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NOTATION

Area

Symbol defined by a matrix (see Appendix A)
Differential distance along shear element

Differential distances along 2-, y-, z-axes, respectively
Local Young’s modulus of elasticity

Flexural rigidity of beam

Reference modulus of elasticity

Known stress functions (¢ = 1, 2, 3)

Local modulus of elasticity in shear

Known stress functions which are linear homogeneous functions of
F;(g/,z)(z =1,2,3)

Torsional rigidity

GG;

Equals ! dA

area

Functions of Iij

Areal polar moment of inertia of a cross section about its shear center
Shear rigidity
Effective area factor

E

k—
E

o
Temporary unknown constants used to derive equations

Bending moments about the z-, y-, and z-axes, respectively; positive when the
vector representing them is in the positive coordinate direction

Bending moments about the y-, z-axes, respectively; positive when the vector
representing them is in the positive coordinate direction

Bending moments about a longitudinal axis passing through the center of shear;
positive when the vector representing it is in the positive coordinate direction

Shear flow

Arc length along shear element

Thickness

1v



Displacements of cross section of beam along z-, y-, and z-axes, respectively;
positive when the vector representing them is in the positive coordinate direction

Displacements of cross section along z-, y-, and z-axes, respectively; positive
when the vector representing them is in the positive coordinate direction

Displacements of cross section of beam along y-, z-axes, respectively; positive
when the vector representing them is in the positive coordinate direction

Forces acting on positive side of cross section of beam (i.e., portion of beam
on -z side of section) along z-, y-, and z-axes, respectively; positive when the
vector representing them is in the positive coordinate direction

Force acting on positive side of cross section of beam (defined as for V,) along
z-axis; positive when the vector representing it is in the positive coordinate
direction

Force acting on positive side of cross section of beam (defined as for V, and
V,, respectively) along y- and Z-axes, respectively; positive when the vector
representing them is in the positive coordinate direction

Strain energy and strain energy per unit length, respectively

Coordinates of a right-hand rectangular Cartesian coordinate system (see
Figure 3); ¥, z are also the positions of the neutral axis in -, y-, z-coordinate
system

Position of the shear center in z-, y-, 2-coordinate system
Length of segment along z-, y-, and z-axes, respectively

Rotations of cross section of beam about z-, y-, z-axes, respectively

Rotations of cross section of beam about z-, _17-, z-axes, respectively

Rotations of cross section of beam about 2-, y-, z-axes, respectively

Stress components in rectangular coordinate system defined as the force per unit
area acting on a face perpendicular to the ¢-axis and in the j-direction

=292 j=2 9, 2)

Mass per unit length of beam

2 \1/2

Equals (aﬁy +05,

Subscript 7 in test denotes node numbers unless otherwise indicated; thus y,,

2, A are the coordinates and corresponding area for ith node.






ABSTRACT

For the purpose of vibration and load analysis a ship hull is often regarded
as a flexural beam. This report describes a method and numerical computer (digital)
program to calculate ship section properties (i.e., equivalent beam parameters)
needed for the beam vibration equations and its internal shear distribution, using
data tabulations obtained from hull plans by a pre-established orderly procedure.
The program has been written in FORTRAN and can be used on an IBM 650, 704,
709, or 7090. Comparison between digital computer and hand calculations for a

sample problem shows excellent agreement.

INTRODUCTION

For several years the David Taylor Model Basin has been concerned with the compu-
tation of the natural frequencies and mode shapes of a ship hull,! the whipping response of
a ship subject to slamming loads,?:3 and the flutter response of hull-appendage systems.*

In solving these problems, the ship hull has been treated as a beam and the physical para-
meters (i.e., equivalent beam parameters) have been computed for a ship subdivided into n
sections of equal or unequal length (usually n = 90).! These parameters include the inertia
properties (mass, location of center of gravity, and moments of inertia), bending (location of
neutral axis and bending flexibilities), shear (location of shear center and shear flexibilities),
and torsional flexibility parameters.

The accurate calculation of ship properties has been a laborious task because it
requires a detailed examination of ship scantlings, a tabulation of pertinent basic data (such
as location and cross-sectional areas of longitudinals), and the performance of routine but
lengthy calculations. It is therefore of interest to develop a digital computer program for
calculating the inertia-elastic parameters of a ship hull to materially reduce the time, labor,
cost, complexity, and errors associated with the present method of hand calculation of these
properties.

The objective of this report is to describe a method and numerical computer program
for calculating the section properties (i.e., equivalent beam parameters) of the hull starting
with information derived from drawings of the hull. These parameters are to be used in the
finite-difference form of the beam vibration equations developed in Reference 1; these equa-
tions have been usedin vibration, slamming, and hydroelasticity problem areas in which the
hull is also treated as a beam.1=% The theory, program derivation, and operation associated
with the determination of these parameters are presented.>:® This includes the mathematical

development of the necessary equations and a description of the input and output statements

1References are listed on page 86.



of a digital computer routine which could be used to compute the parameters. The data to be
furnished to the computer are discussed in detail. Parts of the task, the examination of ship
scantlings and the tabulations of basic data, will remain manual operations not included in
the program. The input forms for the digital computer program should also serve the auxiliary
purpose of assisting in the orderly and efficient recording of the basic data. Data input is
prepared on cards and the computer calculates parameters for one ship section at a time. The
output of the program gives the internal shear flow (stress) distribution (in the hull, per unit
beam shear or torque) in addition to the parameters needed in the beam equations. The pro-
gram has been written in FORTRAN?>'% and can be used on IBM 650, 704, 709, or 7090.

To test the program, a hand and digital computer calculation is compared for a sample
problem.

The method has been developed for bodies with a plane of symmetry (typical of most
ships) and also for the general case where there is no symmetry.

The report has been organized to meet the needs of the program user.
DATA TO BE FURNISHED TO THE COMPUTER

GENERAL

Based upon a theory presented in Appendix A, a digital computer program for calculat-
ing the section properties (i.e., equivalent beam parameters) of ship hulls, presented in
Appendix B, has been devised. Computation of these parameters requires that certain data
(geometry, areas and thicknesses, effectiveness, etc.) be furnished to the computer using
input forms discussed in Appendix C; output forms are also discussed in that appendix. These
data and the method for obtaining them are now discussed. In the next section of the text,

a “‘hand’’ calculation of the beam parameter for a sample ship section shows how these data
are used in making this calculation on the ‘‘digital’’ computer; this is true because a digital
computer operates on these data in a similar fashion. A comparison of the results of hand

and computer calculations is given.

DATA
Geometry

Consider the y—z coordinate system of a ship cross section shown in Figure 1, where
y is taken in the plane of symmetry for a symmetrical cross section. Otherwise the origin is
arbitrarily chosen. The geometry of every cross section obtained from ship plans is given by
the y—z coordinates of each node (Figure 1).

A numerical assignment of nodes is made (1) at every point where there is a longitudinal

beam (2) at the junction of more than two plates* (e.g., junction of lower deck to hull), and

*¢¢Plate’” here designates segments of decks, hull, bulkhead, inner bottom, etc.



(8) if desired, at other points in the section;
if there is a plane of symmetry, only one-
half of the section need be used but a node
is assigned where any number crosses this
plane. Assuming linear plating between
two nodes, extra nodes should be assigned

along curved members. Moreover, sub-
division of long straight sections by
assignment of additional nodes along the

length improves the accuracy of the results
obtained. Each node, and plate which must
lie between two nodes, is numbered with an
integer which runs sequentially from 1 to

150; the positive direction of each plate is

indicated by an arrow drawn beside the plate.

Areas* and Thicknesses

To calculate the elastic parameters,

data are required on the areas (A) (see
FORTRAN symbols defined in Table 1b).
If a node represents a longitudinal beam, its

area should be found; otherwise zero area is Figure 1 — Typical Symmetric Section
assigned to the node. The area of nearby Showing Node and Plate Numbering

plates is not assigned to the node because

this is done by the computer program. The program also computes the length of each plate as
the distance between the nodes it joins. The thickness (PT) of each plate is found and must
not be zero. To maintain constant plate thickness, a node is assigned at each point where
the thickness changes, thus subdividing the plate. If symmetry is used, nodes on the center-
line and plates lying along the centerline are assigned only one-half the total area and thick-

ness, respectively.

Effectiveness (AK for Nodes, PK for Plates)

Longitudinal members which end a relatively short distance from the section to be
analyzed will not be completely effective in carrying tension loads. An effectiveness value
is assigned to each node area; 1.0 for completely effective members, 0.0 for members which

*It is convenient to replace the actual area distribution by a set of ‘‘concentrated areas’’ at a set of nodes.
These nodes will be closely spaced and the area of any stru¢ture between nodes can be divided between the
nodes at the ends of the segment. This idealization separates the problem so that the nodes (longitudinals)
carry all the tension, and the panels between the nodes carry only shear.

3



IDENTIFICATION

NN
NP:
NW

KEY

ox:
RHO:

SCALE:

NT:
NH:

PG

PT:
PK.

PD

L]

v

Yw, 2w

WYY, wYZ w2z

TABLE 1

Input Forms
TABLE 1a Column Headings for Input Forms

IDENTIFICATION
30 40

2 10 0 50 50 10
a1 1 1 1 1 1 [ f ¥ [ [ 1 1 1]
AN NP NW __KEY 0X RHO SCALE
Y z A AK A0

T K1 K1

PG PT

PK PD

KX KT K1

¥ YW ¥

L4 ZZ

KN 1T W 1 K1

K M|

M

TABLE 1biDefinitions

Any stalemen ¢ ting of ble by the ter,
a-numenc. This will not be used in the calculatrons, bul wil ap-
pear as a heading on the printoul.

The number of nodes used, an infeger.

The number of plates used, an integer.

The number of nonstructural weights used, an integer.

A three digit integer used to control machine operation.
Istdigit (1, 2) > (do not use symmetry, use symmelry).

nd digit (1, 2, 3, 9) = (mass, bending, torsion and shear:
bending, shear, torsion; bending only, torsion only).

3d digt (1, 2) > (output beam parameters only; also out-
put shear flows).

Length of huil section (AX), foating point number.
Density of structural matenal, floating point number. .

Equals 1.0 uniess mixed units are used. Node areas will be
divided by (SCALE)? and plate thicknesses divided by (SCALE).

Number associated with a node, integer.

Coordinates of the node, floating point numbers.

Area of the node, floating point number.

Area effectiveness, flaating poinl number.

Area density ratio, floating pont number.

Number associated with a plate, integer.

Number associated with node at tail end of plate, integer.
Number assocrated with node at head end of plate, integer.
Plale shear effectiveness, floating point number.

Plate thickness, floating point number.

Plate tensign eifectiveness, floating point number.

Plate density ratio, floaling point number.

Number associated with mass item, integer.

Weight of item, floating point number.

Coordinates of center of gravity, floating point numbers.

Moments of inertia about 1ts c.g., floating point numbers.

TABLE 1c Format of Input Numbers

Integer.

Three spaces are provided for integers. All integers used
by this routine are positive so no sign Is needed. Leading
zeroes may be omitted.

Samples:

]

I ] Izl ; do not use

Floating Point.
Nine spaces are provided for floating point numbers.
One space must be used for the decimal point and one
for the sign if negative.

Samples:

l L1 [ L
Ll Jll'lslzl
1

I’iono lolulslslll4j

osleres

L.
l—lglsnzlonololol'l

ol
Il]




can carry no tension, and an intermediate value for partially effective members. A tension
effectiveness is also assigned to the plates, which in addition may be used to account for
cutouts such as hatches in the deck; see footnote on page 52.

‘‘Effectiveness’’ can also be used if more than one material has been used in the
construction. The effectiveness is taken as the product of the above number times the modu-
lus ratio. The modulus ratio is the actual modulus of the material divided by a reference
value of the modulus.

Density

Structural mass is calculated as the product of the volume and density of the structural
element. If more than one material is used, a density factor, which is the ratio of the actual
density to the reference density, is associated with each element. For sections made of one
material, all density factors will be 1.0.

Plate Shear Factor (PG) -

A plate shear factor (similar to the tension effectiveness) is needed for each plate.
As with tension effectiveness, there are two factors, one due to inability to carry shear and
the other due to shear modulus. Plates which end at a nearby cross section should have a
low effectiveness, and plates with a modulus greater than the reference value should have
an increased effectiveness. PG must never be 0. If the plate has no shear effectiveness, it

is not considered as a structural element.

Mass ltems*

If mass calculations are to be made, additional information is needed for each non-
structural mass. Nonstructural mass includes machinery, cargo, fuel, virtual mass, etc. For
each item, the weight (W), location of its center of gravity (YW, ZW), and moments of inertia
about its own center of gravity (WYY, WYZ, WZZ) are required. Here WYY is the moment of
inertia about an axis through the center of gravity of the item and parallel to the z-axis. ‘The
YY indicates that the integral which gives the moment of inertia has the factor Y2.

Other Numbers

A count of the total number of nodes (NN), plates (NP), and masses (NW) is needed.
If masses are to be computed, the length of the section (DX) and the basic material density
(RHO) are needed. -

*See pages 59 and 60.



Key

Some control over which calculations should be made is provided by KEY. Each of
the three digits which make up KEY (Table 1b) has a specific meaning and must be assigned
one of the allowable values. The first digit is 1 if information is given about the complete
section; 2 if symmetry is used and information given for half of the section. The second
digit is 1 if all mass, bending, shear, and torsion parameters are to be calculated; it is 2
for only elastic parameters (bending, shear, torsion), 3 for only bending parameters, and 4
for only torsion parameters. The third digit controls only the output; if 1 it prints all section
parameters specified by the second digit; if 2, it will in addition print the shear flows in the
plates.

Units

Any consistent set of units may be used. Masses may be computed in weight or mass
units. The values of RHO, W, WYY, WYZ, and WZZ should be given in the same system.
Provision is made to give lengths in mixed units if desired. If consistent units are used,
then SCALE = 1.0. If lengths are given in feet (i.e., Y, Z, DX), areas in square inches, and
plate thicknesses in inches, SCALE = 12.0 and RHO is in (~) per cubic foot.*

These data are collected and put on an input form such as Table 2, from which it is
punched into cards for input to the computer. The input and output forms (Tables 2 and 3a,
respectively) and the associated operation and rules of the computer program are discussed
in Appendix C.

COMPARISON BETWEEN COMPUTER AND MANUAL
COMPUTATIONS FOR SAMPLE PROBLEM

To test the program, a sample hand calculation was made and compared with a solution
of the s ame problem using the computer routine. Figure 1 shows the plates and nodes, and
Table 2 indicates the data for the sample problem. The manual calculations are shown in
Table 4, and are compared in Table 3b with the computer output shown in Table 3a. The
shear flows (from the computer solution) are shown in Figure 2. The theoretical basis for
these calculations is presented in Appendix A.

Node calculations are shown at the top of Sheet 1, Table 4; plate calculations at the
bottom of Sheet 1; shear flows due to y-shear at the top of Sheet 2; shear flows due to z-shear
at the bottom of Sheet 2; and shear flows due to torque on Sheet 3. On Sheet 1, data are given

in Columns @—@ for nodes and @—@ for plates. Columns @—@ for plates are found by
Column @ and node Columns @ and @ Plate Columns and @ are used to calculate

@ , and thus also @ and .

*(—) indicates the mass unit. (Text continued on page 11.)



