _
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Now, if series expansions of the influence functions (see Appendix B)

are substituted into these integrals, it is found. that the resulting

terms are readily evaluated, except for terms which lead to integrals

of the form

o - (a- e)

With the aid of formulas given by Pierce (Reference 18), this integral

is evaluated as follows:

Let y = O/e ; then

a (a- e) f~ (a-c)
1

dy

(y- 1),,/y' o

dy

(l-y)Af-

But
1

S dy
0 (1- y) /7y - (y 1ry

Thus

-- 2 icr
~JI~da-f J'

dy =

(y- l)~-, /

+ .1) +

loge I +

i-5

Whence

= -2

i I I I I I __.., --r-cc.,

,

0
a

elim e

e-* 0-e
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The final results are:

al, 1+ r loge
8[.2

160 Sjfl,

+ 4 a + 81ina

sin c) a

.. •.

+ 640057

a112- = '1 loge

71
Bin2 )a 3

sin ca) a(( 7 an

1
floge

- [6 sin a -

3(1
9*pa .. ('-sin
2 \12

Ssinac, + / +( 1i sin3

- sin -
160 50

1
T~~

Iloge

sin a +
123 )
6400'&

+ sina -

..]I [AlOc]

3 364

sin c)+ [2 sin a+ sinac + . a in'a -

+ sinu a - in 3 3+ ..

[AlOa]

F3 256
25F) zi .11 [AlOb

9 ) 3

320/

I am

8 a in a ) aU

1,2-

9 ) 3320a

sin a Sa8

a + 80 na

S 2sin
S12

[AlOd]
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Cl,1+ = 1 cos a loge  
1  0 in a 5 + • •

1 8 1-2

C 1  = cos a log - sin a ) + . .

121 L4 (176-032[6- (I sin a) )a - 12 si + a3 c 213 3 [Alf]+ (1 sina 3200 a) + . . Af]

It will be found that these expressions (with only the given leading

terms of the infinite series) provide sufficiently accurate approximations

for our purpose, if 8 does not exceed 0.2.

CASE III. i OUTSIDE TRIANGULAR PULSE -- In this case, the integrals

appearing in Equations (A5] are proper, and can be evaluated conveniently

by numerical integration.

Simpson's rule (Reference 19) is particularly well suited for numerical

integration by electronic digital computers because of its simplicity and

the resultigll be flexibility with which it may be applied. This rule may be

expressed our purpose, if does not excee+2h

CASE .OUTSIn(y)dy TR . fn(GU) + fn(-Int+h) +fn(e, t+ 2h)

Y1 --

~22U2V1mm 7 7LJ2J22
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The approximate equality becomes exact if the fourth derivative of the

integrand is zero over the interval of integration. Moreover, so long as

the fourth derivative is finite, the fractional error incurred by applying

the rule can be made as small as desired, by confining application to

sufficiently small intervals, 2h. Thus, an integration over a given in-

terval is split into integrations over an appropriate number of "subin-

tervals" as follows:

Yk k- i+l = y + 2hi

f fn(y) dy { fn(y) dy [All]

Yl i Yi

k-1

k- [fn(yi) + 4 fn(yi + hi) + fn(yi + 2hi)]
i=l

where each subinterval, 2hi, is to be chosen sufficiently small to assure

the desired degree of accuracy.

In the present case, the integrands which are involved in Equations

[A5] are well-behaved functions except for singularities of the influence

functions situated at the point denoted 'i. The most unfavorable circum-

stance (since we have excluded those cases in which the point si is

encountered in the interval of integration) occurs when si is collinear

with, and near one end of the line segment along which the integration

is performed, and the integrand has a simple pole at s = si. (The nature

of the singularities of the influence functions is most readily apparent

.. ..... ! , ] i~ J i I I I , .l !, I l! .. . - .. . ....... ' ' ' ' .. .. .[ i .i i i , " '. ... : " i ' ' " ' ' . .. ' .. .



-76-

in the series expansions, Appendix B.) Therefore, we consider the

integral

y + 2h2h

f dy = loge ( + -- (Exactly)

yi

i 1 4 1
3 y + hi + i + 2hi (By Simpson's rule)

The fractional error is

-1 -1
2yi 1 2  hi 1  2h \ 1

h 6 3 y, 61l ge + + -- )

S 2Yi

2h

The fractional error is seen to be a function of -- , the ratio of the
Yj

length of the subinterval to the distance between the nearer end 
of the

subinterval and the location of the pole of the integrand. Some values

of e are given in the following table:

'2hi Fractional

Yj Error, e

0.2 0.000018

0.4 0.000113

0.6 0.000409

0.8 0.000970

1.0 0.001865

2.0 0.011379

111 11 I - ------n~- --i---~,.---,-nCPr*-~ ------ --- - - II I II
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For the present case, it is chosen to evaluate Equations [A5] by

Simpson's rule, in the form given by Equation [All], with the subin-

tervals 2hi chosen to be of equal width within each particular interval.

Thus

Yk Yl

i k - I

It is further chosen to select the number of subintervals, k-1, as the

smallest (non-zero) integer satisfying the condition

2h = 1/2 d
i min

where dmin is the distance from the point i to the nearest end of the
l ine segment over wic the integration i

line segment over which the integration is performed.

Si\
d

Si min 4~ii *=...

j+l

jpr

Finally, it is chosen to select the spacing of the points sa, so that

none of the pgints 7i shall fall closer to any point of any other line

segment (that is, other than the line segment containing li) than 0.7

times its distance from the nearest end of that other line segment.

L,

Now
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(Application of the procedure described above involves accurate

a a a
numerical evaluation of the influence functions y , V ,and Vr at

discrete points along the path of integration. The method employed for

this purpose is described in Appendix D.)

CASE IV. si OUTSIDE SINGULAR PULSE -- In this case, the singular-

ities of the influence functions are located outside the interval of

-1/2
integration; but the singularity of yl(s), of order s , is located at

one end of the interval.

/'I

1

82 2
r 3 s+

X

Since the point i is in general not collinear with the line segment over

which integration is performed, and may be either close to or distant from

this segment, it is not practical to expand the integrands in series.

Numerical evaluation is practical, however, by the following device:

Consider, for example, the influence coefficient

82

2,1+ V , i2) ds

As an approximation, this can be written

r* ( ) 2)da + I 2  d

a 82
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where the error arices from neglecting any fractional change in Vr*(,'~2)

over the interval 0 < s < Ds2 . This error can be made as small as desired

by choosing the coefficient p sufficiently small. The first integral can

then be evaluated analytically, and the second can be evaluated numerically,

by Simpson's rule, after splitting it into appropriate subintervals. (In

an instance in which V *(s, 2 ) is dominated by a singular term of order

-2 - S)-1, the fractional error in the first integral will 
not exceed that

of the approximation

S(s- - s)(l + s) d (s - s) ds

o o

It is chosen to take p = 0.01. Then this approximation becomes

0.20061634 - 0.19995

Thus, the fractional error in the evaluation of the first integral would

be of the order 0.003; and the contribution of this error to the total

fractional error in the evaluation of c2,1+ would be acceptably sGmll.)

With regard to application of Simpson's rule to the second iltegral,

the permissible width, 2hi , of the ith subinterval of the second integral

is related to the closest distance from this subinterval to any singular-

ity of the integrand. If the width of the subinterval is taken equal to

its closest distance from sl (the site of a singularity of order s-1
/2 )

then, to the approximation that the integrand is dominated by this singu-

larity, the fractional error in evaluating the integral over this aubinter-

val is
Y 1 4 1

el6 I - 1 0.0005

dy
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Taking B = 0.01 in the first integral, the width of the first subinter-

val of the second integral can be 2hl = 0.01 82 . It is convenient to

progressively increase the width of successive subintervals, so that the

number required is not excessive. These considerations are applied in

the following choice of a formal procedure for calculation of the influence

coefficients, in the case at hand:

ai,+ = 0.19995 I*(o, I)s2 + f hk -2 Yk) (Yk. i)
k=l

+2 yk + h k si

S - *(Yk + hk

4 J 2 

( 2 h Yk + 2hk *(yk + 2h -i) )A12]

where

h1 0.00495 s2

hk 2 k'h , 2 k 6

h7  = 0.18315 82

Yl ' 0.01 82

Yk Yk-1 + 2hkk-1 2 k ! 7

The coefficients b and ci,l+ are given by exactly similar expressions,

in which V * and V *, respectively, appear in place of I*.
x r

CASE V. 3 OUTSIDE SEMI-INFINITE PULSE -- In this case, the integrals

-ppearing in Equations [A5] are improper because the upper limit of inte-

gration extends to infinity; that is,
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ai,N+M+ S *(s,a i ) da
sN+M

bi,N++ = V x*(s, i) ds
SN+M

isN+ M+ Vr (s )ds
sN+M

The series expansions of the influence coefficients used in the preceding

cases, are useful only over intervals collinear with the point 1i ' and

not extending too far from this point. Alternative (asymptotic) expansions,

valid at points sufficiently far removed from the point ii, are possible

and are developed in Appendix C. Thus it is possible to evaluate a portion

of any of the above integrals by numerical integration, from aN+M to a

point s', sufficiently far removed from i to assure validity of the asymp-

totic expansions; and to evaluate the remaining portion, from s' to

infinity, by analytic term-by-term integration.

In the course of developing this procedure, however, and attempting

to test its accuracy, it was discovered that a purely numerical procedure,

much better adapted to automatic computing, is feasible. This consists of

dividing each integral into an infinite number of subintervals, so that

the successive subintervals increase in width in geometric progression.

With appropriate choice of the width of the first subinterval, and of the

ratio between the widths of successive subintervals, Simpson's rule can be

successfully applied, so that the infinite integration is approximated by

an infinite summation of algebraic terms.

I '1
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The actual procedure to be followed is chosen as follows:

k

ai,N +M+ h i + 4 Y*Yk + hk, li)+ T*(y + 2 hk, 'i)
k=l1

where

k-i

hk  (1.5)k- 1 h1

Yl = SN+M

Yk = Yk- + 2hk-1

and where the kf th term of the summation is the first term encountered

which is smaller than 0.000001.

The coefficients bi,N+M+ and c1 ,+M+I are evaluated by the same procedure,

replacing Y* by V x*, and V r*, respectively.

(Still another possibility for the handling of this case was considered;

namely, replacing the semi-infinite uniform vortex cylinder, by its "equiva-

lent" uniform sink disc, as discussed by Kichemann and Weber (Reference 3).

In principle, this would be the best approach, because only proper definite

integrals would be involved. However, this approach was rejected because

it would have required an additional computer subprogram to evaluate the in-

fluence functions for ring sinks.)

AC' JRACY CHECKS

Before attempting calculations of slipstream contraction, preliminary

cilculations were undertaken to uncover any significant errors in the
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influence coefficients given by the procedures prescribed in each of the

five cases. First, a procedure for numerical evaluation of the influence

functions was developed and checked, as described in Appendix D. The

numerical integration procedure prescribed for Case III was checked by

applying the procedure exactly as prescribed; then applying it again, but

taking five times as many subintervals; then comparing the two results.

Precisely the same technique was used to check the numerical integration

procedures prescribed for Cases IV and V.

The analytical formulas given for Cases I and II were checked by

first applying the formulas over a certain interval; then dividing that

interval into subintervals, applying the formulas over the singular sub-

interval, and integrating numerically over the other subintervals; then,

comparing the two results.

No discrepancies larger than a few tenths of one percent were en-

countered in any of these checks. (Checks of the formulas given for

Cases I and II were confined to cone-frustum segments for which the segment

length was, at most, two-tenths of the radius at the segment midpoint.

The accuracy of these formulas would, of course, deteriorate, if the

segment length were increased very much.)

In addition, qualitative checks were made in all five cases by means

of hand calculations using the tabulated properties of ring vortices, and

certain special ring-vortex distributions, given in References 3 and 5.

The results of these checks were also quite satisfactory. (Precise checks

by this technique were not attempted, because the tables themselves are

not very accurate. The object of these checks was merely to preclude the

possibility of major errors.)
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It was concluded that the procedures prescribed for calculation of

the influence coefficients in each of these five cases were satisfactory.

RtSUNI OF THE CALCULATION PROCEDURE

It is desirable, at this point, to give a concise, step-by-step

summary of the procedure which was employed in the calculations.

The exact problem involves finding the shape of the slipstream of a

shrouded impulne disc with a thin shroud of given shape and size. In

principle, the flow field can be exactly represented by a distribution of

ring-vortex singularities on the shroud and slipstream surface, in which

case a solution of Equations [AI] and [A2] would constitute an exact solu-

tion of the exact problem.

It has been assumed that the exact problem can be replaced by an "approx-

imate problem" in which the flow field is represented by a continuous distri-

bution (of a certain restricted functional type) of singularities on a

continuous surface composed of N+M cone-frustum segments (the first N of

which approximate the shape of the shroud, and the N+Mth of which is a

semi-infinite circular cylinder); and, further, that an exact solution of

this approximate problem would afford an approximate solution of the exact

problem. It follows that an approximate solution of this approximate

problem will also afford an approximate solution of the exact prol'lem.

The governing equations of the approximate problem (analogous to

Equations [Al] and [A2] for the exact problem) are:

N-1 N+M

= z +YJ N J ai F j w"o 1 i N+Mi-l [A1]
j= JN

II__ II II III I I I II r
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V (i,) 2 = V(sNJ\ 2 ) , N+1 i N--l CA2']

where

SVx s) +  Vr ]

Vx (si) = I bi,j
j=1

N+M
Vr Ci U= CjjYj

Let us assume that a shroud shape has been given; that a set of points

(xi , r) , 1 < i < N+l, defining a continuous system of cone-frustum

segments which approximates the given shape has been selected; and further

that a continuatuon of this set (x i , ri) , N+2 ! i : N+M, representing

a first estimate of the slipstream shape, and a set of numbers (Fi) ,

N+1 < i < N+M, representing a first estimate of the slipstream relative

vortex distribution, have been selected. One can then proceed as follows:

1. Calculate the coordinates s i of the points (xi, ri), using the

relations:

s fi 0

s +

= s-1 + (xi  xi1 )  + (ri - ri

2. Calculate the influence coefficients ai,j b j and ci, for the

values 1 r i < N+M-l and 1 j K N+M by the procedures specified in the

immediately peceding sections.
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3. From Equation [Al] , for 1 < i < N, from a set of N si1Iultaneon,

linear algebraic equations in the N unknowns, y , for 1 < j s N; and solve

for these values of 1'j. (In the actual calculations subsequently described,

this solution of simultaneous equations was performed by a standard sub-

routine (Reference 20) of the automatic computing facility employed.)

Tabulate the remaining members of the set j, using the relation

YJ F JN , N+1 : j N+M

4. Using Equations [Al'] and [A2'], tabulate the quantities

i)
N ) i < N+M-l

(If these were uniform sets, then the most recently specified sets of

values of xi, ri, and lwould constitute an exact solution of Equations

[Al'] and [A2'].)

5a. Replace the most recent estimate of the slipstream relative

vortex distribution with the following new estimate:

.G N .+1 a GN+2 N+1 l i2 N+MF Gi ' I N+2- sN+ G

where
s i+ - i-1

)G V( a ( i , N+1 i N+M- 1
1 N tf ii d i-1 1

G' GN+M N+M-I
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5b. Replace the most recent estimate of the slipstream shape with

the following new estimate:

ri ri i - 0.06 tanh 0.09 N+2 : N+M-1

N+M rN+M-1

x = xi i

where

Si+1 i-1

5c. Return to Step 1 and begin a new cycle of calculation.

(Note: In regard to step 5b, it was originally planned to perform

the r-adjustment by means of the simpler and more natural formula r = riQi.

It was found, however, that the values of Qi tended to oscillate around

unity on successive cycles of calculation, converging toward unity rather

slowly, if at all, after the first two or three cycles. The more artificial

formula given for Step 5b makes essentially the same r-adjustment as the

simpler formula when Qi differs substantially from unity, but "damps out"

the small adjustments which would otherwise retard final convergence. While

the given formula was quite satisfactory for purposes of the limited series

of calculations undertaken for this dissertation, further improvement

_ _ __ 1__1___~ I_ ~__ I ~~ __ _ _~__~ ___~_r_ _~~~_~_~_~ __~ _ I
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in the rate of convergence could undoubtedly be achieved by systematic

modification of this formula.)

This five-step cycle of calculations is to be repeated until the

two sets of quantities calculated at Step 4

( (Si) i)

both approach uniformity, indicating that an exact solution of Equations

[Al'] and [A2'] is being approached. When it becomes apparent to what

uniform value yV this set y(i )V(,i)is converging, to within the required

accuracy, the calculations can be terminated. (Strictly speaking, of

course, even if the iteration process were continued without limit, and

if the sets under discussion became absolutely stationary, they would still

not be absolutely uniform, because the successive adjustments at Step 5

are based on linear interpolation between conditions at adjacent points

Ii and si-l' rather than on conditions at individual points .. The

remarks of this paragraph, and the next, are thus to be interpreted in a

practical sense, not in a rigorous mathematical sense.)

The estimate of the final uniform value yV of this set is then taken

as an approximation to the uniform value of y(S) V(S), S > St.e. , which

would be found from an exact solution of the exact problem.

The required estimate of the slipstream contraction ratio follows

from this estimate of yV, as follows: It is shown in Reference 3 that:

If-
S 00a
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then

V(S) - r y(S)

Y(s) - y(S) CR(S)]

Thus the slipstream contraction ratio is given by

0 "T

The five-step calculating procedure itself has been completely speci-

fied, in a form suitable for direct translation into a digital computer

program.

The steps preceding initiation of the calculation procedure (that is,

the selection of the number and location of points to represent the shroud

shape and first estimate of the slipstream shape and relative vortex dis-

tribution) remain largely a matter of personal judgment. One arbitrary

rule has been introduced in the interest of simplifying the calculation

procedure:

a. No segment midpoint should fall closer to any point of any other

segment than 0.7 times its distance from the nearest end of that other

segment.

Beyond this, it has been pointed out that:

b. The accuracy of calculation of the influence coefficients may

deteriorate if the length of a segment (other than the N+Mth) exceeds,

say, twenty percent of the distance i of its midpoint from the axis of

symmetry.

1 __
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c. The efficiency of the calculation procedure *is impaired (that

is, it will take longer to complete the calculations) if the lengths of

adjacent segments (other than the N+Mth) are not of the same order of

magnitude.

Beyond this are still less precisely defined considerations, such as:-

d. The accuracy of the final result will presumably improve as the

number of segments is increased.

e. The lengths of the segments should presumably be relatively

shorter in regions where the vortex density, y(s), and/or the slope of

the stream surface T are expected to change rapidly. The neighborhoods

of the leading and trailing edges, and of points of rapid curvature of

the shroud, are presumably such regions.