Table 2

Sample Input Sheets
Table 2a —Sample Input Sheet Showing Data for Sample Problem

IDENTIFICATION

ST TEST CASE 8/2?/62 S:I'A 1 APF:ROX
NN NP NW KEY DX RHO SCALE
8 9 0 222 1.0 1.0 12.0
IN z A AK AD
l -22.05 0 17.6 1.0 1.0
2 -20.45 15.15 23.5 1.0 1.0
3 - 4.50 29.05 0 1.0 1.0
4 12.55 3L.10 0 1.0 1.0
5 21.25 31.40 12.4 1.0 1.0
2 1 Z 2 30 k] 40 H 20 20 b(
6 21.50 15.00 0 1.0 1.0
I 21.50 0 2.8 1.0 1.0
8 12.55 15.00 0 1.0 1.0




Table 2b —Sample Input Sheet Showing Data for Sample Problem

IP NT NH PG PT

1 1 2 L0 1478 1474 L0
2 2 3 1.0 0.957 1.399 1.0
3 3 4 1.0 0.750 1.223 1.0
4 4 5 1.0 0.983 1110 1.0
5 5 6 1.0 0.947 1.030 1.0
6 6 7 10 0.675 0.927 1.0
7 6 8 L0 0.625 0.358 10
8 8 2 1.0 0.625 0.707 19
9 8 4 1.0 0459 1.098 1.0

“\
10 15 20 25 30 35 45 50 55 60 65 10




W

Yw

Table 2c —Sample Input Sheet

W

WYy

wyz

WwZz

15

20

25

30

35

40

45

50

55

60

65
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Sample Output and Comparison of Results of Sample Problem

TABLE 3

STA 7 APPROX

ST TEST CASE  8720.62
MASS = 0.2136E 02
Y-CG=0.5945E 00
Z~C6G= 0.

I-YY = 0.5486E 04
I-YZ = -0.

I-ZZ = 0.8576E 04
I-MX = 0.1406E 05
STRUCTURE AREA =
Y EL AXIS =
Z EL AXIS =

YY FLEXIBILITY
YZ FLEXIBILITY
ZZ FLEXIBILITY =
Y SHEAR CENTER
Z SHEAR CENTER =
TORSION FLEXIBILITY =
YY SHEAR FLEXIBILITY =
YZ SHEAR FLEXIBILITY =
ZZ SHEAR FLEXIBILITY =

1]

[]

0.2359E 02
-0.1823E 01
0.
0.9469E-04
0.
0.1337E-03
-0.6138E 01
~0.
0.1083E-03
0.1030E-00
0.
0.1087€E-00

Sample Qutput

Table 4 (Hand

Item A
(Program) Calculation)

Yy -1.823 -1.823
¥ 0 0
YY-FLEX 0.00009469 0.00009474
YZ-FLEX 0 0
ZZ-FLEX 0.0001337 0.0001337
y -6.138 -6.228
E 0 0
YY-SHEAR FLEX 0.1090 0.1090
YZ-SHEAR FLEX 0 0
ZZ-SHEAR FLEX 0.1087 0.1085
TORSION FLEX 0.0001083 0.0001081

(a) Sample Output (from Computer)

(b) Comparison of Results of Sample Problem

10




Column @ under plates, which is

defined k tAs) = 6. - -

efined as 1/2 (12k tas) = 6.0 ®0 ©®, T om0

represents the division of the plate effec- 242 [-e e o440 !
.169

tive tension area, one-half being assigned

to the node at each end. This division is
effected in Columns (8) — (®) under nodes;
then the net node area is computed in node

Column (9 .* Plate Columns and @ 15.851

are used as Columns (9), (@, and @ of i
Table 4, Sheet 2, in carrying out the calcu-

lations for the distribution of y- and z-shear.

Compute y from 2@ - @ /= (®. Because
of symmetry, z = 0.** Compute Columns - 4.069

— for nodes as indicated. Bending _'2%/

parameters are calculated on Sheet 1; the

factor of 2 is for symmetry and 144 is to Figure 2 — Sample Problem
change from square inches to square feet. Shear Flow X 10° per Unit vy 1/t

To compute the shear parameters, Shear Flow x 103 per Unit V, » 1/ft
first find a tree; that is, a set of plates so Shear Flow x 10% per Unit M, 1/6t2
that one and only one path exists between The numbers in Figure 2 give the shear flows in the
every two nodes (see section Shear and plates corresponding to the following conditions:
Torsion in Appendix A.2). The tree chosen Vy=1, V,=0, M, =0 (topnumbers)
consists of all the plates except 5 and 9 Vy=0, V,=1, M, =0 (middle numbers)
(see Figure 1). For y-shear, Columns @ Vy=0 V2 =0 M =1 (bottom numbers)
‘and @ of Sheet 2, Table 4, represent all The scales are indicated under the caption. The numbers

come from Sheet 2, Col. Sheet 2, Col. ; and

nodes further from the root (node 1) than Sheet 3, Col. (8) of Table 4 respectively.

the plate in question. The [T;] matrix
discussed in Shear and Torsion of Appendix A.2 is applicable to these columns; in particular,
see Equation [14]. Considering Plate 2, it is seen that shear flows from nodes 3, 4, and 5

* @represents one-half the effective area of each plate employed jn Columns @, @, andat the top of
the sheet in determining total node areas. Hence, the factor of 1/2 is introduced in calculating @ (bottom).
The assignment to proper nodes is carried out by entering values from @ (bottom) in appropriate spaces under
@, @, and (top). For example, for Plate 7, which corrects nodes 6 and 8, one-half the effective area is

12.0 (Column @ , bottom). This value is entered as ‘‘Plate Area’’ once at node 6 ( top) and once at node 8
(@ top). Whether a particular number is entered under Columns @, @, or @ is of no significance. Effective-

ness k"= k‘EE':- = PK, Column @ Plate thickness (inches) t = PT, Column @ Plate length (feet) As =
Column @ . o6 =1/2 X 12 converts inch feet to square inches. Columns @ and @ were arbitrarily chosen as
sample problem input data. They were used only as indicated in calculating the entries of Columns @ , .

**See Figure 3.

1



A Y, Qy

Figure 3 — Coordinate Systems

U, U

v and U, are displacements; Ox, Gy, and 02 are rotations. The forces V,, Vs and V,

and moments M, My, and M, act upon the section shown

are effective, and that the sign of the summation is negative since the positive sense of

Plate 2 is away from the root. Hence g, i;cujar = Qpart =(-) 2 Uout = ~%out 3 ~Yout 4
Aoyt 5°° met means Qparticular, or a particular solution of the shear flows out of the
nodes, as discussed in Appendix A.2. However, since Q.. is based on a tree which omits
several plates or paths of flow (2 or 3 in the example) it is not completely general. Additional
shear patterns (one for each plate omitted in the tree) are superposed. These are the Qioop
terms. The amount of shear flow in each loop to be added to the particular solution is unknown
a priori, and is indicated by the coefficients K,, K,, or K, K,, K; (2 if symmetric and 3 if
antisymmetric). For the method of solving for the K’s, the matrix operations on Sheets 2 and

3 of Table 4 illustrate this for the sample problem and it is further discussed below. In
general, the method of solution is outlined in section Shear and Torsion in Appendix A.2.

The solution of simultaneous equations for K., K,, etc., is by matrix inversion and
multiplication in the sample calculation, as indicated on Sheets 2 and 3 of Table 4. In the
sample calculation, as indicated on Sheets 2 and 3 of Table 4- In the digital computer

*Columns @ and@ include the sign associated with each value of dout i and, therefore, represent [Tji]
[q out i]' Hence a separate computation for [’I‘j i] is unnecessary. This is the reason Column @ is multiplied by
a factor of 1. It is possible, of course, to treat q ., ; (without regard to sign) and Tji separately as on page 65

(see Equation [14] ). This is less convenient for calculation.

12



program, it is accomplished by the ‘‘Gram-Schmidt Reduction’’ indicated in Figure 4.* This
is a standard technique in matrix algebra. Equations [25] and [32] of Appendix A.2 show the
matrix derivation.

For reasons discussed below, Column @ is formed by summing entries from @ s
Sheet 1 (top) as indicated in ® ,(®, of Sheet 2. For example, for Plate 2:

Column @ = - (nodes 8 + 4 + 5) = - (-0.6572 + 2.6709 + 3.5423) = - 5.5560. Similarly,
Column@is generated by the same combinations of nodes; however, in this case the shears
are taken from the entries in Column , Sheet 1 (top).

That Columns @ , and are proper expressions for q  , from each node for the
section sustaining y-shear and z-shear, respectively, is seen from the equations for Xq, (out)
in Appendix A.1, remembering that I_ = 0,Z = 0 in the example. Columns @ and @ are
loops (Column @ is associated w1th Plate 5, @ with plate 9 by random selection). They
could as easily have been reversed. The selection of entries in @ and @ is based on the
following statement in Appendix A.1, ‘‘For each plate which is not on the tree, there exists
a closed loop through that plate and others in the tree.”” Reference to Figure 1 shows that
the loop, including Plate 5 in the positive sense (but excluding Plate 9), includes Plates 2,
3, 4, 7, and 8 (all in the positive sense). Also, the loop involving Plate 9 in the positive
sense (but excluding Plate 5) includes Plates 2, 3, and 8 (all in the negative sense). The
entries in (8) and (6) reflect these statements.** See also Equations [13]-[15] for the
{qloop J} and discussion of the L; , matrix in Appendix A.2. Column @ of Sheet 2, Table 4,
is plate Column . of Sheet 1, Table 4. Next, solve for the factors K; and K,, which are
the amount of shear flow in the loops. This is indicated as a matrix operation to the right on
the calculation sheet (not the same method used in the program, but equivalent)ﬂL The follow-
ing hand calculations and those used in the program are based on the set of Equations [32] of
Appendix A.2. While these equations are for a general cross section, the equations of the
sample problem are for cross sections with only two or three loops.

The y-shear calculation for the symmetric hull cross section involves the solution of
two simultaneous equations for K, and K, (see Appendix A.2, Equation [82]). The numerical
values for the elements in the matrix to the left of the K, matrix in Equation [32] are obtained
as follows (see Table 4, Sheet 2):“L (Text continued on page 39)

*The digital computer program and Flow Charts (see Figures 4 and 5) are discussed in Appendix B.
**For z-shear the entries in Columns and@ are identical to those in @ am@ respectively. Since the

force is antisymmetric (see Figure 6) a third loop consisting of Plates 6, 7, 8, and 1 must be considered. The
entry in @ reflects the shear flow in this loop.

TThe solution of the matrix equation is performed differently in the sample problem and in the computer program
because the sample calculation inverts a 2-by-2 or a 3-by-3 matrix by hand with a desk calculator, and the com-
puter program permits inversion of an n-by-n matrix (where n may be any integer up to 30, the maximum number of
loops) by high-speed digital computers (Gram-Schmidt Reduction). The optimum method is naturally different in
the two instances.

H.The rationale underlying the y- and z-shear calculations are similar. For the latter, a detailed calculation is

given on page 39.
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TABLE 4
Sample Calculations

DATA TABLE 4a Node Calculations and Plate Calculations
PLATE ) - _ - AY -Y
N y z A AK AREAS A Y-y [ av-Y) AY -V AZ a2 |20 lA_me’
® [0XEO1 KON EGINONNO) O} @ @ ) =
D10 +Q+®| Q+153 | OxD | OxO® 0@ |0« ® ®
1 - 0|0 176 10 199 1 875 216.7 ~20227 | -4383.2 88659 0 0 ~4.0684 )
H - 2045 | 1515 ] 23.5 199 1 1700 | 875 480 1 -18.627 | -8942.8 166578 712135 110192 ~8.3006 4,759
3 - 450 | 2905] o0 170 0 94.5 2645 - 2677 | - 7081 1895 7683.7 223211 -0.6572 5,052
4 1255 | 3110 0 945 570 | 487 200 2 14 373 2775 41358 6226.2 193635 26709 4,094
5 21.25 | 3140 | 224 570 960 165 4 23073 3816 3 88053 5193.6 163078 3.5423 3.415
6 2150 | 1500 | o 96 0 563 | 120 164.3 23323 38320 89374 2464.5 36968 3.5568 1.620
7 2150 | 0 28" 56 3 591 23323 1378 4 32148 0 0 1.2794 0
8 1255 | 1500 | 0 |10 120 87.5 | 487 148 2 14 373 21301 30616 2223.0 33345 19771 1.462
2(@-(2=-30% 3 5(3)- 16985 538681 760429
¥=1823| Z=0 lyy = 1,077,362 l,, = 1,520,858
P NT N ope ] PT ] Pk [ Yy Yo z, 2 Yy-Yy | Zmmir 4 pizkws) | AVt | Yulr- Yody
o ® ® ® ®-0 | 0-0] YO0 0.0 OV e00-00
1 12 1.0 1.478 | 1474 [ -2045 |- 22.05 | 15.15 0 160 1515 15.23 199 1 10 30 334 06
H 2 3 0957 | 1.3%9 |- 450 |- 20.45 | 29.05 15.15 15.95 13.90 2116 1700 2211 52590
3 3 4 0.750 | 1223 1255 |- 450 | 3110 29 05 1705 2.05 1Y 945 2289  504.53
4 4 5 0.983 | 1.110 21.25 12.55 | 3140 3110 870 0.30 8.71 57.0 8.85| 266 80
5 5 6 0.947 { 1.030 2150 21.25 | 15.00 3140 0.25 - 16.40 16.40 96 0 1732] 35635
6 6 7 0.675 | 0927 2150 21501 0 15.00 0 - 15.00 15 00 563 222 32250
7 6 8 0.625 | 0.358 12.55 21.50 | 1500 - 895 0 895 12.0 1432] - 13425
8 8 2 ! 0625 | 0.707 |- 2045 1255 | 15.15 - 33.00 0.15 3300 87.5 5280 -496.88
9 s 4| M 0.459 | 1098 1255 12.55 | 31.10 1500 0 16.10 16.10 487 35.08] ~202.06
it Ak < 1.0 then, (- ()@ + . 2
**This holds by virtue of the equation for YY-FLEX in Appendix A, recognizing that for AREA =2x Tl 2359 FT
the symmetric hull of the sample problem, Iyz =0. 14415 necessary because |, here -
has the units f121n.2, and YY-FLEX. has units of ft=%. Simlarly, ZZ-FLEX == Y =-1823 Z-0
o4 w14 4 1
YY = FLEX. . =0.9474 x 10 =
zz
YZ-FLEX. =0
144 _
ZZ-FLEX.** = —=1337x107* =0

lYY




qr

TABLE 4b Y.Shear and Z-Shear

1P QparT Q LOOPS asn oy, <10° | Ras | Qx®
(0] Q0 ® ® |0 ® @
Qout ¥'s le
1 | ~(7+6+8+243+445) | —4,0687 ) 0 1030 |-4.0667 | 3341 170.51
2 ~(3+445) ~5.5560 1 -1 2,11 |-6.5187 525.9 939,53
3 ~(5+4) -6.2132 1 -1 2289 |-7.1759 | 5045 1178.69
4 -5 -3,5423 1 0 8.8 |-4.4902 | 266.8 178.63
5 - 0 1 0 1732 |-09419 | 356.4 15.56
6 -7 ~1.2794 0 0 220 |-1.2194 | 3225 36.37
7 6+7) 48362 1 0 1432 | 3.8883 | -1342 216,50
8 (6+7+8) 6.8133 \ -1 52,80 | 5.8506 | -946.9 1807.32
9 - 0 0 1 3508 | 00148 | -202.1 0007
{0000 0947 +0.0148 1 4 5= 454312
FACTORS
P Upart Q LOOPS as/t | gy, <103 @) > ()?
o lo"8l®@ ® @@ |@
‘ ™
1 -20402) o 0 -1 | -1030 |-12217 | 3340 1531.33
2 12561 ] 1 -1 0 | 221 {-s5.899 | 5259 769.39
3 -150) 1 -1 0 | 2289 |- o084 | 5045 16.42
' -345] 1 0 0 a.86 | 131 | 2268, 15.46
5 0 1 0 0 | 1732 | 413 | 3564 388.48
3 0 0 -1 | 2222 | sass | 3225 1488.61
7 1620] 1 0 1| 132 |- 1829 |-1342 47.90
8 0m7] 1 -1 1 | 5280 1.559 |-946.9 128.33
s | oo 0 1 o | 35.08 |- 192 |-2021 13013
FACTORS  1.000  4.736 -1926 -8.185 5 = 4522.05

K\ 138.30 - 9780] ! /13255 B -0 9479
Kl Tl 97.80 132.88 - 9468 ) | -+0.0148

YY-FLEX. =2 x 12 x (4543.12 x 10~6) = 0.1090
Z ~ SHEAR CENTER =0

K, 13830 -97.80 7.7} -1 [-29420 +4.7%
Ky |=- |- 97.80 13288 -52.80 26714 | = | -1.9%
K, 67.12 - 5280  99.64 395.80 -8.185

27 - FLEX. = 2 x 12 x (4522.05 x 10~6) = 0.1085
Y - SHEAR CENTER =2xX (@) x @) =2(-3.114)=-6.228

NotE: (5) .
3.8

Qyy
QV:

®. RAs. Same as YZ., = Y Zy on Sheet 1, Column 15 (bottom). R is
perpendicular distange from origin to plate. (See Figure 9 and page 72).

Alj 2
. Used in calculating 3 I va 2. for determination of
t )2,

i
]
1
(d—), (‘xA_') (YY ~ FLEX. and ZZ = FLEX.)
vy 2z

(See Equations [46]—[48] of Appendix A.2 and pages 84—85).

Description of 1st loop

Description of 2nd loop

Description of 3rd loop -
Shear flow in plates for Vy =1, V' =0, M‘ =0

. - - see pages 72-75.
Shear flow in plates for Vy =0,V,=1, M, =0




TABLE 4c Torsion

» 3
9 9 x10 ,
P | ras | Aspt Q Loops Hot | =0.888  |()(®)
Lji Normal x@
DT @ O [OTO T O] O ®
1 334.06 | 1030 | 0 0 -1 0.273 | 0.242 0.6032
2 | 52590 | 22.11 1 -1 0 0.214 | 0.190 0.7982
3 504.53 | 22,89 1 -1 0 0214 | 0.190 0.8263
4 | 266.80 | 8.86 1 0 0 0.190 | 0.168 0.2500
5 356.35 | 17.32 ] 0 0 0.190 | 0.168 0.4888
6 | 32250 2222 | o 0 -1 0.273 | 0.242 1.3012
7 |-134.25 | 1432 1 0 1 -0.083 | -0.074 0.0783
8 |-496.88 | 52.80 | 1 -1 1 -0.059 | -0.052 0.1426
9 |-202.06 | 35.08 | 0 1 0 | -0.02a |-0.021 0.0154
FACTORS  0.190 | -0.024 | -0.273 3 = 4.504
-
/Kl 138.30 - 97.80  67.12 10.2 0.190
S B B A 132.88 -52.80 -13 ) | oo
\Ks‘ 67,12 - 52.80  99.64 -12.8 -0.273
2@ xQ =563
2 %563 .
-3
TORSION FLEX. = 2 x 12 x (4.504 x 10-5) =0.1081 x 1072 1/FT

NOTE: tAAs same as RAs, Cols. @,@ Sheet 2.
@, @, @ Q Loops Specification of three loops.
ag* (Not Normat) () =(0.190) (3) +(-_o.ong@ + (~0.273) (6

These are shear flows for Vy = Vz =0, G X =1
dx -
q.r. These are shear flows in plates for Vy =V, =0, ﬁx =1.

As
@ Calculation of ;.' (T) QTj2 for torsion flexibility. See Appendix A.2,
i

Equation [Sl] and page 84-85,
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99
523

500

501
502

99

1

Figure 4 — FORTRAN Statements and Symbols

DIMENSION A(150)9AK(150)9AD(150)9C(30)sLINK(150)9IN(150)
INT(150)sNH(150) sNEXT(150) s NRANK(150)sNC(30)sPK(150)9IP(150)
2PD(180)sPG(150)sPT(150)sQ0Y(150)+Q0Z(150)9Q(150+30)s1IW(100)>»
3QY(150)90Q2(150)sQT{150)sR(150) sRDS(150) sW(100)oWYY{(100)>»
AWYZ(100)sWZZ(100)sY(150)sYW(100)92(150)92ZW(100)sMTYPE(150)

1F(SENSE SWITCH 5)52449523

READ 1

IF(SENSE SWITCH 615009501

WRITE OUTPUT TAPE 691

GO TO 502

PRINT 1}

READ 2sNNoNP oNWIKEYsDXs»RHO9SCALE
READ3»(IN(IVsY(I) 92 (I )sA(I)sAK(I)2AD(I)oImlsNN)

READ&4s (IP (1) sNT(I)oNHII)sPGLIVNPT(I)sPK{T)sPD(I)sImleNP)
IF (NW) 99991009999

READS s ({IW L) oW (T} sYW{TI)oZWIT)oWYY (T oWYZ(T)oWZZ(T)oI=m]1oNW)

GO T0 100

FORMAT( T2HCOMPUTER ENGINEERING ASSOCIATESs A DIVISION OF SUSQUEHAN
1A SCIENCESes INCe)

FORMAT (41595X93F10e4)

FORMAT (1595F1044)

FORMAT (31504F1044)

FORMAT(IS5e6F1004)

FCIMAT(10H MASS = sElled)

FORMAT(10H Y = CG = »sElleé)

FORMATI(10H Z = CG = sElleé)

FORMAT(IOH I = YY = sElleé)

FOTHATIIOH I = YZ = sElleéd)

FORMAT(IOH | = ZZ = sElled)

FCTHATLION 1 = MX = 3Elleé)

FORMAT{18H STRUCTURE AREA = sElle4)
FORMAT(18H Y EL AXIS = 9Elle4)
FORMAT(18H Z EL AXIS = 9Elle4)
FCOUATLI8H YY FLEXIBILITY = sE11e4)
FOXMATI18H YZ FLEXIBILITY = sElle4)
FORMAT(18H ZZ FLEXIBILITY = sElleé)
FORMAT(24H Y SHEAR CENTER 2 sEllaé)
FORMAT (24H Z SHEAR CENTER = 9Elled)

FORMAT(24H TORSION FLEXIBILITY = sElles)

Figure 4a~-1 — The FORTRAN Statements

INPUT







61

22 FORMAT(24H YY SHEAR FLEXIBILITY = s€11e4)
23 FORMAT(24H YZ SHEAR FLEXIBILITY = 2E11e4)
24 FORMAT(24H ZZ SHEAR FLEXIBILITY = sElle4)
524 READ INPUT TAPE 591
IF(SENSE SWITCH 615259526
52% WRITE OUTPUT TAPE 691
GO TO0 527
526 PRINT 1
527 READ INPUT TAPE 5929sNNsNPINWIKEY s DXsRHO»SCALE
READ INPUT TAPE 593 (IN{I)oY(I)sZ(I)sA(I)sAK(TI)sAD(I)»I=19NN)
READ INPUT TAPE Ssks{IP(TI)sNT(IIsNH(I)sPGLI}sPT(I)sPK(TI)oPD(I)s]l=1
19NP)
1F (NW) 10051009528
528 READ INPUT TAPE 5o5¢(lw(])9N(t)qYN(I).Zw(l)owYY(l)owYZ(I)'NZZ(I)’I
1=]19NW)

1NPUT

100 DO 101 I=1sNN
101 A(I)=A(I)/(SCALE®#2)
DO 102 I=1sNP
102 PT(1)Y=PT(1)/SCALE
KEYD=]
DO 200 K=19150
300 NRANK(K)=0
DO 301 J=19NN
K=IN(J)
301 NRANK(K)=y
DO 399 I=1»NP
K=NT (1)
IF(NRANK(K))303»3039304
304 NT(I)=NRANKI(K)
KsNH(I)
IF(NRANK(K))305+305+302
302 NH(I)=NRANK(K)
GO TO 399
398 FORMAT(7TH PLATE +13916H REFERS TO NODE »13923H WHICH WAS NOT pEF[N
1€De) I
303 IF(SENSE SWITCH 615035504

503 WRITE OUTPUT TAPE 69398 IP(I)eNT(I) NUMBERING

GO TO 505 ERROR
504 PRINT 398y IP(I)NT(I) DIAGNOSTIC
505 KEYD=2

Figure 4a-2

SCALE
RENUMBER




305
506

507
508

399

306

103

998

06

104
997

105
106
107
108

GO TO 304

IF(SENSE SWITCH 615064507

WRITE OUTPUT TAPE 619398 IP(I)sNH(I)
GO TO 508

PRINT 398 IP(I)eNHI(I)

NUMBERING ERROR

DIAGNOSTIC SCALE

RENUMBER

KEYD=2
GO TO 302
CONT INUVE

GO TO(306999)sKEYD
KEYA=(KEY/100)
KEYB=(KEY/10)=10%(KEY/100)
KEYC=KEY=10#(KEY/10)

EXTRACT KEY

GO TO(103+10691069108)9KFYB

SW=0,40

SWY=0,0

SWZ=060

SWYY=060

SWY2Z =040

SWZZ 20,0

IF (NW) 9974997,9958

DO 104 1l=1sNw

SWaSW+W( )

SWYESWY+W(I)#YW(])
SWZaSWZ4+W(1)#ZW(1)

SWYY=SWYY+WYY (T)+W(I)®YW(I)RYW(])
SWYZ=SWYZ4+WYZ (I +W(T)*YW(I)#ZW(])
SWZZ=SWZZ4+WZZ (1) +W (1) %ZW(I)*Zw(])
DO 105 I=1sNN
G=A({1)#AD(])*RHO¥DX

SWaSW+G

SWY=SWY+G#Y(])

SWZaSWZ+G*2 (1)
SWYYaSWYY+HGHY (J)#Y ()
SWYZ=SWYZ+GRY(1)%#2(1)
SWZZ=SWZZ+GHZ (1) #2(])

ADDITIONAL AND
NODE MASS SUMS

L

DO 107 I=1»NN
AlT)=A(1)®AK(])

EFFECTIVE TENSION AREA

DO 110 JU=1sNP
JHENH(J)
JTaNT(J)

|
PLATE LENGTH, raS
4S/Gt, TENSION AREA



15

110

111
112

YH=Y (JH)

vYTaY(JT)

ZH=Z (JH)

ZT=2(JT)
G=SQRTF((YH=YT) %224 (ZH=2T | ##2°)
ROS(J)BYH®ZT=YT#*ZH
R(J)=G/IPG(J)I*PT(J))
A(JH)I=A(JH)+(CoS*GHPT (U1 *¥PK(J))
ACITI=ALITI+(CaS#GHPT (1 #PK(J))

PLATE LENGTH, raS
4S/Gt, TENSION AREA

GO TO (10991159110911C0)sKEVYR

G=G#PT(J)I®PD(J) *RHO*DX

SW=SW+G

SWYRSWY+G#0 (5% (YH4YT)
SWZ=SWZ4+CoC S#(7H+7T)
CWYYZSWYY4+GH0 4 25% (YH&YT ) #(YH4YT)
SWYZ=SWYZ+C*0 ¢ 25# (Vi4VT ) #(7H42T)
SWZ7Z=2SWZZ4G#0425% (ZH+ZT)®(ZH+ZT)
CONT INVE

!

ADD PLATE MASS
TO MASS SUMS

|

GO TO(1119114+114912C)sKEYR
GO TO(1139112)9XFYA

SW=2 4 0#SW
SWY=2 4 0%SWY
SWZ=Ce0
SWYY=2240%#SWYY:
SWYZ=0 a0
SW2Z2=224C%SW22Z

MODIFY MASS SUMS

SWYaSWY/SW
SWZ=SWZ/SW
SWYYRSWYY=SW®SWY #SWY
SWYZ=SWYZ=SW*SWY*SWZ
SWZZ=SWZZ=SW#SWL*SWZ

3
COMPUTE MASS PARAMETERS

SA=0.°

SAY=20,0

SAZ=040

SAYY=040
SAYZ=040
SAZZ=040

DO 115 I=1sNN
SA=SA+A(])
SAY=SAY+AL]1I®Y(])

Figure 4a-4

COMPUTE AREAL MOMENTS




115
116

117

118
119

120
121

122

123

124
125
126

SAZesSAZeAV,, - c(])

SAYY=SAYYSA(1)RY(I)®Y(])
SAYZ=SAYZ+A( 1) nY(1)%2(])
SAZZ=SAZZ+A(1)#Z(1)%Z(1)

COMPUTE AREAL MOMENTS

GO TO(1179116)9KEYA

SA=2 40#SA
SAY=2 o 0#SAY
SAZ=040
SAYY=2,0#SAYY
SAYZ=040
SAZZ=2,0#5SAZ2Z

|
!

MODIFY AREAL SUMS

SAY=SAY/SA

SAZsSAZ/SA .
SAYY=SAYY=SA%SAY*SAY
SAYZ=SAYZ=SA®SAY®RSAZ
SAZZaSAZZ=SA%#SAZ%®SAZ
G=160/(SAYYRSAZZ=SAYZ#SAYZ)
SAYY=G#SAYY

SAYZ=GRSAYZ

SAZZ=GH*SAZ2Z

|
!

COMPUTE AREAL PARMAETERS

|

GO TO(118+11895099120)KEYB

DO 119 I=1sNN
QOY(I)mA(T)#(SAZZ#(Y(])=SAY)=SAYZ#(Z(1)=SAZ))
QOZ{I)mACT)#(SAYY#(Z(])=SAZ)=SAYZ#(Y(I)=SAY))
DO 121 I=1sNP
MTYPE(1)=0

DO 122 I=1sNN
NEXT (1) =0
LINK(L) =0
NRANK(1)=0
NRANK (1)=]

COMPUTE Q OUT

{

!