The decision on when to terminate the calculations also remains

largely a matter of personal judgment. Only a general description has

been given of how one should decide whether or not the iteration process

has proceeded far enough.

It is possible that experience gained through long usage of this

method of calculation might eventually lead to the formulation of further

specific rules to diminish or remove these elements of personal judgment.

The preceding discussion was limited to the static case. However,

the extension to the case of finite free-stream velocities is quite trivial

Equation [Al'] gives the stream function as the sum of the contributions

of N+M vortex distribution pulses; one adds to these the contribution

1 U of the free stream. Similarly, Equation [A2'] gives the axial
S icomponent s the sum of N terms, to which one simply adds U.

'vlocity component as the sum of N+M terms, to which one simply adds U.

I I I II '__ I I I I a
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The only other modification required is in the formula

rN

which was used to estimate the slipstream contraction ratio in the static

case. With U not zero this becomes

2N "
oJaq~y

3
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APPENDIX B

SERIE.S EXPANS3ION OF THE INFLUENCE FUNCTIONS

FOR A NE:ARBY RING VORTEX

The influence functions for an isolated vortex ring of strength 2 Tr,

as given by Kfichemann and Weber (Referqnce 3), can be written

Y*(x,x,r,r) = ji - K(k) - E(k)

V *(x,,r,r) (x + r) K(k)

V *(x,R,r,i) P - x K(k)rI j(x-) 2 + ( + r) 2 [
- L + (x x) r - r) E (k

where

J(x -')
2 + ( +r)2

and K(k) and E(k) are the complete elliptic integrals of the first and

second kinds, as defined and tabulated by Jahnke and Emde (Reference 21),

for example.

It is convenient to define the variables a and a as follows (see

the sketch):

cr r 

- sin (r -
or
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F= 2""

The influence functions are rewritten as follows:

21 1 +a (sin a + a/4) 1 - K(k)2)

V *a) (k) + sin a
Vx 2-/1 l+a(sin a + a4)l a

- E(k)]

+ sina - Cos a) E(k)]

+ 2sin a + )E(k

where

S =1- l+o(sin a+4) = 1- k'2

Y*(a, a) =

>B2
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It is desired to expand these functions into infinite series, valid-

for small values of 0. Appropriate expansions of the elliptic integrals,

as given by Curtis and Sparks (Reference 22), can be written:

K(k) = loge ()a + .2 2 k + .4Ank'6

.r- 2 k 2)k'+( +( +  1k + + 2 + )k .

+ e 2 )6

[k (i..12 + (1_ 2- 2 k 4 + k. ,6 ...

. - D Z-1 k72 2 + k 4 + + + 5-6

Substituting these expressions into Equations [B2], suitable series expansions

of the remaining factors which appear are readily obtained with the aid of

formulas given by Pierce (Reference 18) as follows:

k 2  " [1 - (sin ) a + (8a C - 1 - (ain a - 2 sin o a

+ - 64sin u g ( + - ainse a ) in + a in a) + .

loge -  loge s+ - a

( sino - 1 sao + I .sin ) +...]
(5~ 4 16
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41 + a (sin + a4) 1 + (1sin a - ( sina -1)o +(sinea -( sin a) +

S1-(_- i )o + (I a - a -( - i o)in ~ +.

/ + o(sin a + a14)

,The desired expansions of the influence functions can then be obtained

by a straightforward process of multiplying together the expansions of

the various factors, as indicated by Equations [A2], and collecting

terms in like powers of a. The results are:

1*(,l) r l log e  [ + sin a - in - 3 )p +( sin - a a 1
- [2+ sin )o- a -ina + <sin- 1 )Os+7ai + a in

~r1 0 lo r11 -(1 9in C, )a +(1 ai? C- 3 Op+
*(,a) 212 L e a2I 4 4L / ° 

" 16

+ (2 sin )-o0 Sina i- n +) o + 16 + .,,- ,+ +. .

V*k(to) - COL-01 1log 64r .( sina),? .+

+ sin n~a - ) + sinaa - si sn + +
16 

/8 16

We are not concerned with investigating the conditions for convergence

of these series, because we will be using only the given leading terms, as

approximations. The limitations necessary to assure accuracy of the approxi-

mations, for our purposes, are discussed elsewhere.

1i I~~~ JiJ 1 IM~,-- *.~IIII

[B3]
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APPENDIX C

SERIES EXPANSION OF THE INFLUENCE FUNCTIONS

FOR A DISTANT RING VORTEX

For the problem of evaluating the stream function and velocity

components induced at a point by a uniform distribution of ring vortices

on a semi-infinite cylinder, it is convenient to have series expansions

of the influence functions for an isolated ring vortex (Appendix B, Equa-

tions (Blwhich are valid at points sufficiently far removed from the

ring vortex in question. It is necessary to consider only expansions of

the TY and V * functions, since there is a convenient exact solution which

may be used to find the radial velocity induced by a semi-infinite uniform

vortex cylinder; namely,

where

k 2 r

(x- 1) 2 + (r + r)2

and (x, r) are the coordinates of a point on the leading edge of the semi-

infinite cylinder, and Cx, ) are the coordinates of the point where the

radial velocity is measured. This formula is given by Reference 213, but

with an error, presumably typographical.

Introducing the notation:

a = 4r-

b+r

Ax x - I

IIII r......... ."
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Equations [BI] can be written

VY*(Ax) = 4 [
k m ) K(k) - E(k

1
V *() = xx ,(Ax)2 + b

K(k) -( 1 +

> [Cl]
c(b - c) . E k
(Ax)2 + c2 E(k)

where
a 1

(Ax)2 1 + (

Appropriate series expansions of the complete elliptic integrals

are given by Pierce (Reference 18) as follows:

K(k) = [ + () + 2

E(k) = [1 - ka - (13k4

2.46/ k s

1-.5 a 046) 5

With the further expansions

k = a [ 1 -~ d  +

(Ax)l- I (Ax)-3 +

(T)'- (b)e + ]

3b4  - 5b -7
b (Ax)5- " (Ax)7 +8 16

(c)
\Ax) ' *I( [ Ax- (Ax)/

one is again in position, simply by multiplying together the various

factors and collecting like terms, to obtain the results?

1

(Ax)T+b

c(b - c)
(Ax)2 + c

c I '' "''

+( c4
\Ax



Y*(Ax) =

V x*(Ax)

F 1x
, a ,- .. fA 3  /3a2b A 3 (A ) 5  +

+ ca - bc) b3 ab 
C2 (x)

S)4 - 16 4 (Ax)-5 +

The given leading terms of these series will provide an adequate approxi-

mation when Ax is sufficiently large. When r and I are roughly equal (as

is always the case in the present investigation), an approximation within

about one percent is afforded by the given leading terms, provided Ax/b > 4.

The fractional error tends to zero when Ax/b increases without limit.

I

I.

:'

I I I I I II I ' II

a
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APPENDIX D

4 NUMERICAL EVALUATION OF THE INFLUENCE FUNCTIONS

In those cases in which an influence coefficient was determined by

a numerical integration along a definite path, it was necessary to obtain

numerical values of the influence functions (j*, Vx*, and Vr*) at discrete

points along this path. This was done by direct application of the

formulas given in Appendix B, Equatiom [BI]. Values of the complete

elliptic integrals appearing in those formulas were obtained as follows:

I. The squared modulus of the elliptic integrals was calculated:

ka = 4r = 1 - k a
(x-Z)a2 + (F+r)a

2a. If k & , the following series expansions given by Pierce

(Reference 18) were applied:

K(k) = R 1 + 1-3*5. (2n-l) k2n
2 2-46 . . (2n)

E(k) = - ( 1"3"5* " (2n-l) k 2 n
2 L= 2"4"6* - (2n) / 2n-1

The summations were terminated at a value of n for which neither summand

was greater than 10".

2b. If k > , the following series expansions given by Curtis and

Sparks (Reference 22) were applied:

K(k) = loge  16 + 1.3.5. (2n-1) k
2 n 2-4.6- . (2n) I J

1"3.5 * (2n-1)) 12 + 2 2n
n=1 24.6. (2n) 12 34 (n-1)(2- ) k2n

L
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1 16 3-5 . * (2n-3 2n-1 k,2n
E(k) log '2 2-4*6* . (2n-2) kI +

1*3-5* - *(2n-3) 2n-1 2 + . . +
n=1 246* (2n-2) 2n 1.2 3.4

2 + I k2
(2n-3)(2n-2) (2n-l)(2n)

The summations were terminated at a value of n for which none of the

four summands was greater than 10-7 .

Values of the complete elliptic integrals computed in this manner

were found to agree, to five significant figures, with the values given

by Dwight's "Mathematical Tables," over a range of values of the squared

modulus, 0 < k < 0.9999998.

(Note: The series given in paragraphs 2a and 2b are equivalent to

those given in Appendix B and Appendix C, respectively.)
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APPENDIX E

DERIVATION OF THE STREAM FUNCTION FOR AN ISOLATED VORTEX RING

The following derivation is adapted from one given by Lamb,

Reference 6. Lamb's derivation was imtermingled with a more general

discussion of vortex motion. For this reason it was felt that a

concise review of the essential steps might be helpful.

Consider the motion of a fluid of infinite extent due to a vortex

tube of uniform vorticity, in the form of a torus centered on the

x-axis. Let us seek to express the vea1ocity at any point as the curl

of a vector function S(x,y,z)

Continuity will be satisfied,, since 7- 7.(7 x S) 0= , by definition.

Taking the curl of both sides of this equation

7 X1 = 7 X (7 x S )

= 7(7*) - s

Since only the curl of S has significance, we may add to, or subtract

from S any irrotational vector functie we please. In particular, we

may arrange that 7-S = a constant, andi so write

- 7 X V

In the present case, we will have ? = 0, except within the torus,

where ?S- will be at every point a vector of constant magnitude, and in

the direction normal to the x-axis, aam the radius, and forming a right-

hnd set with them. An analogous prcdlem occurs in the Newtonian

potential theory, where the scalar equation

7 . -
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applies at points occupied by matter of density K, and 7" '.0

elsewhere. It is well known that a solution is

(C,9,i) = J 1L(xz) dx dy dz

where p is the distance between the points (R, Y, i) and (x, y, z),

and the integral is taken over all space occupied by matter. By analogy,

we have a solution

= X X dx dy dz

where the integral is taken over the volume of the torus. If we let

the cross-sectional area of the torus tend to zero, while keeping the

product of the area and the curl equal to a constant, say r , we have

S(~, 2T (x,r,e) r dg
0 P

The vector function S is related to the scalar function ' as explained

below.

We have, by Stokes' theorem

A * (7 x A 5 5f dA
A A A

The right hand member is the flux across the area A. Choosing A to be

the plane area enclosed by the circle (x, 7), we have

S" * = 2T u y dy 2 n T (R, )

A o

since, by definition,
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o
0

ux,y) y dy

(See Equations [I'].)

p

7

6

It is evident from symmetry that, since r is a vector of constant

magnitude tangential to the circle (x,r), so, along a particular circle

R,r), S will be of constant magnitude and tangential to this circle,

in the same sense as r . Hence, from the last equation

2n 'Cx-,F) = 2Tr- r S

2w
r cos e de'

Tr I p

Hence
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where

r i n
e'= e-

p " [(x-x) 2 + (r os c ' - )a + (r sin e')a

Rearranging terms we obtain Equation 151 of the main text:

where

nT/2_

K(k) = f - sin a
o

n/2

E (k) = f 1 - 2 s in? a da

k =.. 4r

(x-,) 2 + (r+~)2

That is, K(k) and E(k) are the complete elliptic integrals, of the

first and second kinds.

The Equation [5] was derived from a velocity. field which is con-

tinuous and irrotational, except on tb- circle (x,r), and hence is

necessarily a solution of Equation 12 -

~ C I I ij
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Table 1 - Data From a Tenty-Iterative-4ycle Calculation for a Cylindrical

Shroud. ,a= 0.2, f N = 1.0, 3 =B 24, M = 41, U = 0

(a) Input Data

xi

0000000000
0.00500000
0001000000
0*02000000
0.03000000
0,04000000
0.05000000
006000000
0.0700000
0.08000000
0.09000000,
0.10000000
0.11000000
0*120t0000
0.13000000
0*1400000
0.1500000
0.16000000
0.1700000

0.18000000
0.19000000
0*19500000
0.19750000
0.19937500
0920062500
0*20250000
0.20500000
0.210n0000
0.22000000
0*23000000
0,24000000
0.26000000-
0.2800000
0.'30000000
0.32000000
0.34 000
0.36000000
0.40000000
0,45000000
0.50000000
0.60000000
0.70000000
Oe000000
0*90000000
1.0000000
115000000
1.30000000
1.45000000
1.6000000
1.75000000

1.90000000
2.05000000
2,20000000

2.50000000
2.65000000

2.8000000
2*95000000
3.10000000
3.2500000
3.40000000
35500000
3.7000000
3.850 0000
4.00000000

1,0000nOEdo(
1.00000000
£ 00000000"

.0^000000"
1.0000000e
1.000000o

1.000000M
1080000am
I00000000M

I .00000000"

1,0#00000-
1 .000000W
1.000nOOmOe
1600n00000
1 O OUloorloS1.00000040.

1.00600000
10000000@,

1.0r0000wlOnOOnam
.00000000

1*Or)OOOMaO

1.0000000.
1 ,0000000s1*0)000000.

.000000"1.0000000.I*00100ft0oae
1.000000"I600000040

1.00000000
1.0000000I
10000000"
1.00000000
1*0006000600"

100000000"0

1.00000000"
100000000n

1.0000000W0
I00000009

1.0000000.
l090000nam"I600000th1.0000000.
1 000060M.

1.000000ce

1 .0800000 ,16000000w0.
1 0000000,
1.00060000aI 0000040WIoOfOOIor

I 60000000i

I .000ootm
I q OMOOM",01

1*00000000
1000000000
1.00000000.
1.00000000
100000000

OOOO000000
-100000000
l 0000000
1.00000000
1.00000000
1.00000000
1.00000000
1*00000000
1*00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1*0000000
1*00000000
1.00000000
1.00000000
1*00000000
1*00000000
1000000000
1.00000000
1.00006000
1.00000000
1.00000000
1.00000000

1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

100000000

1*00000000
1.00000000
1600000000
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Table 1 (Continued)
(c) Second-Cycle Output

Sr Fii Y()V ) Y(i i)
1 1.269428 1.000000 0.500000
2 1.246234 1.000000 0.500000
3 0.869734 1*000000 00500000
4 0.631502 1000000 0.500000
5 0.530308 1.000000 0.5A0000
6 0o.49863 1.000000 0*500000
7 0.419596 1.000000 05060000
8 0.383804 r.000000 0*500000
9 0.359966 1.000000 0.50000
10 00339399 1.o000000 0500000
11 0.321057 1.000000 0*50000
12 0,308926 1;000000 0.500000
13 0.295141 1.000000 0.500000
14 0.285924 1.000000 0*500000
15 0.275365 1.000000 0.500000
16 0.268966 1.000000 0.500000
17 0.259780 1.000000 0.500000
18 0.252370 1.000000 0.500000
19 0.248639 1.000000 0.500000
20 0.239475 1.000000 0,500000
21 0.232638 1.000000 0.500000
22 0.232518 1.000000 0.500000
23 0.226330 1.000000 0.500000
24 0.222702 1000000 0. 0089219 0*500000
25 0.222479 1.000000 0.996423 0*089443 0*499991
26 0.222144 0.999968 0*991058 0.089939 0.500033
27 0.221685 0.999921 0.984923 0.090215 0.500086
28 0.220802 0.999807 0*977599 0*090622 0.500212
29 0.219179 0*999528 0*966793 0*090773 0.500454
30 0.217734 0.999187 0.958691 0.09^950 0.500761
31 0.216464 0.998800 0950679 0.091399 0.501266
32 0.214296 0.997939 0.936522 0*091722 0.502023
33 0.212477 0*997015 0*925474 0*091997 0.502798
34 0.210920 .Q996060 0*916032 0.092247 0.503577
35 0.209570 0.995084 0.907673 0.092487 0.504343
36 0.20835S 0.994104 0*900252 o0092684 0.505089
37 0.207252 0*993134 0*893734 0*092943 0.506130
38 0.205263 0.991231 0.882393 0.093227 0.507504
39 0.203034 0.9889A0 0*870235 0.093457 0.508760
40 0.201010 0.986838 0*859977 0.093638 0.510020
41 0.197337 0.983025 0*842722 0.093760 0.510662
42 0.194027 0.979713 0.828173 0*093728 0.510365
43 0.191041 0.976901 0.816297 0*093557 0.509353
44 0*188347 0.974530 0*006723 0*093279 0.507798
45 0.185934 0.972952 0*799416 0.092769 0.505482
46 0.12766 0.970160 0.791294 0.092111 0.502203
47 0.180051 0.968320 0.785350 0*091392 0.498743
48 0.177757 0*966923 0*781372 0.09662 0.495272
49 0.175761 00965871 0.778825 0.089945 0.491910
50 0.174067 0.965100 0.777333 0.089254 0.488728
51 0.172607 0.964548 0.776590 0.088603 0.485751
5? 0*171345. 0.964147 0.776336 0*088004 0.48299n
53 0.170250 0.963872 0.776430 0*087446 0.480450
54 0.169291 0.963710 0.776791 0.086930 0.478128
55 0.168451 0.963622 0.777316 0*086459 0.476013
56 0.167712 0.963582 0.777934 0.086028 0.474119
57 0.167058 0.963589 0.778590 0.085638 0.472369
58 0.166478 0.963624 0.779240 0*085287 0.470808
59 0.165963 0.963665 0*779849 0.084974 0.469414
60 0.165501 0.963714 0*780417 0.084688 0.468168
61 0.165085 0.963772 0*780924 0*084437 0.467070
62 0.164714 0.963812 0.7812b0 0.084228 0.466123
63 0.164377 0*963824 0.781353 0.084076 0.465316
64 0.164071 0.963786 0.781495 0.083955 0,464813
65 0.164071 0.963786 0.781495

__ I-Cl~t~-~~_~ ---___________r~c-.,-- c~,, :
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Table 1 (Cmtinued)
(d)- Third-Cyle Output

2
3
4
S5
6
7
8
'9

10
11
12
13
l14
15

17
18
19
20
21
22
23
24
25
26
27
28
29.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65