‘SETUP FOR TREE SEARCH

l

GO TO(1269123)9+KEYA

LC=0

D0125 1=1sNN
IF(Z(1))12591249125
LC=LCel
NC(LC)=]

CONT INUE

NRANK (1)=NC (1)

T

AODIFY FOR SYMAETRY

l

K=1

Figure 4a-5

TREE SEARCH



€6

127
128
129
130
131
132

133
134

135

136

137

138

139

140
141
142
143

144
145

DO 137 J=1sNN
IF(NRANK(J))1969196+128

DO 136 I=1sNP
IF(MTYPE(I))13691299136
IF(NTCI)=NRANK(J))1305131+130
IFINHUT)=NRANK(J))13691329136
LA=NH(T)

LB==~]

GO TO 133

LA=NT(])

LB=1

IF(NEXT(LAY 113491350134
MTYPE(I)==]

GO TO 136

NEXT (LA)=NRANK (J)

K=K+1

NRANK (K}=LA

MTYPE(1)=]

LINK(LA)=LB

CONT INUE

CONT INUVE

TREE SEARCH

DO 138 I=1+150

DO 138 J=1430
Q(19J1=2060

L=0

DO 149 I=1sNP
IF(MTYPE(I))13991499149
L=l+]

Q(IsL)=1,40

JENH(T)

TF(LINK(J)) 18191045142
K==L INK(J)
QIKsL)2Q(KoL)=10e0

GO TO 143

KsLINK(J)
Q(KsL)®Q(KsL)4+1e0
JENEXT (D)

GO TO 140

JENT ()

IF(LINK(J) 14691499147

Figure 4a-6

FIND TREE LOOPS




146 Keal INK(J)
QIKsL)®Q(KoL)+140

GO TO 148
147 K=LINK(J)
Q(KelL)®=Q(KoL)~1e0
148 J=aNEXT(J))
GO TO 148
149 CONTINUE
LA=L
. GO TO(156+996) sKEYA
996 IF(LC=1)156+156+150 FIND TREE LOOPS
150 DO 15% I=2,LC
LA=LA+L
JuNC (1)
151 IF(LINK(J))152+1559153
152 K==L INK(J)
Q(KsLAIB=1,0
GO TO 154&
153 KsLINK(J)
Q(KoLAIR140
154 J=NEXT(J)
GO TO 151
155 CONT INUVE
156 IF(LA) 1969196+310 ‘
310 DO 163 J=1,LA 1
DO 162 K=JsLA
200 G=0,0
DO 157 I=1yNP
187 GsG+R(1)#Q(1sJ)%Q(19K)
IF(K=J)160+91589160
158 G=1,0/SQORTF(G) ; GRAM SCHMRIDT REDUCTION
DO 159 l=1.NP
159 Q(I9J)nGHQ(T9J)
GO TO 162
160 DO 161 I=1sNP
161 Q(I+K)BQ(IsK)~GH*Q(1sJ)
162 CONT INVE ‘
163 CONTINUE
GO TO(1649164+5099177)sKEYB -
164 DO 165 I=]1sNP FIND SHEAR FLOWS DUE TO Y=2Z SHEARS

Figure 4a-7



165

166

167

168

169

170

311

171

G6

172
173
312

174

175
176
177

178
179
185
186

QY(I)=0e0

QZ(11=040

K=NN

I=NRANK (K}
IF(LINK(I))16791T700168
Ja=L INK(])

QY (J)=e=QOY (1)
QZ(J)==Q02( 1)

GO TO 169

J=LINK(])

QY (J)=QOY (1)
QZ(J)=Q0Z (1)
JENEXT(I)
QOY(J)=QOY(J)Y+QOY( 1)
Q0Z(J)=Q0Z(J)+Q0Z(1)
K=K=1

GO TO 166

IFILY 31293125311
00 173 I=1l»L

G=0,60

DO 171 JU=m1lsNP
GaG+R(J)®QY(J)*Q(Js 1)
DO 172 J=]l NP
QY(J)1=QY(J)=G*Q(JIs 1)
CONT INUE

DO 176 I=1sLA

G=0.0

DO 174 J=19NP
GRG+RIJIRQZ(J)*Q(JIs])
DO 175 J=19NP
QZ(J)=Q2(J)=GH*Q(Js 1)
CONT INUVE

F IND SHEAR FLOWS
DUE TO Y=-Z SHEARS

1

G=0e0

DO 179 K=1sLA

C(K)=0e0

DO 178 I=loNP
CIK)ISCIK)I+QIIsK)RRDS(])
G=G+C(K)I*C(K)

GO TO(5109186)+KEYA
G=240%G

Figure 4a-8
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96

510

180

181

182
183

184

509
187

188

189

G®=1.0/6

DO 180 I=1sNP

QT(I)=04

DO 180 J=m1lsLA
QT(1)=QT(1)+G#C(J)*Q(1sJ)

FIND SHEAR FLOWS DUE TO TORQUE

i

GO TO(1815181+509+509)sKEYSE

UY=0,0

UZ220,0

UYY=0,60

UYZ=2040

UZZ=060

DO 182 I=]lsNP
UYsUY+RDS (1) 2QY(])
UZ=2UZ+RDS(I1)#Q2(1])
UYY=UYY4+R(I)%#QY(1)%*QY(])
UYZ=aUYZ4R(I)®RQY(I)*QZ(])
UZ2=U2Z+R(1)1#QZ(1)*#QZ( 1)
GO TO(1849183)sKEYA
UY=0,0

UZ=24,0%U2Z
UYY=2,0%UYY

UY2=0e0

UZZ=20%022

UYs=yyY

COMPUTE Y=Z SHEAR PARAMETERS

IF(SENSE SWITCH 6)511+187
GO TO(188518991899191)9KEYB
PRINT 69SW

PRINT 7sSWY

PRINT B8sSWZ

PRINT SeSWYY

PRINT 10sSWYZ

PRINT 119SWZ2Z
SWYY=SWYY+SWZZ

PRINT 129SWYY

PRINT 13sSA

PRINT 149SAY

PRINT 15sSAZ

PRINT 169SAYY

PRINT 17sSAYZ

PRINT 18»5SA22

Figure 4a-9




13

190

191
192

193
194
900

195

511
512

513

514

515

516

GO T0(190+190+1939193)9KEYB
PRINT 19»UZ

PRINT 20sUY

GO TO(191919151939193)KEYB
PRINT 216G

GO TO0(1929192+1939193)9KEYB
PRINT 22»UYY

PRINT 23sUYZ

PRINT 24»U2Z

GO TO(999194) sKEYC

GO TO (9009900+99+195)+KEYB
PRINT 25

PRINT 26+ (IP(1)sQY(I)sI=1eNP)

PRINT 27

PRINT 282 (IP(I}sQZ(1)sI=1sNP)

PRINT 29

PRINT 30 s(IP(1)sQT(1)s1n)lsNP)

GO TO 99

GO TO(512951395139515)+KEYB
WRITE OUTPUT TAPE 6969SW
WRITE OUTPUT TAPE 697 sSWY
WRITE OUTPUT TAPE 6989s5SWZ
WRITE OUTPUT TAPE 6»9sSWYY
WRITE OUTPUT TAPE 69109SWYZ
WRITE OUTPUT TAPE 6+119SWZ2Z
SWYY=SWYY+SWZZ

WRITE OUTPUT TAPE 6912sSWYY
WRITE OUTPUT TAPE 69133sSA
WRITE OUTPUT TAPE 63s149SAY
WRITE OUTPUT TAPE 69159SAZ
WRITE OUTPUT TAPE 6+16sSAYY
WRITE OUTPUT TAPE 69179SAYZ
WRITE OUTPUT TAPE 691895SAZZ
GO TO(51495149517+517)9KEYB
WRITE OUTPUT TAPE 69192UZ
WRITE OUTPUT TAPE 6920»UY
GO TO{515+515+5179517)sKEYB
WRITE OUTPUT TAPE 6921+G

GO TO(51695169517+517)+KEYB
WRITE OUTPUT TAPE 69222UYY

Figure 4a-10




517
518
519

520

196

86
»
N
~N

WRITE OUTPUT TAPE 6»23sUY2

WRITE OUTPUT TAPE 69244022

GO TO(999518) sKEYC

GO TO(5199519999+520)sKEYB

WRITE OUTPUT TAPE 6925

WRITE OUTPUT TAPE 69269(IP(1)sQY(1)9I=1sNP)
WRITE OUTPUT TAPE 6927

WRITE OUTPUT TAPE 69289 (IP(I)9QZ(1)elI=1sNP)
WRITE OUTPUT TAPE 6929

WRITE OUTPUT TAPE 69309 (IP(I)sQT(1)sl=1sNP)
GO TO 99

IF (SENSE SWITCH 6) 522,521

!

PRINT 31

GO TO 99 NOT PROPERLY CONNECTED
WRITE OUTPUT TAPE 6331 i

GO TO 99

FORMAT(29H SHEAR FLOWS PER UNIT Y SHEAR)
FORMAT(I5+E1544)

FORMAT(29H SHEAR FLOWS PER UNIT Z SHEAR)
FORMAT(IS59E1544)

FORMAT(28H SHEAR FLOWS PER UNIT TORQUE)
FORMAT(IS59E1544)

FORMAT(40H THE STRUCTURE 1S NOT PROPERLY CONNECTED)

Figure 4a-11



A(150)
AX(150)
AD(150)
c(30)
DX

1
IN(150)
1P(150)
IW(100)
J

JH

J7

K

KEY
KEYA
KEYB
KEYC

KEYD

LA

LB

Ares of node, Input; effective-tension srea of node.

Tension effectiveness of node, input,

Density ratio of node, Input.

QT R (QT 1s the transpose of Q.)

Length of hull segment, input.

Mass of node; length of plate; mass of plate; (used for

many Items in calculations), the last definition Is
1/Keffectlve polar moment for torque calculations) = 1/U. o
Index used in many loops.

Node number, Input (<150).

Plate number, input (=150),

Additional mass number {not used).

Index used in many loops.

Node at head of ptlate,

Node at tail of plate.

Index used In many loops.

Branching Instruction, Input,

First diglit of KEY, used to Indicate symmetry,

Second digit of KEY, used to choose which calculations to make,
Third digit of KEY, used to output shear filows |f desired.
Used to indicate error in plate numbering.

Number of loop which Is belng found in matrix Q; number of loops.
New node found on tree search; number of loops symmetric cese.

+
- plate which makes connection In tree search,
Figure 4b-1 — Index of FORTRAN Symbols and Switching

When one name is used for more than one variable, the

definitions are separated by a semicolon.
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Lc
L INK( 150)
MTYPE( 150)

Nc(30)
NEXT( 150)
NH(150)

NN
NP

NRANK( 150)

NT(150)

NW
PO(150)
PG(150)
PK(150)
PT(150)
Q(150,30)
Qov( 150)
Q0z( 150)
QT(150)
QY(150)
Qz(150)

Nunber of nodes on centerline.

Plate »hich connects to next lower node on free,

Relatlon of plate to tree (+1 1f It Is on tree, =1 If It
closes loop).

Numbers of nodes on centerlline.

Next node down tree.

Number of node at head end of plate, Input (<150); changed
to Internal number,

Number of nodes, input (<150),

Number of plates, Input (< 150).

Internal node number for external node; order of searching
nodes for tree.

Number of node at tail end of plate, input (=<150); changed
to internal number,

Number of additional mass |tems, input (=< 100),

Density ratio of plate, Input,

Shear modulus ratlo of plate, Input,

Plate effectiveness In tension, Input,

Thickness of plate, input,

Matrix of tree loops; ortho-normal! basls of I%0ps.

Shear flow leaving node per unit y=shear,

Shear flow leaving node per unlt z-shear,

Shear flow due to torque,

Shear flow due to y-shear,

Shear flow due to z-shear.,

Figure 4b-2
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R(150)
ROS( 150)
RHC
SA
SAY
SAYY
SAYZ
SAZ
SAZ2
SCALE
SwW
Swy
SwWYY
SWYz
SW2Z
swzz

Uy

uvz
uz

uzz

w( 100)
wry(100)
wyz(100)

wzz( 100)

As/Gt for plate.

Twice the area of the triangle from origin to plate,

Density of material, I1nput.

Cumulative area.

Cumulative 1st moment of aree; y coordinate of area centroid.
Cumulative 2nd moment of area; moment about centrold.
Cumulative 2nd moment of area; moment about centrold.
Cumulative 1st moment of area; z coordinate of srea centrold.
Cumulative 2nd moment of area; moment about centroid.

Scale factor to modify A(I) and PT(I), input,

Cumulative mass,

Cunulative 1st moment of mass,

Cumulative 2nd moment of mass,

Cumulative 2nd moment of mass,

Cumulative 1st moment of mass,

Cumulative 2nd moment of mass,

, z-shear center

Shear parsmeters (last item In calculations).

' y-shear center

Welght of additional mass |tem, Input,

y Iinertia about center of gravity for mess [tem, Input,
yz Inertis about center of gravity for mass item, Input,

z Inertia about center of grevity for mass |tem, input,

Figure 4b-3
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Y(150) y coordinate of node, input.

YH y coordinate of head of plate,
Y7 y coordinate of tall of plate.
yw(100) y coordinate of mass |tem, Input,
2(150) z coordinate of node, input,

ZH Z coordinate of head of plate,
27 2z ocoordinate of tall of plate.
Zw(100) z coordinate of mass Item, Input.

SENSE SWITCH 5 (Read Tape 5, Read Card)

SENSE SWITCH 6 (Write Tape 6, Print)

KEYA (General; Symmetric)

KEYB (Mass, Bending, Torsion, Shear; Bending, Shear, Torsion; Bending; Tors,iOh)
KEYC (Besm Parameters Only; Output Shear Flow)

KEYD {Plate Nusbering Okays Error in Plate Numbering)

Figure 4b4
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N Figure 5 — Flow Charts

SCALE, RENUMBER

i NUMBERING ERROR

DIAGNOSTIC

—

PLATE LENGTH,
1AS, AS/Gt,
TENSION AREA

1

ADDITIONAL AND
NODE MASS SUNS

EFFECTIVE
TENSION AREAS

ADD PLATE MASS
TO MASS SUNS

MORE
PLATES

YES

2 |

w
| —

| [

SETUP FOR TREE SEARCH

COMPUTE Q OUT

MODIFY FOR SYMMETRY

TREE SEARCH

NOT PROPERLY
s CONNECTED

FIND TREE LOOPS

*

{ cuan sewo 107 reoucTion |

12
4 .
FIND SHEAR FLOWS FIND SHEAR FLOWS
GUE TO Y-Z SHEAR DUE TO TORQUE

12 4
|

OuTPUT

fcowpute v-2 suEAR ParAMETERS




READ TAPE 5
IDENTIFICATION

OFF

READ FIRST CARD
IDENTIFICATION

ON OFF ON OFF
WRITE TAPE & PRINT WRITE TAPE 6 PRINT
IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION
| | | 1
READ TAPE 5 READ CARDS
CONSTANTS CONSTANTS
NODE DATA NODE DATA
PLATE DATA PLATE DATA

READ TAPE 5
MASS DATA

Figure 5b
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NOTE: At time of entry:

MTYPE(D=0, I=1, NP
NEXT() =0, =1, NN
LINK() =0, .I=1, NN
NRANK()=0, =2, NN
NRANK(I) =

ERROR EXIT

1general case number
of a node on center-
line 1f symmetric

£0

| TEST NTU)-NRANK(J) ] | TEST NH(I)-NRANK(J) |
#0
=0 20 =0
LA=NH(l) LA=NT(l)
LB=I LB<I
| TESTNEXT(LA) ]
=0 #0
LMTYPE()=-1 ]
NEXT(LA)=NRANK(J)
K=K+1
NRANK(K)=LA
MTYPE())=1
LINK(LA)=LB
T |
E_ DOES | = NP 3
YES NO
DOES J=NN
NO YES
Figure 5¢
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* Find Tree Loops*

Q(1,))=0.0; 1=1, 150; J=1,30
L=0
I=1

1
TEST MTYPE(!)
L ( l—l . 1+1

<0

L=L+1

Q(l,L)=1.0
)=NH() J=NT()

I TEST LINK(J) l I TEST LINK()) l
=0 =0
<0 >J—— <0 >Ul

==~ LINK(J) K=LINK()) ==LINK()) K=LINK(J)
Q(K,L)=Q(K,L)-1.0 QK,L)=Q(K,L)+1.0 Q(K,L)=Q(K,L)+1.0 Q(K,L)=Q(K,L)-1.0
{_DoEs 1-nP
YES NO
1=2
§
LA=LA+1
J=NC(l)
r 3
| TEST LINK() |
=
<0 |
>0 1+1
K=-LINK(J) K=LINK(J)
Q(K,LA)=-1.0 Q(K,LA)=1.0
TEST LA
J=NEXT (J) I DOES I=LC = 20
o
YES
Figure 5d
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28

|

Q=0 1=1,NP
QzZ(1)=0

*Find shear flows due to Y-Z shear,

J==LINK() J=LINK() TEST L
o8z | | §z-toz N E
=~ 9z=Q0z(1) =
[ =]
| ] |
NP
J=NEXT()) 6=0+ 2 RUQV(H*QU,D
QOY(5)=Q0Y(1)+QOY() J=1
Q021 =Qoz()+Q0zh | QY()=QYU)-G* Q1% J=1, NP
| T+1 DOES I=L
NO YES
i=1

NP
8=0+ J}:1 ROY* QZUY* 1

Q2())=Q2())=6* Q(J,1); J=1, NP

YES

Figure Se

[ =00 ]
K=1
—
(13
CR=0+ 3o QLK*ROS()
=)
6=G6+ C(K)*C(K) A

DOES K=LA
NO

0T('>-°~°+#A G*CU)*Q(,J); I=1, NP
=]

Find Shear Flows*
Due to Torque

Figure 5f



WRITE TAPE 6
MASS PARAMETERS

-1
WRITE TAPE 6
AREA PARAMETERS

3.4 e 1,2

PRINT MASS
PARAMETERS

PARAMETERS

PRINT AREA

©

1,2

WRITE TAPE 6
SHEAR CENTER

PRINT SHEAR
CENTER

KEYB
34 1,2

©

1

WRITE TAPE 6

TORSION FLEX.