1*266501
1.254028
0.860192
0.634064
0.530733
0#456591
0,421703
0,301936
0.361582
09336685,
0,323336
0.308016
0.296127
0*286836
0.274256
0.273028
0*255299
0*258411
0.244207
0*246893
0.231124
0.238464
0.228856
0.228698
0,227880
0.226653
0.225250
0.223575
0.221103
0,219250
0.217418
0.214181
0.21L654
0.209494
0.207583
0,205885
0.204395
0.201801
0.199021
0*19667S
00192728
0.199401
0.18668
01084496
0.18282S
0.1A0967
0*179608
0.178698
0.178116
0.177774
0.177604
60177546
0,177568
0.177650
0*177770
0.177912
0.178062
0.178210
0.178350
0*178480
0.178596
0.178677
0.178694
0.178726
0.178726

Y(1i)V(Ei)
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.0000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1000000
1.000000
1.00000
1.000000
1.000000
1.000000
1,000000
1,000000
1.000000
1.000000
0.9999A9
0.999006
0.999A09
0.99954
0.999124
0.998688
0.997722
0.996676
0.995587
0.994480
0.993371
0*992270
0.990134
0.9876n8
0,985'79
0.981202
0.977791
0.974984
0.972664
0*970749
0.968445
0.966669
0.965284
0.964176
0.963287
0.962568
0.961461
0.961456
0.961036
6.960678
6.960364
0.960096
0.959865
0.959650
0.959460
0.959300
0.959147
0.958997
0.958824
0.958824

b996765
XM991913
0.9A4147
D~974979
r962748
.Co953087
£0943028
Th925195

C.911427
l.899716
n8B9446
r880332
JN872578
T859650
td345919
re835114
I318114
Tr~803883
X.3792570

UR783438
r&776226
o,767479

.760141
.,754204
.7492608
Zw745097
T*741498
i.738303
T4735444
1.732906
1.730620
1*.728528
,1726626

T.724891
1723292
T721832
r'720524
1T.719320
'.718118
T*716949
,.716949

0.5(0000o000
0.500000
0.500000
O.50000
0.50000
0.500000

S0.500000
0.500000
0.500000
0,500000
0.500000

0.500000
0.5000000.500000
0.500000
0.500000
0,500000
0.500000
0.500000O*S0000

0.50000
0.5000000.5000000.500000

0.500002
0.*99994
0.49997S
OeSO.500028
0.500114
0.500266
0.50047
0.500827
0.50121*
0,501636
0.502019
0.502419
0.503017
'0.503759
0.504486
0.505327
0.505868
0.505973
0.50574
0.505686
0.505461
0.505204
050508so
0.505147
0.505444
0.505892
0.506496
0.507191
0.5079~1
0.50880
0.509651
0.510526
0.511371
0.512189
0.51296
0.513678
0.514314
0.514873
0.515319
0.51570o

0.090103
0.089857
0.040137
0.090269
0.090466
0.090484
0.09f647
0*091084
0.091334
0,091585
0.091801
0.092004
0.092185
0.092367
0.092576
0.092764
0.092782
0.092838
0.092813
0.092773
0.092776
0.092809
0.092973
0.093184
0.093458
0.09q779
0.094128
0.094495
0,094874
0.095250
0.095615
0*095972
0.096314
0.096635
0*096935
0*097215
0.097468
0,097689
0.097876
0,098057
0*09P218
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Table I (Contiqued)
(e) Fourth-Cycle Output

i i ri Fi yi )V( t
1 1.271917 1.000000 0.50000
2 1.25605A t100000 0.5n000
3 0.868949 1.000000 0.500000
4 0o634431 1.000000 0.500000
5 0.531470 1.000000 0.500000
6 0.462507 1.000000 0.500000
7 0.42174R 1.000000 0.500000
8 0304453 1.000000 0.500000
9 0.362553 1.000000 0.500000
10 0.341738 1.000000 0.500000
11 0.323672 1.000000 0o500000
12 0.0310633 1.000000 0.500000
13 0,297019 1.000000 0.500000
14 0.290412 1.000000 0.500000
15 0.276336 1.000000 0.500000
16 0.273387 1.000000 0.560000
17 0.259625 1*000000 0.500000
18 0.261688 1.000000 0.50000
19 0.245839- 1.000000 0.50000
20 0.251166 1.000000 0.50000
21 0.233806 1.000000 0.500000
22 0.243518 1.000000 0.500000
23 0.229782 1.000000 0.500000
24 0.234386 1.000000 0.091112 0.500000
25 0.233629 1.000000 0*997240 0.090902 0.499994
26 0.232492 0.999973 0.993101 0.090981 0.499977
27 0.230672 0.999935 . 0.986846 0.090794 04449962
28 0.228523 0.999022 0*978536 0.090908 0*499963
29 0.225656 0*999518 0.965327 0.090864 0.499955
30 0.223392 0.999133 0.954610 0.090964 0.499990
31 0.221034 0.998690 0.943433 0.091263 00500002
32" 0.216854 0.997709 -0*924031 0*091296 0.500080
33 0.213627 0.996636 0.909034 0.091420 0.500163
34 0.210882 0.995518 0.896102 0.091523 0.500252
35 0.20947% 0.994380 0.884925 0.091603 0.500351
36 0.206339 0*993237 0.875097 0*091695 0.500459
37 0.204521 0.892101 0.866754 0.091766 0.500612
38 0.201491 0.989903 0.853150 0.091856 0.500809
39 0.148273 0.987312 0*839009 0.091935 0.500987
40 0.195740 0.984936 0.828282 0.091834 0.501160
41 0,191756 0.980847 0.812182 0.091777 0.501011
42 .188420 0.977533 O?799102 0.091611 0.500579
43 0.185769 0.974890 0.789167 0.091436 0.500003
44 0.18362A 0.972772 0.781378 0.091294 0.449327
45 0.181938 0.971082 0.775415 0.091092 0.498439
46 0.179888 00969144 0.768486 0.090891 0.497249
47 0.17816 0.0g67761 0.762973 0.090656 0.496015
48 0.176776 0.966778 0.758849 0.090430 0.4977S
49 0.175619 0.966066 0*755708 0.090206 0.493600
50 01974642 0.96557 0*753334 0.089979 0.492468
ST 0.173798 0.965205 0*751536 0.089754 0.491385
52 0.173049 0.9649~O 0.750150 0.089532 0.49035S
53 0.172379 0.964782 0.749097 0.089311 0.489383
54 n.171784 0.964682 0.748340 0.089091 0.4P8465
5 0.171248 0.964627 0.747779 0.088884 0*487604
56 0.170758 0.964600 0.747350 0.088683 0.486795
57 0.170312 0.9646n4 0*747052 0.088490 0.486036
58 0.164904 0.9646P4 0.746842 0.088308 0.485353
59 0*169531 0.964639 0.746672 0.088140 0*484726
60 0.169188 0.964660 0.746535 0.087984 0.484159
61 0.168882 0.964694 0.746439 0.087841 0.483637
62 0.168600 0.964715- 0*746321 0.087712 0.4A3184
.63 0.168314 0.964719 0.746040 0.087615 0.482772
ol 0,168044 0.964660 0*745738 0.087567 0.482555
65 n.168044 0.964660 09745738
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Table 1 (Continued)
(f) Fifth-Cycle Output

i - ri i  ( i)V i) Y ( i )
1 1.269060 1.000000 0.500000
2 1.263636 1*000000 0.500000
3 0.856072 1.000000 0.500000
4 0,643949 1.000000 0.500000
5 0.522249 1.000000 00500000
6 0.469546 1.000000 00500000
7 0.412426 1.000000 0.500000
8 0.392607 1.000000 0.500000
9 0.355942 1,00000C0 0.500000
10 0.344056 1 000000 0.500000
11 o*322808 1.000000- 0.500000
12 0.310298 1.00000 0.500000
13 0.297629 1i000000 0.500000
14 0.287643 1.000000 0.500000
15 0.278381 1.000000 0.500000
16 0,272739 1.000000 0.500000
17 0*260087 1.000000 0.500000
18 0.259569 1.000000 0.500000
19 0.247389 1.000000. 0.500000
20 249807 1.000000 0.500000
21 0.234390 1.000000 0.500000
22 0.241476 1.00000 0.500000
23 0.238547 1.000000 0.500000
24 1.234110 1.00000 0.091507 0.500000
25 0.233464 1.000000 0.998496 0.091229 0.500000
26 0*232494 0.999976 0.996239 0.091179 0.409982
27 0.231030 0.9999 45 0.991613 0.091047 0.499943
28 0.229085 0.999845 0.983635 0.091166 0.499901
29 0.225992 0.99955P 0.970279 0.091033 0499891
30 0.223483 0.999174 0*959335 o0391060 0*499862
31 0.220867 n.Q98792 0.9a7904 0.091243 0.499804
32 0.216324 0.99777R 0,928225 0.091154 0.499801
33 0.212814 0.996761 0.912886 0.091188 0.499807
34 0.209786 0.995582 0.899572 0.091209 049980%
35 0.207169 0.9944 0.888072 0.091228 0.499840
36 0.204860 0.993287 0.877886 0.091285 0.499857
37 0*202915 0.992142? 0.869197 0.091343 0.499923
38 0O109731 0.989909 0*855091 0.091392 0.500060
39 0.106420 0.9872&6 0.840415 0.091498 0.500221
40 0*193900 0.984836 0*829330 0.091469 0.500474
41 0.190140 0.980667 0.812872 0.091552 0.500631
42 0.187077 0.977316 0.799559 0.091536 0.500700
43 0.184751- 0.97466 0.789465 0.091535 0.50070S
44 0.182928 0.972544 0.781430 0*091577 0.500706
45 0.1R153? 0.970855 0.775108 0.091617 0.500694
46 0.179910 0.968920 0.767483 0.091725 0.500691
47 0.178619 0.067S40 0.761169 0.091812 0.500678
48 0*177654 0.96655j 0.756164 0.091918 0.500737
49 0,176919 0.965804. 0.752042 0.092042 0.500891
50 0.176363 0.965241 0.7o48590 0.092174 0.501074
51 0.17594P 0.964822 0745661 0.092314 0.501310
52 0.175617 0.464486 0.743115 0.09246Q 0.50158
53 0*175371 0.96423 0.740882 0.092609 0.501899
54 0.175190 0.964Q01 0.738933 0.092755 0.502234
55 0.175062 0.963685 0.737202 0.092901 0.502613
56 0.174962 0.96370M 0.735642 0.093042 0.502990
57 0.174892 0.963581 0.734245 0.093178 0.5033b0
58 0.174843. 0.963492 0.732977 0.093369 0.503721
59 0.174803 0.963392 0.731791 0.093437 0.504073
60 0,174771 09631 09633730724 0.093548 0.504419
61 0.174748 0.963230 0.729778 09093651 0.504733
62 0*174721 0.963t1 0.728902 0.093734 0.504993
63 0.174655 0.9630mt 0.728006 0.093820 0.505224
64 0.174584 0o962954 0*777081 0.093917 0.50544S
65 0.174584 0.46295* 0*727081
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Table 1 (Continued)
i4 (g) S4xth-Cycle Output