PRINT TORSION

34 e 1,2

WRITE TAPE 6
SHEAR FLEX.
KEYC
2 1
KEYB
1,2 4

WRITE TAPE 6
Y-Z SHEAR FLOWS

]
WRITE TAPE 6
TORQUE SHEAR FLOWS

L

34

3.4

FLEX.
1,2 a 34
PRINT SHEAR
FLEX.
KEYC
1 2

KEYB

3 1.2
4

PRINT Y-Z

SHEAR FLOWS

PRINT TORQUE
SHEAR FLOWS

T

Output*

Figure 5g



188.30 =2 (D . (®2
-9780-3®@ -® -®
132.88 =3 (D - (6)2

and the numerical value of the elements in the right-hand matrix of Equation [32] are

13255 =3®@ -® - @
-94.68=2® -®-@

—-0.9479 K . .
4 = The solution 1 % obtained by matrix inversion and multiplication, as indicated
+0.0148 K,

in Sheet 2 of Table 4.

In accordance with the statement following Equation [32], we substitute the K;’s in
Equations [11], [12], and [13] of Appendix A.2. This requires the use of Equations [14] and
[15]. For the present problem, the procedure is then as follows:

Multiply Column (%) by 1.0 (see footnote on page 12), Column @ by (K,) = (-0.9479)
and Column (6) by (K,) = 0.0148, and add to find Column (8), which is the shear flow distri-
bution due to a unit y-shear.* The YY Flexibility is calculated at the right of Sheet 2 (see
Equations [46]—[48] of Appendix A.2 and pages 84 and 85.) The z-shear center is obviously
zero. In general, it is calculated by Equation [36] of Appendix A.2.

The z-shear calculation is almost the same, but now there is a third loop for anti-
symmetric forces, which is from nodes 1 to 6 (along centerline) and return via tree (see
Column on Sheet 2 and footnote on page 50).

Figure 6 and Sheet 2, Table 4 show how the sample hull cross section, which is
symmetric and has five compartments, is treated with two loops for symmetric loading (y-=hear),
and with three loops for antisymmetric loading (z-shear). It is evident that the third loop
cannot carry shear symmetrically. Column defines the third loop. The z-shear solution
now involves the solution of three simultaneous equations for K., K,, and K, as follows
(See Appendix A.2, Equation [32]).

138.30 - 97.80  67.12 @) @2 @ E® =@
-97.80 13288 -52.80| - |T@) @@ @ @)? @) @)
67.12 -52.80  99.64 @) 2@ @ @) @92

*The operation performed here is =®+@Kl +@ Ky, which is equivalent to {qj¥ = {qpart jf + [le] {K1§
(see Appendix A.2). Here, Column @is {qpart j} by the indicated ci-peration {qgart j} = [Tji] {qout i} and

Columns @ and @constitute [LjI]' Since this is done with ‘_Iz = ﬁx = 0 and Vy =1, the values assumed by

{qu are those of va.
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Ist loop 4

/ \ }
\ .« } | »/ st | P
\ll/z \'\I/JZ
2nd loop —_— \ — _’/
\ / 9
| | [~
— 1l —L -
zero shear
— l
3rd loop 1
bl
~l L~
Symmetric Antisymmetric
(y-shear) (z-shear,
torque)

Figure 6 — Shear Flows in the Loops




B Asj ) Asj Asj ]
Zt— le ET le Lj2 3 : le Lj3
i j i
Asj Asj ) Asj
Et—' le le p3 —t—— sz p3 : sz L.i3
j i j
AsJ Asj As,J
2 Lslp 2 Lgly 2= Ly
j j j ]
a As N
N r ;
(~294.20 z @) @) [z — L, q...
tj J part j
Asj
Sy -3@ @ @ I L G
i
As.
395.80 b3 3
@®@| = 1, o,
L J L J L I ,
+4.736 K1
-1.926 ¢~ = the solution{ K , obtained by matrix inversion and multiplication, as
2 y
~8.185 K,

indicated in Sheet 2 of Table 4.

Q, , is obtained in a manner similar to that for finding va as shown on Sheet 2 of
Table 4. The ZZ Flexibility is calculated at the right of Sheet 2; see Equations [46]—[48]
of Appendix A.2 and pages 84—85. The y-shear center is calculated by Equations [34] of
Appendix A.2.

The solutions for torque involve the same loops as for z-shear; however, there is no
particular solution due to q_ . because when Vy =V, =0, q,,, = 0 at each node; see page
76 of Appendix A.2. The solution for K, K,, and K, is now shown. (Refer also to Appendix
A.2, Equation [37].) ‘

138.30 - 97.80  67.12 20 @? 000 000
~97.80 132.88 -52.80| - @@ @B 100G
67.12 - 52.80  99.64 30@6@ 00® 1002

10.2 ONE) (RAs); L Area Loop 1Y)  (Entries are identical to
those in th i
13 p0=43@® GOy <= (RAs); L, » ={ Area Loop 2 mati(iax;n ¢ proviots

-12.8 2@ ® G ®as), L, Area Loop 3
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d
so that for G'-(9 =1

dx
0.190 K,
-0.024 > = the solution < K, >, obtained by matrix inversion and multiplication as
K
3 :

-0.273
indicated in Sheet 3. Columns @ and @ of Sheet 3 come from Columns @ and . at
the bottom of Sheet 1. Column @ =@ - K, + ® . K, + ® - K, , and is the shear flow

dé . . .

per unit G i ; see statement following Equation [87]. The net torque is @ -®, and
when Column (?) is divided by twice (for symmetry) this sum, then Column is obtained.*
The torsional flexibility is computed at the right of Sheet 3; see Equation [51] of Appendix
A.2 and pages 84 and 85.

Comparison of these computed results shown on Sheets 1 through 3 can be made with
Figure 2 and Table 8. The principal difference between these calculations and those used
by the program are the units (in sample problem, scaling was done after computing, in program
before computing) and the method of solving simultaneous equations. The weight calculation
for the sample problem (discussed in section Inertial Parameters in Appendix A.2, which

gives results agreeing with Table 3a) is presented in Table 4.

CONCLUSIONS

A procedure has been developed for computing the inertia-elastic parameters of a ship
hull in a mechanized manner by use of a digital computer. This procedure requires the routine
tabulation of basic data systematically obtained in a prescrihed fashion directly from ship
plans for use as input to the digital computer. The computer then calculates the ship param-
eters as output to be used in the finite difference form of the beam vibration equations |
developed in Reference 1. Such mechanization fits the trend toward routinizing complex

calculations leading to eventual design utility.

df

*If Vy=vz=qout=0' {Kl} is found from Equation [37] of Appendix A.2 for G d_ = 1. Then from Equations
x
[11], [13], and [38] {qj;G d_0 . = {qloop} G ﬂ -1 = [Lji] {Kx} G iig -1 ={Q9j} which is represented

dx dx dx

by Column @ From Equation [26] the net torque is 2@ -@ where @and, therefore, the torque corresponds

dé - a6
to a value of G — =1. The shear flow for Vy =V, =0, Mx =1 (but G — #1) is obtained from Equation

dx @ @ dx

[40]. Thus {q.} = = =0.888 + 1073 « (7) or 3 = 7 which i
. i = - = . q. 10" =0.888 - 10", which is
FVy=v,=0 " 22D @) 2-563 Qe g

Column . The factor 2 in the denominator has been added for symmetry.



RECOMMENDATIONS

1. Both manual and digital computer calculations of the section properties of ship hulls

(i.e., equivalent beam parameters) should be made for a number of ships.

2. The digital computer method for obtaining these properties should be generally used
if the comparison is favorable or if the comparison between theoretical results (e.g., fre-
quencies, mode shapes, whipping response to slam, flutter response), based on the computer
program, and experiment is at least as good as the comparison between theoretical results,

based on hand computations, and experiment.
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APPENDIX A

The author recognizes that reader interest will vary widely on the theoretical aspect
of the paper. A working knowledge of the physical meaning of the equations used in the
coding may be required only. Or, interest may also be centered upon all of the fundamental
ideas underlying the derivation and use of these equations. Therefore, this Appendix has
been subdivided into two parts; Appendix A.1, which describes the method for evaluating
the section properties of the ship (sufficient for understanding the general procedure), and
Appendix A.2, which supplements this description with additional fundamental concepts and
mathematical detail. Thus, the theory can be pursued to the degree desired.

A.1 - METHOD FOR EVALUATING SECTION PROPERTIES

The theory of beams may be considered as the limiting case of the general theory of
elasticity applied to slender objects. In the theory of elasticity, the displacements and
stresses are unknown functions of position. Strain displacement, stress-strain, and equilib-
rium laws are available to solve for the unknowns. Most engineers consider the strain-
displacement laws and the equilibrium laws as independent unrelated ideas; however, one is
obtain able from the other by using the stress-strain law and a minimum principle (minimum
potential energy theorem). In the theory of beams, instead of taking unknowns in three spatial
dimensions, quantities are defined only along one lire, the ‘‘axis’’ of the beam. The unknowns
become six displacements (linear displacements in three directions and rotations about three
axes) of the cross section, and six forces* (tension, two bending moments, two shears, and a
torque). In the following, the elastic relations between the forces and displacements will be
found for beams constructed of stringers and plates. The equilibrium laws which come from
an application of Newton’s Second Law (force = mass - acceleration) are not given, but they
may easily be found to complete the beam theory.

Choose a rectangular cartesian coordinate system with the x-axis along the beam and
the y- and z-axis such as to form a right-hand coordinate system; see Figure 3. The dis-
placements of a cross section parallel and perpendicular to the x-axis will be given by U_
and Uy, U,, respectively. The rotations of the cross section about these axes are 6, Oy,
and 6, where positive sense is given by the right-hand rule. The resultant force associated
with these motions acting on the positive side of the cross section (acting upon the body which
consists of those portions of the beam on the -x side of the section) will have three linear
components V_, Vy, and V, and three moments M., My, and M,. All displacements, rotations,
moments, and forces are positive if the vector which represents them is in the positive
coordinate direction. In general, these 12 unknowns are functions of x (and possibly time).

Six equations for the unknowns come from equilibrium; the other six from elasticity.

*Forces here is used in a generic sense in that it includes moments and torques.
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In the following, we shall use the Theorem of Castigliano,’ which is a corollary of
the energy theorem. The theorem states that if the strain energy is written in terms of the
applied forces, the displacements at the point of application of any force (in the direction of
that force) is the partial derivative of the strain energy with respect to the force. Thus, if
W is the strain energy in that part of the beam corresponding to a value of x, then

v -¥. N _ oW
=7 gV, YoV, 2
L L L
* 7 oM, YT oM, 27 oM,

Consider a short segment going from x to x + Ax. The foregoing expressions will
give the elastic deformations, to which we add the rigid-body motions, due to deflections at
station'x. Let the strain energy between x and x + Ax be Ax W. Then the total deflections

at X + Ax are given by

oW
Ux x +Ax™ Ux x+Ax W
X
W
Uy x+Ax=Uy < +Ax6, X+Ax5v
y
oW
Ulx +ax = U, xA—Axeylx + Ax v
z
M
ox x+Ax=0x x+Ax oM
X
| i
0, |x + Ax = 6, |y+Ax M
y
W
ez x+Ax=ez z+Ax oM
z
If Ax goes to zero, W becomes the strain energy per unit length. Then
aw U gy dU w4y, )
— = ; —_— — - ; ——-—\’ = +
v, dx <9Vy dx z av, dx y
w46 ow 49 W do,
= — 3 _ _ =
oM, dx M, dx_ oM, dx

If the strain energy per unit length W can be expressed in terms of V_, Vy » Vo My, My,

and M, , these six equations will give the desired elastic equations.
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Beam theory assumes that the stresses Oy

the force per unit area acting on a face perpendicular to the i-axis and in the j-direction).

» 0y,» and o, , vanish (o;; is defined to be

Thus the strain energy per unit length is given by (see Chapter 6 of Reference 7):

2 2 2
TR I e N B 2 P
2 E G

area

The stresses o Xy and o, , must be determined in terms of the beam forces 'Vx ,

xx1 @

.» M, . Statics alone is not sufficient, and assumptions consistent with the theory of
elasticity must be made to solve for the stresses. If the distribution (except for a constant
factor) of the stresses is known, then statics can be used to find the stresses (find the
factor). Assume that the o,  stresses are due to V_, My, and M,; o,
due to M_, Vy, and V.

For o, stresses, let F,(y, z), F,(y, z) be three given functions and K, K,, and K,

v and o,, Stresses are

be three unknown constants. As a simple example, the functions might be selected (see
Chapter 7 of Reference 8 or Chapter VI of Reference 9):
F,=1 F,=y; Fy=z

This would duplicate the stresses existing due to tension, moment about z-axis, and moment
about y-axis if elementary beam theory is adopted, requiring tensile strain proportional to the
distance from the elastic axis when bending moment is carried; i.e., the basic assumption of
beam theory is that the longitudinal strain in the ship hull, deck, longitudinal members, etc.,

varies linearly with the coordinates of a cross section. Hence assume*

oy, 2) = KlFl(y, z) + K2F2(y, z) + K3F3 &y, z)
Applying statics gives:
V,=[o,dA =K [FdA + K, [F,dA + K, [F;dA
M, =f zo,,dA =K, [zF dA + K, [zF,dA + K, [2F,dA
M, = [(-y)o,,dA =K, [(-y)FdA + K, [(-y)F,dA + K, [ (-y)F ;dA

Since F, Fz’ and F, are assumed to be known functions, the above three equations can be

solved for K,, K,, and K, as linear homogenous expressions in V_, My, and M_;

-1
K, fFldA f F,dA  FLdA v,
i.e., K, ? - fZFIdA IZdeA zF ,dA M,
K, L_—fyFIdA - f YFpdA - yFydA M,

*This will be shown to give rise to the bending parameters.
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Substituting these into the formula for o (y, z), we get
axx(y’ Z) = VxGl(y’ z) + MyG2(y’ Z) + MZG3(y7 Z)

where G, G,, and G; are known linear homogenous functions of F,, F,, and F;. By substi-
tuting this expression for o _(y, z) into the above definitions of V_, My, and M, we obtain:

v, =foG1dA + MnyZdA + Mz/ésdA

M, -V, [2G,dA + Mysz2dA + M, [2G,dA
M, =V, ﬁGldA - M, fszdA - M, f YG 4dA

Then inserting the following conditions (one at a time)

Ve=1; M, =0; M, =0
Ve=0; M, =1; M_=0
V, =0; M =0; M, =1

It is seen that the G functions must satisfy the following relations:

/GldA - 15 _/szA - 0; /GSdA -0
[26,aa - o; / 26,04 = 1; [ 2G4 =0
/6,08 =0 /yGZdA -0 [ yGy -1

Then the terms in W, depending upon o__, become:

xx’

/ [V 8105, 2) + MG, (v, 2) + MGy (y, 2)] 2 n

1

w g
xx terms 2 area E
Hence

U, 4w v G} dA + M f G,G, f G,G,

dx an = area E My area p dA + MZ area dA
aey oW f G,G, G% f G,G3
— = — =V, dA+My — dA + M, dA
ax y area area area E

9, MW G,G, I G,G, G3
— == =V — dA+ — dA+M — dA
ax aMZ * area E My area E z area E

These equations are three of the elastic equations for the beam. The other three can be

derived from the Opy and ¢ , terms of the strain energy and will give expressions for
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96, aUy au, *
p ., — —0_, and e + Oy . Thus, in order to find the beam parameters, all that is

ax z
is needed from the theory of elasticity is the distribution of the stresses over the cross

2

section!

These equations can be simplified somewhat by choosing a particular coordinate

system. Let
G.G.
I, = f —=—dA
area E
Then
Li,=1,,, etc.
and
au,
=11V, + 1My + 1M,
a0,

—— =Ty Vi + My + IpM,

a0,
= =I5, Ve + I3M) + I35M,
Choose a new coordinate system whose origin is at §, Z in the original coordinate system.

Letﬁx, —O'y , 52 , Vx, ﬁy, and Mz be the unknowns in this new system (see Figure 3). Then

z

U, =U,+26,-¥96

0,=6,; 0,=0

z

*To similarly derive expressions for a@x/ax , (auy/ax) - 62, (aUz/aXK) + Oy in terms of assumed distribu-

tions <;f oy and o, , over the cross section we would repeat the development for de/dx R a()y/ax, 392/ ax

y
almost identically. The importance of this derivation is not the integrals (GIGZ/E)dA, etc., but the demonstra-
tion that the strain energy per unit length W is a quadratic form in the terms Vyr My, M, (for terms dependent
on Oy, )and a quadratic form in the terms Vy, v, M, (for terms dependent on axy and oxz); see page 74.

The value of the expressions for de/dx , etc., is to validate the use of Castigliano’s Theorem in obtaining
expressions for flexibility terms based on energy expressions.

As seen in the subsequent theory, the actual distribution chosen for oxy and Oz (i.e., the shear flows in the

plates) is forced to be compatible with and dependent on the distribution chosen for 0, ; namely, that indicated

by Fy =1, Fy =y, F3 =2, and 0, (v, z) = K;F; + KjF, + K3F3, which is restated on page 52.
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Then Tll =1;, +2zl;, - 2§1, . +2%1,, - 2yz1,, +y2L,,

L=l +-’ilzz ‘;'132

Ly =lpp Iz =ly3 Izz=1Is3

Since I,, I35 - Izg will in general be nonzero, it is possible to solve for ¥ and Z such that
Ii,=13=0(.e., select y, Z coordinate system sEch that le =_T13 = 0). If this barred
coordinate system is used, it is customary tocall I,;, =1/EA, I,, = Iyy/E(Inyzz - Iyzz),
Tzs = Iyz/E(Inyzz - Iy22 and I, = I _/E (Iyy‘ I, - Iyzz); Equation [10] of Appendix A.2
validates the expressions for I,,, I,5,T;,. (These terms are defined conventionally either

as geometric integrals, or by the geometric summations given below.) Thus*

T % [1a]
ox EA
65y _ Iyyﬁy + Iyzmz (1b]
o E(IYYIzz —13212)
—(fz . Iyzﬁy + Izzﬁz el

x o BQ,L, -12,)

yy zz

Thus the choice of this coordinate system (elastic axis coordinates ¥, Z) uncouples
the tension and pure bending elastic equations. For the other three equations, a coordinate
system (generally not the barred system for bending) ¥, Z can be found to uncouple the tor-
sion from the shear. The center of this system is called the shear center.

*_%§ v ! v [2a]
—-— = + ———
x * KA_G ' KA_G *
a0 _ 1 . 1 _ :
: + 5y = Vy + v, [2b]
ax KA ,G KA, G
a?x 1 =
— =— M [2c]
x  GJ, *

The foregoing equations follow from the discussion in the footnote on page 48, that the shear
and torsion deformations can be expressed in the form:

aUy

E — Yz = Nllvy + Nl2vz + N13Mx

*An alternative method of derivation is given in Appendix A.2.
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Ju
z
—ax—+ ey = N21Vy + N22Vz + N23Mx

a0

X

Fw = N31Vy +N,;V, + N33Mx

where the N’s are constants for a given section and N;, =N, , etc.
Next, redefine quantities with respect to axes through a point s at y =¥, z =Z by

these equations:

Vy =V, U =U, -26, 6,=6,
v, =V, U,-U, +y6, 0,=0,
MX =mx —;vy +§Vz -Z = GZ

,

— -0, 10 -z N,, N;, N, 1 00 v,
du, = =
Jax+oy»= 0 1 +y Ny, Nop Ny, 0 1 0| YV,
38, _ _
. 0 0 1 [N;3 Npg Ngj | {:_z' +y 1] g M, |
- 7
N, - 22N, 5+ 22Ny, Nyp + YNy = 2Np3 - ¥2N5;  Nyg - 2Ny, Yy
= = == = =2 ; = 3 »
= Ni, +YNj3 —2Np3 -¥2Ng3 Nyy + 2YNy5 +§7°Ngg Nys +¥N33 v,
N3 -2Ng; Np3 +¥N33 N33 M,
= N23 = N13 . .
Next choosey = - and z = + Now the above equations may be written:
N33 33
0, 10 u, v, 1 00 v
*To transform the variables, let < U, » = [0 1 U,r and <V, 3 =| 0 1 O 7
- - -z
00 6, M, Z § 1 M,

Then tu} = [N] v}, 1T} = [o,] IN] [o,] {F1.



( = 3
au — C
y = = = T =
Tox - oz Nu N12 0 Vy
aﬁz = = = v
1 5 ot =l Ty, Ny o0 [V
a—a-x = —_
= | 0 0 N.3_§ ~M}5

where the definitions of ﬁll , ﬁlz , etc., are obvious. Such a choice of y and Z uncouples
shear deformation from torsion deformation and is said to locate point s at the ‘‘shear center’’
of the beam. The -_1\} matrix may be written:*

1 1 ]

KA. G KA G O

yy yz
1 1
KA,,G KA_,G O
GJ,

which yields Equations [2a, b, c]. The uncoupled form of this expression is validated by the
above development. The symbols are arbitrary but are chosen to be written in conventional
form. This expression (matrix) itself is a definition of the symbols Ajjsor Ayy ) Ayz, A,
and J . .
In the accompanying program, each of the above coefficients (r—
ij
single number. However, here they are written as products of several terms for comparison

)appear as a

1 1
with the conventional shear and torsion flexibility coefficients and .
KAG GJ,

Equations [1a, b, c] and [2a, b, c] are the siz elastic equations for beam the ory.
For ship problems, Equation [1a] is usually not used. For motions symmetric with respect
to the x-y plane, use Equations [1c] and [2a]. By rotating the y-z coordinates, it would be
possible to completely uncouple the equations (i.e., choose principal axes so that I =0),
but this has not been done here.** For symmetric sections typical of ship hulls, the axes

chosen are principal axes.

*The N matrix may be written as shown because the left-hand side of the matrix equation above is related to
the shear and moment terms on the right side respectively, by constants which are called the shear and torsional
flexibilities having the form 1/KAG and I/GJe , respectively.

**The terms Aij are defined by the above matrix. The program of this report is applicable to sections of any
structures which are prismatic and may be treated as beams. These structures may be symmetric or unsymmetric.
The sample problem chosen is symmetric (as are most ship hulls) and is, therefore, a special case of the general
theory presented. The following terms exist in general, but are zero in the special case (symmetric with respect

to the y-axis): Iyz'?’ l/Ayz, Z. It is true that Figure 1 appears to have a symmetric outline, but it need not have.
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For cross sections consisting of stringers and plates, we make the following assump-

tions in order to calculate the tension stresses:

1. All of the area has been concentrated into points which shall be called nodes. This
is done by assigning the areas of the plates and stringers to the nearby nodes. By this
means, the integrals on page 46 can be replaced by sums.

2. For effective members, the strain is a linear function of position K; + K,y + K;z.
Some members may end near the cross section to be analyzed and, hence, their stress would
be less than a completely effective member. For the nodes, an “‘effectiveness” is assigned
which is 1.0 for effective members* and less for others. Thus the assumed form for stresses
is (see page 156 of Reference 8 or page 209 of Reference 9):

o, = K (kE) + K,(kEy) + K;(kEz)

where K, K,, K; are unknown constants to be determined as shown above,
k is effectiveness,
E is Young’s modulus, and

y, z are coordinates.

Except for the addition of effectiveness and the possibility of having different moduli at
the nodes, this is exactly the same as ordinary beam theory and would give the usual equa-
tions (this means that ‘‘ordinary beam theory’’ is based on a form of distribution of the

tensile stress such as o, = K; + K,y + K;2). Another factor k’=k EE (E, = reference

value of modulus) is defined so that the tension at node i is given by: °

(°xx) 1 =Eo (K, (k%) + Kz(l“ W) + Ky(kiz)]

(This expression for o, is the same as that previously used where F; =1, F, =y, F; =z

X
except that a term k, providing for the effectiveness of the section, is included). The

values of y and Z are given by (A, is the node area and y;, z; are the node coordinates):

SkyA, kizd,
TkiA, SkiA;

*Since the effect of cutouts (such as doors and hatches) and regions near the ends of members is to reduce
the stress in that tegion, we introduce a tension effectiveness factor k, 0 < k=1. k=1 if there are no
cutouts or ends nearby in the axial direction. References 10 and 11 give rules for determining effectiveness.
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The elastic constants to be used are:*

EA =B Sk{A,

El,, = B Ski(y, -7)%A,

El,, - B 3k{(v, - V) (z; - DA,
EL, -E3k{(z,-2)?A,

These numbers are calculated by the computer, and in the output statement:

Structure Area = -E—.é
EO
Y EL Axis** =7y
Z EL Axis** =7
YY Flexibility = E I, /E(,,1,, -1,,%)
YZ Flexibility =‘E°Iyz/E(Inyzz - Iyxz)
ZZ Flexibility = E I, /E(L I, -1 %)

These latter equations are not independent of materials and effectiveness. The values of
Iyy’
accounts for effectiveness and modulus at each node.

I, ., 1, are obtained from the equations for EI, , etc., given previously in which k{

For cross sections consisting of stringers and plates, assume the following in order
to calculate shear stresses (see Chapter 6 of Reference 8):

1. All of the shear is carried in the plates (see Chapter 2 of Reference 7).]L The plates
are thin, and the component of shear perpendicular to the surface of a plate must vanish;
hence, the shear stress T has a direction along the plate direction (i.e., if the plate has a
slope Az/Ay, then the condition for zero component of shear perpendicular to the surface of
the plate is "xz/axy = Az/Ay).JfJr Assume that the magnitude of the stress does not vary
across the thickness and call this magnitude 7 .

2 _ 42 2
(T —ny+0xz

*Note that A (& ZAi) is defined as part of the term EA which is defined as E oEk ;Ai. The term EA is
defined as a single unit, and E and A are not employed separately. Similarly, for subsequent equations.

**Coordinates of the elastic axis.
{Shear stiffness of a rod is small compared to that of a plate and is assumed to vanish,

'H’I‘he projection of T along the y- and z-axis is equal to o, and Oyps respectively.
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2. In order for the plate to be in equi-
librium in the x-direction, the product of T F2 | IR
times the thickness must not vary along /
the plate [i.e., for a given plate, ( T - thickness)
is independent of y and z]. This is explained
as follows: Figure 7 shows the shear forces
acting on a plate. For equilibrium in the
x-direction, F, = F,. But the thickness at
end 1 could be different from the thickness
atend 2: t, #t,. Then defining the shear &

flow8:2 q (force per unit length along the plate) %
by q = 7. thickness:

F, =q Ax = 7t AX

F2 =q, Ax = -rthAx

Thus 7, # T, But F,=F,, and, there-
fore, q, = q,. Also, by rotational equilib-
rium, q, = q, at corner 1 and q; = q, at
corner 2. x

However, we could have selected Figure 7 — Shear Forces Acting on a Plate
slices 1 and 2 at any points on the plate,
not just at the nodes at the end. Consequently, no matter where one looks along edge 3,
q; =g, = g, is the same at any point on a single panel between nodes where tensile force
(in the x-direction) acts on the plate from an external source; i.e., the shear flow is a con-
stant for each plate. Thus the problem of finding the shear stresses has now been reduced

to finding one unknown (shear flow) for each plate.

3. Each plate begins and ends at a node.* Also, each node has at least one plate
attached to it. The shear stress in a plate exerts an axial force on the node. This force is
q per unit length in the x-direction.8:% Assign a positive direction to shear flow. When
looking at the cross section from the +x side, the shear stress acts upon the plate in one
direction. This is the direction of the flow. If the shear flows into a node, the plate exerts
a force on the node in the —x direction. Hence, the net force per unit length on a node by
all the plates which join it is the sum of the shear flows out of the node. (Hence, the name
““shear flow.”” For problems with no tension, the sum of the flows out of any node vanishes.)
From this study of the nodes, the tensile stress in a node is given in terms of the forces

V.o My, and M, (see Equations [9] and [16] of Appendix A.2 and the preceding development):

*For additional detail on this section, see Figure 16 and the associated text in section Shear and Torsion in

Appendix A.2; also see footnote on page 55.



k: , Izz(yi —?) - Iyz(zi _Z)

(Ogy). = Vi —— = M,k
5 A z 1
Lyyles =Ty
+
y 1
Lyylzz - Ixzrz

For ships with a plane of symmetry, I,=0.

If this expression is differentiated with respect to x, assuming the node locations and

areas do not depend upon x, then the rate of change of tension is the same expression except

. dv, dM, ‘ M, dv, dM,
that \(/;;dls replaced by ol My by —5;—, and M, by o Assume that ?;: 0, el v,,
and Tf =-V, (equilibrium of beam). Then, since rate of change of tension in a node is the
X ‘

sum of the shear flows, it follows that (note that shear flow is out of node, hence, force on

node is in +x direction; see Equations [16]—-[20] of Appendix A.2):*

2 q; (out) = - V kA,

2
Iyylzz - Iyz
-~ Vzk;Ai Iy -2) -1, (Zx -¥)
Inyzz - Iyz

This gives one equation involving the shear flows for each node. Usually there are more
plates than nodes, so additional equations are needed to solve for the shear flows. Any set
of shear flows which satisfies the above condition for the sum of q out of the nodes will
automatically have the correct resultant V; and V,, thus no additional information is gained

by writing overall equilibrium equations; see page 70.**

*Eqi (out) is better termed (2 Qgyut ); OF merely q i and is the algebraic sum of shear flows q on each plate

out
connected to node i. Such a term q is positive if the force acting on the portion of the plate AA on the -x side
of the section shown in Figure 16 (as viewed from the +x side) is away from the node; another plate or portion
of a plate contiguous with side AA is assumed to exist to the left of AA. And (quut)i is positive if the net
shear flow in all connecting plates is outward.

**QOverall equilibrium equates the total shear forces sustained by the section to the shear flows of the plates:
Vy= ? q; (th - th) ’ v, = J;Qj (zhj - ztj)
Here, subscript j refers to all the plates, qj is the shear flow in a plate, and Ynjr Yijr zhj’ and ztj locate the
head (h) and tail (t) of the plate.
The point of the statement is that for shear flows qj based on a tree and values of (quut)i at each node

given by the preceding equation, the above equations are automatically satisfied (and for loop shear flows they
give zero for Vy and Vz); therefore, there is no point in invoking them.