r iM( i)
1 1*271653 1l000000 0.500000
2 1.261810 1.000000 0.500000
3 0.860971 1.000000 0.500000
4 0.640558 1.000000 0.500000
5 00525443 1.000000 0.500000
6 0.466872 1.000000 0*500000
7 0.416131 100000000 0*500000
8 00389889 1.000000 0.500000
9 03598224 1*000000 0.500000

10 0.343261 10o00000 0.500000
11 0.322768 1.000000 0.500000
12 0.312304 1000000 00500000
13 00295905 -1.000000 0.500000
14 0.291081 1.000000 0*00000
15 0.276124 1.000000 0.500000
16 0.273313 1.000000 0.500000
17 0.262290 1.000000 0.500000
18 00258825 1.000000 0.500000
19 0.251251 .00000000 0.500000
20 0.244392 1.000000 0.500000
21 0.241633 1.0000 0*500000
22 0,233672 1.000000 0.500000
23 0.240628 1.000000 0.50000
24 0.234083 1.000000 0.091708 0.500000
25 0.233731 1.000000 0,498900 0.091607 0.500005
26 0.233203 0.999975 0.997250 0.091543 0.499999
27 0.232120 0.999944 0.994622 0.091253 0.500000
28 0.230252 0.999844 0.988657 00091324 0.499992
29 0.227126 0.999599 0.975544 0.091203 0*4999?t
30 0*224564 0.*999190 0*964492 0.091197 0*499933
31 0.221888 0.998769 0.953223 0.091321 0.409893
32 0.217282 0.997816 .0.933692 0.091213 0.499856
33 0.213691 0*9967%5 0.918148 0*091235 0.499818-
34 0.21057S 0.999648 0*904662 0.091226 0.499790
35 0.207883 0.994509 0.893055 0.091221 0.499782
36 0.209498 0.993361 0.882767 0.091247 0..49974
37 0.203465 0*992217 0.873951 0*091285 0.499772
38 0,200162 0.989981 0.859505 0.091313 0.409789
39 0.196727 0.98733 0.844450 0.091404 0.499795
.40 0.194132 0.984896 0.833128 0.091350 0.491859
41 0.*00280 0.980723 0*816602 0*091382 0.499794
42 0.187163 .977* 08 0.803495 0.091303 0.449637
43 0.184801 0*974817 0.793747 Q0091230 0.499409
4* 0.182920 0.972772 0.786100 0.091186 0.49916%
45 0.18144* 0.971161 0.780186 0.091096 0.498862
46 0.17965S 0.969366 0.773207 0.091030 0.498386

4 47 0.178177 0.968143 09767585 0.090923 0.49788s
48 0*177005 0.967320 0.763298 0.090824 0.497359
49 0.176040 0.966737 0.759880 0.090733 0.40687S
50 0.175232 0.966327 0.757150 0.090634 0.496415
51 o0174547 0.966056 0.754964 0.090538 0.40596
52 0.173951 0.9658 2 0.753171 0.090441 0.495539
53 0.173424 0.965735 0.751708 0.090344 0494513"
54 0.172972 0.965663 0.750518 0.090248 0.404739
55 6.172567 0.965617 0.749505 0.090161 0*49437S
56 0.172202 0.965586 0.748640 0.090074 0.494031
57 0.171871 0.965580 0.77944 0.08994 0.493717
58 0.171577 o.964587 0*747343 0.089904 0.493401
59 0.171300 o09659A 0.746781 0*089831 0*493133
60 0.171050 0.965583 0.746281 0.089763 00492865
61 0.170829 0.96591 0.745858 0.089697 0.492654
62 0.170624 0.96586 0.745475 0.089634 0.492464
63 0.170414 0.965574 0.74975 0.089596 0,402284
64 0.170198 0.965485 0.744420 0*089598 0.40221m
65 0.170198 0.965485 0*744420
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Table 1 (Continued)

(h) Seventh-Cycle Output

1

2
3
4

6
7

9

11
12
13

2021
16
17

19

20
21

23
24
25
26
27
20
29
30
31
33
33
30
35

37
38
39
40
41
42
43
44
45
46
47
48
49
5051o

A2
53
54
55
56
57
68
59

60
61
62
63
68.
'65

I 271061
1,254481
0.866262
0.665018
0.53035S4
0.461876
0,422413
0*3A2044
0.364705
0.339109
0.32460
0.308764
0.300068
6*284994
0.281494
0.264682t
0•265322
0.25362
0.*2522V
0.242353
6.240902
0.236942
1.232114
06.232609
0*232353
0.231969
0.231356
0*229970
0*226920
0.224340
0*221728
0.217185
0.213569
0.210432
6.207732
0.205339
0.203288
0.19992A
n.196426
0.19379!
*0.19949

0.186900
0.1O4632
0.102854
0.181478
0.179854
0.1785?47
0.177550
0.*176755
0.176120
0.175611
0.175194
04*174854
0.14577
0*174341
0.174140
0173978
0.173838
0.173704
0.*173591
0.173493
0.173404
0.1732886
0.1731$8
0,173158

ri
1*00000
1.000000
1,000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.0000000
1.000000
1.000000
1*000000
1.000000
1.00000
1.000000
1.000000
1.000000

1.00000

1.000000
1.000000
1.000000
1.0000000
0.999971
0*999935
0.999516
0.999547
0.999114
0.998756
0.997806
06996749
0.995641
0.9914501
0.993354
0.*992209
0.98996S
0.9873n03
0.084A40
0*980622
0*977290
0.974691
0.972639
0.971017
0.969211
0.967985
0.967154
0.966556
0.966123
0.9658926
0.965597
0.965 29
0.965310
0.965217
0.965135
0.965077
0.965033
0.964980
0.964934
00964898
0.964851
0.964808
.96o4687
0.964687

0.998683
0.996708
0.993768
0.987656
0*975060
0.964639
093791
0.934536
0.919129
0.905726
0894086
0.883698
0.874765
0.860088
0.844797
0.833261
0.816314
0.803064
0.793214
0.785401
0.779278
0.771976
0.766016
0.761364
0.757541
0.754352
00751676
0.749385
0.747409
0.745705
0.744202
0.74 2855
0.7?1679
0.740622
0.739634
0.738738
0.737944
0.737227
0.736448
0.735618
0.735618

y a.)V(a d

0.091379
0.091356
0.091438
0.091371
0.091525
0.091357
0.091300
0.091416
0.091300'
0.091297
0.091276
0.091275
0.091304
0.091343
0.091364
0.091451
0.091423
0.0091502
0.091474
0.091465
0.0091496
0*091505
0*091564
0.091589
0.091627
0.091678
0.091732
0.091791
0.091853
0.091016
0.091975
0.092036
0.092097
0.092163
0.092209
0.092261
0.092310
0.092353
0.092385
0.092428
0.092493

Y(a )

0.500000
0.500000
0.500000
0.5 s00000
0.500000
0.500000
0.50000
0.500000
0.50000
0.500000
0.500000
05000000.50000

0.500000.500000
S0.500000

0.500000
0500000
0000000
0.500000
0.50000
0.500000
0.500000
0.500000
0.500030
0.500026

0.500016
0.500053

0S00410.500030
0.500021
0.SO001

0.50O0023
0.500041
0•500017
0.5*000320.500071

0.500273

0.50033
0.500377
0.50039%
0.500427
0.500S47

0.500X)470.500504
0.500524OeSOS002

0.50060w
0.500660.500760.500874

0.5010230.*501172
0.*501322
0.501486
0.5016500*500802
0.50196

0.502083
0.50223

0.502351
0*502428
0.50253
ooso~Ob~l
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Table 1 (Continued)
(i) Eighth-Cycle Output

i Yi ri Fi i)v( I) Y( i)