55



4. By appealing to the equations of elasticity, and making assumptions about no change
of shape of the cross section, it can be shown that the integral around any closed path per

ds
unit length through the section ¢ qﬁ equals twice the enclosed area times the rate of
. s .
twist, or — = — =—— . (Rate of twist = d6,/dx); see Chapters 16 and 17 of Reference

8, or Chapter VII of Reference 9; also, see pages 69—72 of Appendix A.2. By assuming that
the plate segments are straight lines, it is possible to compute these areas by knowing about
the connections made and the locations of the nodes. Since q is a constant along each path,

_As . . .
the 1ntegral may be replaced by a sum PN (*q;) G where +q; is used if the positive

direction assigned to the unknown q;, is in the same direction as the positive direction of the

d
closed loop; see Equation [23] of Appendix A.2. The integral ¢ %ﬁ is evaluated around

each of the loops. In the sample problem, remember that the tree is formed by omitting plates
5 and 9. For example, the loop formed by the tree and plate 9 is shown heavy in Figure 8,
and the area associated with this loop is shaded. This area can be written (see page 72 of

. 1 1
Appendix A.2): — - -
pp ) A= ?31' (RAs); = — ]zaj (YnZ¢ = Ye2p);

where the summation is over Plates 2, 3, 8, and 9 which make up the loop. Here R is the
perpendicular distance from the origin to the plate and As is the length of the plate. See
Figure 9, in which the contribution of Plate 2 to this summation is shaded. The proper sign

of (RAs)j is assured by the head-tail polarity of the plate. The entry into the summation is
multiplied by (8j= +1) if the direction around the loop agrees with the sense of plate j and by
(6, = -1) if the direction around the loop is contrary to the polarity of plate j. In this example,
3,, 83, g, and 3, are -1, -1, -1, and 1, respectively. (See Column @ , Table 4, Sheet 3,
and the discussion of the [le] matrix in Appendix A.2, pages 68—75.) q is constant on

any plate. Positive values of q in the plates are given by the arrows in Figure 8.

5. The resultant torque must be equal to the moment of the shear flows (see Chapter 6
and Figure 6.15 of Reference 8 or page 219 of Reference 9.) The resultant torque or twisting
;) (see Equation [26], Appendix A.2).

It represents moment about the x-axis. Its polarity is given by the 6, arrow in Figure 3.

Since the shear flow on a plate is a constant, the total force is just q times the length. The

moment about the x-axis is M, = qu (Y1jZnj ~ Ynj2t

moment about the origin is the net force times the moment arm. Therefore, the net torque due
to one plate about the origin is given simply by the shear flow times twice the area of the
triangle which would be formed if Qhé ends of the plate were joined to the origin by straight
lines (see Equation [26] of Appendix A.2).

The above assumptions giﬁ exactly the correct amount of equations to yield a unique
solution for the shear flows in the panels in terms of M,, V,and V. Only a general discus-

sion of the method of solution is given here. See pages T1-78 for a detailed discussion.



/']/'

Figure 8 — Loop Formed by Tree and Plate

'~o

Figure 9 — Contribution of Plate 2 to Area
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Three solutions for the q’s are needed, one for M, =1, Vy =V_ = 0; one for M,= 0,

Vy =1,V, =0; etc. M_ is the twisting moment about the x-axis. There is no dependence of
(0xx); on twisting moment. For that reason the solution for plate shear flows corresponding
toM, =1, Vy =V, = 0 has no component due to 9 part » which is based on (Xq_,), and, there-
fore, on (o, ), ; this solution arises entirely from q, op for the various loops (see Item 4 given
previously). The reason for three solutions for 4; the shear flows in the plates, being needed
is covered extensively elsewhere in Appendix A.2. In particular, refer to the section Shear
and Torsion, the section following Equation [26] through page 75.

The solution per unit torque M, is the solution for the shear flows in the plates g;
existing when Vy =V, =0,M, =1. It is found as follows: First find the most general set
of shear flows which satisfy the condition that the sum of the q’s out of every node vanishes
(see pages 54—55 and 75-76). This set can be found in terms of circulating flows. (‘‘Circulating
flows”’ refer to the plate shears in the loops, Y100p" The section Shear and Torsion in
Appendix A.2 elaborates on the point.) In the computer program this was done by first finding
a tree, that is, a set of plates so that one and only one path exists between every two nodes.
For each plate not on the tree, there exists a closed loop through that plate and others in the
tree. The most general set of shear flows that have zero net flow out of each node consists
of a linear combination of flows in these loops. The new unknowns are the flows in the loops.
By integrating around those loops (see Item 4, page 56), there will be sufficient equations to
solve for these unknowns, but a new unknown (d¢, /dx) is introduced (Equation [37] of
Appendix A.2). The shear flows can now be written in terms of this one unknown, which can
be found since the resultant torque is to be unity (Equations [38]—[41] of Appen(iix A.2).

The details of the method of solution for the plate shears q; existing for unit y-shear
Vy (or per unit z-shear V) are presented in the section Shear and Torsion in Appendix A.2.
The location of the center of sheary, Z is also determined from V, shear and V, shear,
respectively. In particular, see the paragraph following Equation [31].

The inertial parameters come from structural and nonstructural items. Structural items
include ship hull, deck, longitudinal members, etc. Nonstructural items include machinery,
cargo, superstructure, transverse bulkheads, the virtual mass of the water, etc. The inertial
parameters which must be calculated are mass of a section M, the position of the center of
gravity Y-C.G., Z-C.G.; the rotary inertias I-YY, I-ZZ, I-MYZ; and the polar moment of interia
I-MX. For symmetric motions of a symmetric ship, only 2M and I-ZZ are needed. For anti-
symmetric motion of a symmetric ship only ZM, Z-C.G., I-YY, and I-MX are needed. For the
general case, however, all parameters are needed. Y-C.G. and I-MYZ vanish in the case of
symmetry. =M is obtained by adding all mass items in a Ax section. The Y-C.G. and Z-C.G.
come from dividing the mass moments by the total mass. The rotary inertia will not be calcu-
lated by the equation on page 35 of Reference 1, since this can be properly evaluated from the
input data (see section Inertial Parameters in Appendix A.2).
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The values of the ship parameters should be plotted versus the axial coordinate x.
Virtual mass and mass moments of inertia should be added to these curves (if not included in
the input) and average'values of the parameters over a Ax section read from the curves (see
Chapter 3 of Reference 1). The effects of other nonstructural items should be incorporated in
accordance with this reference.

The determination of inertial parameters! (mass,=M; center of gravity Y-C.G., Z-C.G.;
rotary inertias I-YY, I-YZ, I-ZZ; and polar moment of inertia I-MX) is reviewed separately in
Appendix A.2. It is essentially identical to the determination of the terms A, y, Z, Iyy, Iyz,
I, etc., for the elastic properties associated with tension and bending. The weight calcula-
tion for the sample problem which gives results agreeing with Table 3a is presented in
Table 4.
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A.2 - ADDITIONAL THEORY USED IN EVALUATING
SECTION PROPERTIES

ASSUMPTIONS

\

Figure 10 illustrates the general class of structures to which this theory and digital
program are applicable, and it shows the idealizations incorporated into the representation of
the structure. In applying beam theory to a structure such as a beam hull, i\t is recognized
that the section properties will vary with position along the beam; however, the calculation
of the elastic parameters of the beam at a particular cross section is based on the assumption
that the structure is prismatic; that is, all sections are identical, at least in the immediate
vicinity of the section under consideration. Thus, Figure 10 shows the structure as a prism,
with all tension and shear members parallel to the x-axis. It is assumed that the section
lying in the plane x = 0 is the section to be analyzed. For the purpose of establishing the
elastic properties of this section, the prismatic structure is assumed continuotis, both in the
-x direction (shown) and in the +x direction (not shown).

In Figure 10, the coordinate axis x, y, z locate points on the structure. The displace-
ments of points from their basic positions as in Appendix A.1 is given by U_, Uy, and U, in
translation and by 6_, Oy, and 6, in rotation, with positive directions in the same sense as
the x-, y-, and z-axes (rotation established by the right-hand rule). Section forces are V_,
Vy, and V_; section moments are M_, My, and M,. These forces and moments are positive
if the force (or moment) exerted by the portion of the structure not shown (x > 0) upon the
portion shown (x £ 0) is in the direction of positive displacement.

The figure shows that the structure has been idealized so that all the tensile stress
is carried by a finite number of axial elements, each located at a distinct node of thg section
and having associated with it a finite area, A;. The remainder of the structure carries only
shear and consists of straight panels of constant thickness t; connecting pairs of nodes. For
the sake of simplicity, it is assumed here (although not in Appendix A.1) (1) that each
tensile element has full effectiveness and all are composed of the same material and
(2) that each shear element has full effectiveness and all are composed of the same material.
These assumptions do not really limit the generality of the theory.

In this report the following subscripts are used:

i to indicate the various nodes of the cross section
j to indicate the various plates of the cross section
£ to indicate the independent loops formed by the plates
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X

Figure 10 — Coordinate System for Idealized
Prismatic Structure

TENSION AND BENDING

As in Appendix A.1, it is assumed that the distribution of tensile strain over the cross
section is linear in both y and z. Thus the axial stress in the tension-carrying material at
node i, which is located at y =y,, z = z,, is

(0,4); =B +Cy, + Dz, (1]

where the positive values denote tensile stress.

By summing over all the nodes of the section, we get the following expressions for
tension and bending moments V_, M , and M, :

V. =+2(0.,); A,

BZA, + CIyA, + D2z A,

M, =+ 2(0,,); 2,4, BSzA, + CEy;zA, + D2z;2A,; [2]*

M, =-2(0,), YA, =-BZEyA, -CZy;?A, -D3yz A,

111

*All summations given in section Tension and Bending are with respect to subscript i.
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Now, transforming to forces, moments, and locations measured with respect to point e (see
Figure 10) located at y =¥, z = Z, we define V_, ﬁy, M, to be forces and moments referred
to axes at point e:

M =M -zV (3]

Also we define:

where y_., z_; locate node i relative to point e.
Substitution of the definitions of Equations [3] into Equations [2] leads to:

=B+Cy+Dz)ZA, + CZy ;A +DZz A,

e1 1

VX
M, =(B+Cy+Dz) 3z, A, + CIy,z A +DSz, %A, [4]
M, =-(B+Cy+Dz)Ey A, - CZy, 2A;-D3y 2 A,

Now choose ¥ and Z by the following:

_ 2y A, ) 2zA, .
y= — 3 Z = b
ZA, 2A;
Then
Sy A =2(y;-DA; = ZyA, -FZ2A, =0
Sz, A;=2(z;-%)A; =2z;A;, -Z3A, =0
and Equation [4] now becomes
V,=B+Cy+Dz) A,
My: CEyeizeiAi+D§lzeizAi [6]
M, = ~C 2y ;*A; -D 2y, z ;A
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Equations [6] indicate that this choice of y and Z has uncoupled tensile force Vx from the
bending moments My and Mz. Point e, so located, is called the elastic azis, and is located
at the center of effective tension-carrying area.

We make these further definitions:

A =Z2A, = total area of cross section.

L,= 2‘.yei2Ai = area moment of inertia of cross section about
axis through e and parallel to the z-axis.

Iyz =3y_.z_,A, = area product of inertia of cross section relative
to axes through e.

L,= 2‘.zei2Ai = area moment of inertia of cross section about

axis through e and parallel to the y-axis.

Then Equations [6] may be written:

(B+Cy +Dz)A
= IyzC+IzzD (7]
= -IyyC-—IyzD

X

y

=zl = <

z

We can solve Equations [7] for B, C, D in terms of Vx, My, -I\—/lz, obtaining

v = - v - iV \
LY (zl,, -y )M, - (3L, 21 )N,
=% - )
A T
—Iyz M-y - Izz Mz
C-= - v [8]
yy zz yz
. Iyy + Iyz Mz
2
Iyy L. -1 /

Substituting into Equation [1], the initial expression for o, at node i, gives

(0,.); =B +Cy; +Dz; =(B+Cy +D2) +Cy,; + Dz,

( ) Vx (zeilyy - yeilyz)my - (yeiIzz - zeilyz)Mz (9]
o o T e—
xx/i A 2

Iyy Izz - Iyz

The elastic parameters for bending and tension may be obtained from the associated strains

as follows (see page 232 of Reference 7):
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0, v, )
R Bt A EATL I 5
z =z zg; =0
36, %, p LM +I M, |
ax = + az = 4 E = [10] .
E (Iyylzz Iyzz)
3, €, c LM, +I.M
ox ay E E(Iyylzz _ Iyzz) )

Equations [10] summarize the elastic flexibility parameters of the beam, which describe
bending and tensile deformations in terms of bending moments and tensile force.

SHEAR AND TORSION

Next it is desired to determine the elastic flexibility parameters of the beam which
relate shear and torsion deformations to beam shear forces and twisting moment. We will use
Castigliano’s Theorem, which requires that the total strain energy be expressed in terms of
the beam shear forces and twisting moment Vy, V,, and M_. All the strain energy associated
with these deformations is in the shear of the plates. By statics it is shown that any single
plate sustains a shear flow q (force per unit length) which is the same at all points of the
plate (see page 54). Thus the shear strain energy of any plate j depends only on the shear flow
of that plate q;- The first step is to express all the shear flows q; as functions of Vy, V,,
and M,. The second step is to express strain energy per unit length of the beam W as a
function of Vy, V,, and M_. The final step is to apply Castigliano’s Theorem by differentiat-
ing this expression for W with respect to Vy, V,, and M_.

To find the panel shear flows q; as functions of Vy, V,,and M_, we will first compose
q; of the sum of shears flowing in a tree Upart j B particular solution, and shears flowing in
loops U100p

The tree is selected by omitting sufficient plates so that the remaining plates are
simply connected. In a tree thus formed, all nodes of the section are part of the tree, and
any two nodes are connected by one and only one path through the tree. One node is arbi-
trairly selected as the ‘‘root’’ of the tree.

Each loop is formed by taking one of the plates which was omitted in forming the tree
and all of the plates which are part of the tree. One loop is formed by this procedure, and
the plates of the tree which are part of this loop are retained in the loop, whereas extraneous
plates of the tree (not needed in the loop) are omitted from a description of the loop.

The shear flows of the particular solution arise from the shear flowing out of the nodes
Qout i+ 10 @ particular panel j, this shear flow Qpart j is given by the sum of q , , for all nodes



farther from the tree root than panel j. The sign of this summation is plus (+) if the positive
sense of panel j is toward the root, and minus (-) if the positive sense is away from the root.
The above relations and definitions may be summarized in matrix form by the following
equations. In these equations the vector {qp‘l ot j} represents shears in the plates due to
{qout i} at the nodes, which is, in turn due to Vy and V,. Also the vector {qloop j} represents
plate shears due to all the loop shears {K‘}. In Figures 13, 14, and 15 the light arrows
associated with the plate numbers represent plate shears. The heavy arrows on the loops
(heavy lines) represent loop shears.

T B
[pare - (7] {‘louu} [12]
[qxoop,-} - [Ljél ‘Kl} ‘ [13]

The formation of the [T, ]and [Lj l]matrices, which describe the tree and the loops,
respectively, is illustrated for a simple example in Figures 11 to 15. Figure 11 shows a
section composed of nodes numbered 1 to 7 and plates numbered 1 to 9. An arrow indicates
the polarity of each plate. Figure 12 shows how a tree has been selected by omitting plates
6, 8, and 9. Node 1 is chosen as the root of the tree. The following equation gives the

matrix [Tji], which describes the tree (also see page 11):

[ ~

s Gpart 1) " Qout 1 ~ 0-1-1-1-1-1-1/¢ Qout 1

Qpart 2 Qout 2 0 0-1-1-1-1-1 Qout 5

qpart 3 Qout 3 0 0 0-1-1-1-1 Qout 3

qpart 4 Qout 4 0 0 0 0 -1 -1 0 ﬁ qout 4 L [14]
< Upares s Ty J Jout s | ={o 0 0 0 0-1 O Doyt s

qpart 6 qout 6 0 0 0 0 0 0 qout 6 ‘

Upart 7 | Qout 7 J 0 0 0 0 0 0 +1 L Qout 7 .