1 1.272407 1.000000 0.500000
2 1.252357 1.000000 0.900000
3 0.870623 1.000000 0.500000
4 0.631619 1.000000 0.500000
5 0.535832 1.000000 0.500000
6 0.497771 1.000000 0.500000
7 0.425033 1.000000 0.900000
8 0.379323 1.000000 0.500000
9 0.371240 1.000000 0.500000
10 0.331458 1.000600 0.500000
11 0.331871 1.000000 0.500000
12 0.304666 1,000000 0.500000
13 0.303313 1.000000 0.500000
S 0o2A3145 1000000000 0.5000.00

15 0.284508 1.000000 0.500000
16 0.264419 1.000000 0500000
17 0.270628 1,000000 0.50000
18 0.250191 1.000000 0.500000
lo 0.258779 1.000000 0.500000
20 0.236930 1,000000 0.500000
21 o0.29725 1,000000 0.500000
22 0.224583 1.000000 0.500000
23' 0.247917 1.000000 0.500000
24 0,232633 1.000000 6.01013 0.500000,
25 0.232327 1*000000 0.997384 0.091063 0.499995
26 0.231867 0.99973 0.99358 0.091396 0.499991
27 0.231188 0.99999 0.988986 0*091261 0*49998n
2P 0.229761 0.999844 0.983462 0,091363 0.499970
20 0.226831 0.999562 0.971168 0.091291 0.40994P
30 0.224407 0*999192 0.960573 0.091282 0.499952
31 0.221883 0.998774 0.949926 0.091390 0.499930
32 0.217404 0.997832 0.931175 0.091269 0.499917
33 0.213819 0.996780 0.916003 0*091269 0.499897
34 0o210702 0o995681 0.902651 0*091259 0.499861
35 0.207994 n.99455l 0.891040 0.091248 0.499833
36 0.205577 0.99.411 0.880809 0.091247 0.499826
37 0.203499 0.992269 0.871991 0.091272 0.499807
3P 0.200085 0*990032 0.857333 0.091271- 0.499782
39 0.196528 0.987377 0.812051 0.091342 0.499769
40 0.143844 0.984913 0.830485 0.091294 0.499798
41 0.189918 0.980702 0.813632 0*091334 0.499711
42 0.186824 0.977397 0.800522 0.091263- 0.499633
43 0.184528 0.974828 0.790899 0.091211 0.499527
44 0.182710 0.972810 0.78330.4 Q09119 9  0.499415
45 0.181286 0.971224 0.777375 0*091150 0*499280
46 0.174507 0.969483 0*770385 0*091130 0.499043
47 0.178200 0.9683p5 0764782 0*091068 0.49885P
48 0.177118 0.967560 0.760494 0,091018 0.498638
49 0.176229 0.9670;9 0.757016 0*090975 0.498431
50 0*175487 0.966666 0.754174 0.090928 0.408205
51 0.174865 0,966435 0.751858 0.090880 0.498022
52 n.174332 0.966271 0.749915 0*090839 0.497806
53 0.173872 0.966164 0?748278 0.090795 0.407642
54 0.173475 0.966099 0.746905 0.090754 0.497471
55 0.173126 0.966061 0*745722 0.090714 0.497302
56 0.172812 0.966030 0.744692 0.090677 0.497159
C7 0.172539 0o.6601a 0.743819 0.090636 0.497020
53 0.172293 0.966020 0.743053 0.090602 0.496877

9 0.172063 0.966008 0.742343 0.090569 0.496764

60 0.171855 0.966001 0141710 0.090538 01496640
61 0.171670 0.965998 0.141153 0.090509 0.496561
62 0e171503 0.96578 0.740645 0*090477 0.49647
63 0,171322 0.969964 0*740048 0.090464 0*496382
64 0.171129 0.965961 0.739388 0.090489 0.496367
65 0.171129 0.965861 04739388

- I I II
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Table 1 (Contintted)
(.) Ninth-Cycle Output

iY ri  i (I d I)  Y(HI)1 1.270074 1.00005o 0.500000
2 1.260353 1.000004 0.500000
3 0.860434 10000000 0.500000
4 0.640344 1.0000043 0.500000
5 0.525406 l.0000oMB 0.500000
6 0.466176 1.00000o 0.500000
7 0416626 1.000005 0.500000
8 0.390584 1. 00000 0.500000
9 0.355112 1W00000m 0.500000
10 0.346906 1.000001 0.500000
11 0.317994 1.O0000Z t 0.500000
1? 0.316176 1.O000084 0.500000
13 0.291004 1.0000O8m 0.500000
14 0.294754 1.00000 0.500000
15 0.273336 1.O0000M 0.500000
16 0.274944 1.0000ob 0.500000
17 0.258086 1.000008) 0.500000
1F 0.261792 1.0000 w 0.500000
19 0.245253 1.0000Lm 0*500000
20 0.250829 1.0000r a 0.500000
21 0.233095 1.00008B 0.500000
22 n 242606 1.0Ogcom 0.500000
23 0.229599 I.000 0.5n00000
24 0.233399 1.00000M 0.091545 0.500000
25 o.232788 I.no0 eM 0.99728 0.091402 0.499997
26 0.231872 0.999,972 0.994569 0.091493 0.500013
27 0.230828 0.9949W5 0.990671 0.091290 0.500029
28 0.229539 o.S99990g 0.985459 00091385 0.500044
29 0.226670 0.99095sm 0*973563 0.091296 0.500057
30 0.224196 0.999Q%3 0.962894 0*091312 0.500041
31 0.22171t' 0.998 i59 0.952051 0.091455 0.500079
32 0.217335 o.99781m 0.933213 0.091364 0.500087
33 0.213794 0.99679W 0*918017 .091371 0.5*0074
34 0.210678 0.956 E 0.904749 0.091341 0.500093
35 0.207964, 0.99Q45a 0.893266 0.091324 0.500073
36 00205580 0.99332 0.883024 0.091342 0.500101
37 0.203522 0.992"320 0.874116 0.091380 0.500125
38 0.200100 O.9899S.7 0.859340 0.091380 0.500150
39 0.196534 0.987327 0.843924 0.091460 0,500154
40 0.193834 o.9848v" 0*832196 0.091429 0.500247
41 0.189901 n.980 n6 0.815117 0.091489 0.500274
47 0.186841 0.9773ms 0.801884 0.091447 0.500285
43 0.184595 0*.74718 0.792155 0.091431 0.500318
44 0.182822 0.972783 0.7P4438 0.091455 00500336
45 n.181438 0.97V1 0.778364 0a091450 0.500364
46 n.179807 0.t9693 1 0.771217 0.091488 0.500391
47 0,178499 0.*68113 0.765425 0.091492 0.500426
48 0o177498 0.967416 0.760934 0.091507 0.500465
49 0.176687 0.966895 0.757240 0.091533 0.500493
50 0.176023 0.*66Su1t 0.754174 0.091555 0.500532
51 0.175483 0 .9 4 67 0.751629 0.091580 0.500572
52 0.175029 0.96474 0.749455 0.091608 0.500651
53 0.174647 0.965"5 0.747594. 0.091633 0.500708
54 0.174327 0.96S8W5 0.746005 0.091657 0.500774
55 0.174051 OQ06E.6 0*744S97 0.091686 0.500822
56 0.173810 Oi96~0PR 0.743336 0.091715 0.500910
57 0.173606 0.Q657Sw2 0.742247 0.091737 0.500992
58 0.173424 0. 65S64n 0.741279 0.09t762 0.S01054
59 0.173262 0.9654;38 0.740380 0.091786 0.501126
60 0a.73114 o.96e8A 0?739569 0.091806 0.501171
61 0.1729 84 n€.9656 0.738842 0.091827 0*501234
62 0.172866 s.65S o 0.738184 0.091835 0.501305
63 0.172726 6.9656,49 0.737466 0.091859 0.501304
64 0.172572 0*9694d28 0.736685 0.091911 0*501392
65 0.172572 n.945828 0.736685
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Table 1 (Continued)
(k) Tentd-Cycle Output

± Yi r P y(si)V(i 1
S 1,to271 33 1000000 0.90000
2 1.29608 1*000000 0.500000
3 0.865692 1.000000 0.00000
4 0.63 234 1.000000 0.50000
5 0.530549 1.0000000 0.500000
6 0,42034 1.000000 0.500000
7 0.419093 1.000000 0.500000
8 0.307701 1000000 0.500000
9 0.359217 1.000000 0.500000
10 0n.32057 1.000000 0.500000
11 0.324140 1.000000 0.500000
12 0,3068)U 1.000000 00500000
13 0.29204 1.000000 0.500000
14 0.287723 1.000000 0.500000
15 0.27G590 1.000000 0.500000
16 n.270599 1.000000 0.500000
17 0.262117 1.000000 0.500000
18 0*257866 1.000000000 0.500000
19 0.250952 1;.000000 0.500000
20 0.24370R 1.000000 0.500000
21 0.239481 1.000000 0.500000
22 0,235581 1.000060 0.500000
23 0,233050 1.000 0 ' 0.500000
24 0.233106 1.000000 0.091216 0.500000
25 0.232599 1.000000 ;---- 0.091101 0.500026
26 0.231840 n09990A6 0,993780 0.091383 0.500004
27 0.230931 0,999927 0.988629 0.091339 0.500441
28 0.229716 0.999818 0.982495 0.091496 0.500051
29 0.226943 0.999521 0.970573 0*091400 0.500092
30 0.2P4456 0.999143 0*960284 0.091364 0.500105
31 0.221929 0.998722 0*949560 0.091533 0.500094
32 0.217537 0*997769 0.930477 0*091449 0.50011
33 0.213995 0.996713 0*915384 0*091442 0.500129
34 0.210902 0.995608 0.902304 0.091416 0.50013R
35 0.208225 0.994476 0o890992 0,091389 0.500140
36 0.205838 0.993331 088R0799 0.091418 0.50015R
37 0.203761 0.992181 0.871798 0.091463 0.500156
38 0,200317 0.989935 04856989 0.091448 0.500160
39 0.106724 0.987276 0*841663 0.091911 0.500149
40 0*193990 0.984799 0,8P9968 0.091468 , 0.500193
41 0.190000 0.9805%6 0.812910 0*091508 0.500175
42 n,186924 0.977256 0*799787 0.091443 0.500129
43 0.184656 0.974694 0.790181 0.091406 0.500088
4'U (182857 0.9726A8 0.792557- 0.091408 0.S00051
45 0.181446 fl.7109q 0.776607 0.091371 0.500021
46 0.179774 0.969v69 0.769610 0.091371 0.409930
47 0*178425 o0968231 0.763964 0.091336 0.499834
48 .177378 0.9674RS 0*759610 0.091311 04499738
49 0.176517 0.96697q 0.756070 0.091288 0,49964n
50 o.175802 0.966632 0.753193 0.091262 0.409544
51 *175200 0.9664418 0.70823 0.091238 0.499457
52 0,17470P 0.9662AP ,0748811 0*091220 0.499374
53 0.174264 0.966160 0.747092 0.091201. 0(499291
5u 0.173898 0.966102 0.745643 0.091181 0.499212
55 0.173570 0.9660V9 0.744397 0.091160 0.49914%
56 0.173276 0.966039 0.743293 0.091144 0.499074
57 ,0173022 0.966020 0,742333 0.091125 0.499014
s5 0,172794 0.966018 0.741494 0.091109 0.44895q

0 0.17 2 547 0.966003 0.74o73 0.091094 0.49889A
60 0.172398 0.965997 07140038 0.091078 0*408836
61 0.17222 0.965992 0,739420 0.091066 0.498804
62 0,172074 0.965963 0.738854- 0,091047 0,448760
63 0.17190 0.9659 0.738221 0.091045 04498687
O 0171725 0.965844 0737518 0.091080 0.408731
65 0.171728 0.*65844 0.737518
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Table 2

Summary of Results of C lculations of Slipstream Contraction

in the Static Case

tan aN

AN

0.05

0.10

0.20

0.40

1.00

2.00

1

Slipstrern Contraction Ratio, 0

Parabolic-Cambered ShroudsCorical Shrouds
_ _ _ I I 1

0.080.08 I

((0.835))

0.884 ((1.008)) 0.945

0.934

0.974 1.016 1.062 1.111 1.000 1.027 1.056

0.998 1.041 1.087 1.136 1.030 1.064 1.099

(1.136) (1.117)

The results are for twety-iterative-cycle calculations, except

that data in single parentheras are from ten-cycle calculations, in cases

giving rapid convergence; anH data in double parentheses are from ten-
cycle calculations, with goon estimate of slipstream representation at
first cycle, in cases giving slow convergence.

0.16 0.24 0.16 0.24

Cylindrical
ShroudsI

I r II I _- ~i i

-P -
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SHROUD
TRAILING

EDGE

S,S -3
~r-jTT

CONE- FRUSTUM
SEGMENTS

4 ON
AXIS OF SYMMET

XuN+.

EXAMPLE WITH N:4, M=6
(IN PRACTICE, N M ARE USUALLY

MUCH LARGR NUMBERS.)

SN+M.
S(S): E 7 (S)

, -a: I

,p s >

0 S2 S3 S S- Sg 7 S8 S9 SN+

Figure I - Approximation of the Vortex Distribution on a Shroud

and Slipstream by a Vortex Distribution on a System

of Cone-Frustum Segments

'I7
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Y('i)V('i)
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0.08

0.6

0.5

0.4
1 2 3 4

Figure 2 - Approximation of Slipstream Boundary Conditions at Various Stages of a

Twenty-Iterative-Cycle Calculation. Cylindrical Shroud;

S /rN = 0.2; U = 0

Cycle

A 1
0 2
0 5
0 20

r
h,I



1.0

0.8 -

0.1 0 240.4. 0A. A1202-
II

0.01 0.1 1.0 10
S

Figure 3 - Effect of Halving the Number, N, of Cone-Frustum Segments

Used to Approximate -the Shroud. Parabolic-Cambered Shroud;

A = 0.4; iPN 1.0; ta n = 0.24; o - ; U = 0o

(a) Vortex Distributions After 20 Cycles
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1,03

1.02

1.01

1.00

0 1 2 3

(b) Slipstre=m Shapes After 20 Cycles

(Vote exaggerated r-scale)

0.10

0.05
1 2 3

(c) y(3i)V(i) After 20 Cycles

Figure 3 (Concluded)
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Figure 4 - Effect of Halving the Length, xgt+, of the System of Cone-Frustum Segments.

Parabolic-Cambered Shroud; a 0 .4; N 1.0; tan = 0 .24 'o = I; U = 0

(a) Vortex Distributions After 20 Cycles
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1.00 I I I I

O TWENTY-CYCLE ESTIMATE

_ FIRST CYCLE ESTIMATE, FROM 7( IN)V( N)

O FIRST CYCLE ESTIMATE, FROM 'N+M

0.50. ... ,

-)-U

LINEARIZED SHORT- CHORD
-\ THEORY (REF. 8)

0 .10 1 1 I I . II I I
0.05 0.10 020 0.50 1.00 2.00

CHORD /RADIUS, e/
N

Figure 5 - Slipstream Contraction Ratio for Cylindrical Shrouds. (Static Case)
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0 0.1
0 0.2
O 0.4
A 1.0

ASYMPTOTE.1/7, + i n

001 0.1 1.0 , 10

S

Figure 6 - Vortex Distributions on Cylindrical Shrouds and Their Slipstream
1

(20-Cycle Calculations). To - ; U 0; ~N 1.0
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1.00 I I

TAN N = 0.2 4

I . .0.16

S I I 1 I I I I I I

0.05 0.10 0.50 1.00 2.00

CHORD/RADIUS, ,/TN

Figure 7 - Slipstream Contraction Ratio for Conical Shrouds. (Static Case)
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Figure 8 - Slipstream Contraction Ratio for Parabolic-ambered Shrouds.
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'/N
0.f

0.4

1.0

2.0

0 0.08 0.16

TAN aN

Figure 9 - Effect of Trailing-Edge Divergence

Angle on Slipstream Contraction Ratio

(Data From Table 2)
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O 10-Cycle Estimate

A First Cycle Estimate From y(5s)VCaN)

0 Firot Cycle Estimate From Y.
......... Estimate From y(N1)V i) at First Cycle of

Static-Case Calculation

-- -- Linearized Short-Chord Theory, Ref. 8

0 0.5 1.0
1/CT

p

Figure 10 - Slipatream Contraction at Finite Thrust

Coefficients. Cylindrical Shrouds

(a) Vario E~tatates; AftN - 0.4

1.00

0.95

0.90

0.85

111 1 I I I I In
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1.00

0.4 d

0.95

0.0.28

SUth-naouded
0.90 Impulse Dic

o.1 (Mxact). Ref. 1I

0.85 0.05

0.80

0 1 1 2 3

Figure 10 (Concluded)

(b) Estimate From y(iN)V(Ci) at First Cycle

of Static-Case Calculation
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Uniform
Vortex

Cylinder

- .I - 1
~,~, ~ ~ t~ ~I!

r=1.00 r=O .4858

O Present method;
sketched

0 Exact solution,
infinitely long
duct

1 I

duct as

Refel. 22;
periodic

Note: Mean axial velocity
through minimum duct section
equals 1.00

Figure 11 - Velocity Distribution Along the Interior Wall of a Duct

(a) Section of a Periodic Duct

r=0.4858

1.2

0.8

0.4

-

4
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Uniform
Shape same as half-period Vortex
of periodic duct Cylinder

- 1 - - 1 -
x= 0 x= o x=2rr x=3n

r=0.4858 r=O0.4858 r=1.00 r=l.00

Figure 11 (Concluded)

(b) Transition Between Cylindrical Ducts

1.2

0.8

0.4

O Present Method, transition
between cylindrical ducts

0 O Present method, section
of periodic duct
(from Figure 14a)

Note: Mean axial velocity
through minimum duct
section equals 1.00

0

0

0

' - - -o- ..o- °
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0-
0 0.5

a rN

1.0 1.5

Figure 12 - Velocity Distribution on the Inlet to a Circular

Cylindrical Duct. Mean Internal Axial Velocity = 1.0 i

Present Method
U = 0.7

"' .. _ ,,

I IIII I I I --I II I ii
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Ref. Chord= 1.6 x Ref. Radius

Ref. Radius

1.5

1.0

(v)

0.5

Outer Inner
Surface Surface

Present Method O

Experiment (Closed a
Airfoil, Ref. 20)

0 __

0 0.25 0.50 0.75 1.00
x/Reference Chord

Figure 13 - Velocity Distribution on a Nearly Closed Annular Airfoil

_00 1,111-0-
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1.5

1.0
Present method,

V- nearly closed sphere

U Exact solution,
closed sphere

0.5

0 45 90 135 180
8, degrees

Figure 14 - Velocity Distribution on a Nearly Closed Sphere
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