9part 8 0o 0 0 0 O 0 o |

qpart 9/ T 0 0 0 g 0 0 0 i T

.
{qpatt i} {qout 1} [Tji {qout i}

Figures 13, 14, and 15 illustrate loops 1, 2, and 3, formed by adding to the tree plates
6, 8, and 9, respectively. In each case, a polarity of the loop has been chosen and indicated.
The following equation shows how the matrix L;g| is formed to relate the plate shear flows

{qloop i } to the (as yet unknown) loop shear flows IKI} (see page 13 also):*

*In Equation [15] note that the loop including Plate 6 in the positive sense includes plates 1 through 6. Hence
Lll' L21' L31, L41, LSI' L61 are denoted by +1, whereas L71, L81' and L91 are designated zero. Similarly
for elements in Columns 2 and 3.
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Figure 12 — Tree (Omits Plates 6, 8, and 9)
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Figure 11 — Cross Section of Prismatic

Structure Showing Nodes and Plates 4 3
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Figure 13 — Loop 1  (Shear Flow K,) Figure 14 — Loop 2 (Shear Flow K,)



Figure 15 — Loop 3 (Shear Flow K,)

( d100p IW (+1 -1 O]
qloop 2 +1 -1 -1
Y60p 3 +1 -1 -1
Q100p 4 Kl +1 0 O K,
qloop 6 K3 0 +1 +1 K3
q
loop 7 0+1 0
quoop 9 ) 0 0 +1
A A A
{9100p 5} {g} (L] {4

It has been shown that the particular solution iq } for shear flows in the plates

art j
arises from the shear flows out of the nodes {qout i}. Wz wilJl now derive an expression for
the terms q . ; in terms of V_and V, by differentiating Equation [9] with respect to x.

Figure 16 shows how the rate of change of tensile stress in a node is related to the
shear flows out of that node via all connecting plates. The arrows indicate forces exerted
on the members with which they are associated. The sum of q; of all the plates connected
to the node (two plates are shown in Figure 16) equals q . ; of the node. Equilibrium in

the longitudinal direction of the small tensile element of cross section A; and length Ax

do,__ .
requires that (since, o, + ks Ax) A;+ Qg ;A% —0,.,;A;=0:
(aUXX).
1
9% Aj =gy (16]
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Figure 16 — Tensile Stress-Shear Flow Relationships at a Node

Lateral equilibrium of a small section of the entire structure requires that

M
-V, (17
oM,
—= -V, (18]

=0 {19]

ox

Differentiating Equation [9] with respect to x and substituting Equations [16] to [19]
gives

Ve, = 26;1,,) (ze; L0 = Yeily,)
_ ei'zz i yzz Aivy _ eityy y2z Ain [20]
Iyy Izz - Iyz Iyy Izz - Iyz

q’out i

By means of Equations [11], (12], [13], [14], [15], and [20], we can express the plate shear
flows g in terms of Vy, V., K, K, oo K!’ .- «y K; , where L is the number of loops and
the K’s are the unknown loop shear flows.
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Figure 17 — Torsion in Two Sections of a Prismatic Structure 0
X

Now we can write L equations, introducing the unknown rate of twist , by

integrating around each of the loops an equation relating geometry to shear strain as shown
in Figure 17. This figure shows two sections of a prismatic structure undergoing torsion, the
section at x = 0 (dotted) and the section at x = Ax (solid). The solid section exhibits rota-
tion of magnitude A6 _ with respect to the dotted section. At some point H, not necessarily
known, there is no relative translation between the two sections. As shown by the following

detailed development, a segment of plate (shown), ds wide by Ax long by t thick, has a shear
A6, AG,

strain of Ry ik a shear stress* of T= —3—-= R, G vl where Ry, is the distance from
X X

H to ds, measured perpendicular to the direction of ds.

Figure 18 shows the shear strain in the plates comprising a loop. The definition of
shear strain in the plates is conventional; assuming the shearing forces are applied in the
x-direction (longitudinal) and the s-direction (circumferential), shear strain is

du, du

S

ds +dx

el
Thus, if lines are inscribed on the undeformed plate which are parallel to the x- and s-axes,
respectively, they form a right angle; after the plate undergoes shear deformation, the differ-
ence between the angle of intersection of these two lines and 90 deg is the shear strain.

*See pages 53 and 54.
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(a) SECTION OF THE HULL, AX IN LENGTH

(b) SECTION OF THE HULL, SHOWING ONLY THE PLATES
COMPRISING ONE LOOP

(c) THE SECTION SHOWN IN (b) HAS BEEN
UNFOLDED, OR DEVELOPED INTO A
PLANE SHEET

X (d) UNDEFORMED POSITION OF THE DEVELOPED
SECTION (DOTTED LINES), AND DEFORMED
POSITION (SOLID LINES)

(e) EQUATION FOR THE SHEAR STRAIN OF A
PLATE OF FIGURE (d)

SHEAR STRAIN 6"-.:-%—:-;—'=R“% + B

d 9s 5 R < )d - d % R, ds-24, o
S = —_— = — S + — = — =< —
¢I("5 ¢ Gt ‘ﬁ! H \'gx ¢fd ST & 61 w98 £ I

5

(f ) INTEGRATION OF EQUATION (e)
AROUND THE LOOP

Figure 18 — Shear Strain in the Plates Comprising a Loop
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In Figure 18, (a) show:s a cross section of the hull, having a length Ax in a direction
parallel to the longitudinal axis of the hull; (b) shows only those plates which comprise the
first loop (£ = 1) of the section (refer also to Figure 13); and (c) shows the same plates as
(b) but, for clarity in what follows, the structure has been unfolded, or developed, into the
form of a plane sheet. In (c) the plates are undeformed by shear stresses. The same plates
are shown in (d) but now they are deformed by shear stresses. (e) gives the equation for
shear strain in a plate, making use of the definition of shear strain and the fact that R;A0,
in the hull is the equivalent of du_ in the definition, This is evident by inspection of the
geometry of Figure 17 if we consider that a point on element ds on the cross section at x = Ax
is twisted through an angle A6, relative to its original position on element ds (same position
as that shown in Figure 17 for the section at x = 0). This point moves a distance Ry A 6,

d
during the deformation. The point is also displaced a distance yAx =—d-l;(—s- Ax =du, (y=
angle of shearing strain and dx ~ Ax). Hence Ry Af_=du_. In (f) this expression for shear
strain is integrated around the loop £, resulting in the equivalent of Equation [21]. Equation
[21], which gives a relation between the integral of shear strain around a loop and the rate of

twist of the hull structure, is obtained by integrating T around any loop £ as follows (letting
A6 96
X X

take its limiting value, ):
Ax
q a0, a6,
Tds=¢ —ds=G — ¢ R, ds=2A G 21
%.S%ts 6x¢£Hs £ ox (21]
du,
The term a4 in the definition of shear strain will exist only if cross sections of the
s

hull are permitted to warp out of their plane when the hull is deformed, as illustrated in (d)
of Figure 18.

In Equation [21] the expression for shear strain neglects warping of the section and
omits the term du /ds. However, the integration of the simpler expression for shear strain
gives the correct result, as shown in (f), because the integral of the term du_/ds around the
loop equals u_ (end point) — u_ (start point), which must equal zero if the loop is closed
because the end point is the start point. Therefore, Equation [21] is valid whether or not
warping is permitted.

Equation [21] shows another simplification compared with (f) of Figure 18 in that the
shear modulus G is a constant outside the integral. The reason is that here the analysis is
based on the simplification that all shear elements are composed of the same material. The

last step in Equation [21] recognizes that gfﬁ R, ds equals twice the area of the loop around
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which the integration is performed.* Note that this latter equality is independent of the loca-
tion of H, the point from which Ry is measured. Thus, although Equation [21]is derived
based on rotation about H, it may be rewritten (for convenience in calculating), with Ry
replaced by R, the distance from the origin O to ds, measured perpendicular to the direction
of ds. Thus
¢ Lds-(¢ Rds)G e 2A G % [22]
—-_ S = S _— = —_—
(¢ 4 ox L X

For the idealized structure of this report, the loops are comprised of a finite number of

plates, each of constant thickness t;, so that the integrals may be replaced by summations:**

a0 a9

Z_.q—(lERAs)G_=2A(G§- [23]

Herefz_ indicates a summation of only those plates j which comprise loop{, with signs alter-
i

ed, when necessary, to conform to the polarity of loopX; see page 56. This operation can be

indicated by premultiplying the terms to be summed by the appropriate column of the [sz]

matrix:

As. 36 96
L 2% g =(SL. R, As)G — =24 G —
: .t-J—- jl_qj = ; j,L i Sj) % - = I a—x [24]

Now this summation is carried out over all plates j. For convenience in calculating, we can
replace RJ. Asj by YtjZnj ~ YnjZej where Yhj» Zhj locate the head end of plate j, and Yejo
locate the tail end.t Also substituting for q; from Equation [11] and [13] yields:

Asj a0,

it ng(qpa,tj+§bj,Kz)= [szjz(ytjzh,.—yhj th)] G

' *The loab £ about which we integrate to get Equation [21] is any one of the L Ioops,t =1,2..... , L. For
the example of Figure 17 in which L = 3, the integration would be done around loop 1 (Figure 13), then around
loop 2 (Figure 14), and finally around loop 3 (Figure 15); A ,is then the cross-sectional area enclosed by the
loop around which the integration is performed, and it is that area which is indicated in Figures 13, 14, or 15,
depending on whether A= 1, 2, or 3.

**The q of Equation [22] and the q. of Equation [23] and Equation [24] are the total plate shears q of Equation
[11] In the steps from Equation [23]] to Equation [25] the elements of the loop matrix L, ﬂare mtroduced twice,
once to ensure that the plate shears q, ‘re correctly computed in terms of the loop shears Kﬁ and once to ensure

that the summation of (As /t )q ‘overall plates j is restricted to those plates comprising the loop l over which
the summation (or mtegratwn) 1s to be performed.

J"Twice the area of the triangle formed by the vector As.z‘1 and two position vectors A and B from the origin to the
head and tail ends of the plate, respectively, are 'ﬁ xE | = |A X B|

R As, i =Ytj%hj ~ Ynj * %ty

= Gzy; +ivp) X Gz + iyl or
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giving the following L equations (£=1,2, ..., L):

As. As. As.
20 2| 2
Ly p9pare ; * L,L; ) K+ LL,) Ky+...

j : j
tj j t'j t

As; 9, [25]
+<EJ T LuzLiL) fo - [},: Lig Oy2ng ~¥oi2) | & 5
3

In these equations, q_, ., ; is determined by V_ and V, according to Equations [12] and [20].*
Another equation relates M, , the twisting moment sustained by the entire section, to
the plate shear flows (see Figure 9):
M, =):qujAsj=§qj (Ve Znj = Ynj 2t [26]

Here the summation is over all the plates
To find q; in terms of V , V, Mx (see Equation [30]), we solve Equations [25] for
K,K,,...,K and substltute into Equations [18], [12], and [11].** This is done three

times:
once for V,_ ﬁ = 0, giving as solutions q; = Q,Vyj Vy ;
once for V_ = f{x = 0, giving as solutions q; = Qy,; V
V. =V

and once for

0, giving as solutions q; = QTjﬁx .

Since Vy=V,and V, = 62 (see below), we then have:

fq;} = [Q] [27]

=i <t <

where the elements of Q are defined by the above solutions:

*The physical significance of Equation [25] is that it represents one expression of strain compatibility for

each independent loop comprising the cross section of the structure. Basically, in a structure with a loop, strain

compatibility ensures that when you go around the loop once you return to the starting point. Contrariwise, for
a structure without a loop (for example, a deep channel or U-shaped section), there is no requirement that the

adjacent, but unconnected, edges be aligned when torsion is carried.
**Equations [13], [12], and [11] may be combined to give:
tad + [y gy 5 + [Lg 1Rl
Solutions of Equation [25] (under the conditions listed) give {KIZ} in terms of V Vz, and M Also Equation

[20] gives {qout .} in terms of V and V
Thus substxtutmg for {q } and {Klf in the above equation will give the plate shears qu} in terms of

z andN&
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[ Quyr Quzr Qpg ]|

QVy2 QVzZ Q’T2

QI = | (28]

Because the strain energy per unit length W is quadratic in q; and, therefore, in Vs
V,, M, (see page 48) we know that the form of the equations relating deformation to forces

and torques will be:

8Uy
v -0, = Ny Vy+N12 V, + Ny M, 3
au,
e +6y= N, Vy+N22 V, + N,z M L [29]
a0,
™ = le Vy+N23 VZ+N33 M_ J

where N.. is constant and N.. = N...
ij ij ji

To transform these equations into a more meaningful form, we can redefine guantities

with respect to a point s at y =¥, z = Z instead of at the origin. This redefinition of quanti-

ties is given by:

Vy =—\7y %y =0, ——sz )

v, -V, T, -U, +F6,

M, =M, -ZV, +YV, 7 =0, . [30]
Ey =9
?z = 92 J

It can be shown (see Equations [2a, b, c] and associated material in Appendix A.1)
that if we take ¥ =--N23/N33 ,Z =+ N,3/N;; , the transformed equations are of the form:

ot ]

(0 I - —
y = —_ = =
Tk 0, Ny Nip oo -‘ vy )
al:lz = P = = L
I =+ =Ny Ny 0 1V, [31]
9, s
| | 0 0 Ny M, |
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decoupling the shear and torsion terms, so that this location of point s is called the shear
center of the beam. _
The first application of Equations [25] sets V, =Mx = 0. By Equations [30] and [31],

36, 90
this implies that axx -~ — =0 also. Using these relations and the fact that the terms
. are known multiples of V_ (by Equations [12] and [20]), Equations [25] become:
qpart i y q r
As. As. As. 1 As. b
i i j () j
ZT Ly Ly ZT Ljp Ly - - Z't—' L Lip K, Z't_ L1 Qpart j
j j j j
Asj Asj Asj Asj
X— L Lyl Ly Ly - Z— Ly Ly | (Ko p= ﬁ i Lz tpare 5
i i j j
[32]
As, As, As; As.’
i i J i
— L. — — L.. L. —
LZ t; LJ'LLJ'IZ t; LjL Lijp .- Z t; iL JL_ LKL, {th LjL qparti
These equations are solved for K, K,, . . . , K; . Then, substituting into Equations (111,

[12], and [18], we write q; in terms of-\'/—y =V, giving Quy1,Qyyyr Quyzr - - - » the
solution of plate shear flows per unit V- Having these, we substitute into Equation [26]
to get:

M, = [?va (Ye;5 Zn5 = Ynj 2e3) ]Vy (331

The third equation of Equations [30] then gives the z location of the shear center:

M, -M, +¥V, M, .
v, TV, TS Quyj Wei2h5 = Ynj2ey) [34]

Sl

96, 90,
x = K = —8T= 0, leading to

equations identical to Equations [32] except that the terms on the right side are now all

The second application of Equations [25] sets v, = M

proportional to V,. The solution gives K,, K,, .. . , K; in terms of V, and , by Equations
[11], [12], and [18], q; are written in terms of V, = V_, giving the terms Qy,; of matrix
Equations [27] and [28]. Again we substitute into Equation [26] to get:

M- [;?_QVZJ. (Yej Zn; —yhjztj)] Vv, [35]

The third equation of Equation [80] now gives the y location of the shear center:

— M —Mx +§Vy M,
v - =t — =4+ 32Qu.: (VeiZi .~V Z,, [36]
y vz Vz i Vzj (yt] hj yhj t_))
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The third application of Equations [25] sets V_ = \_/z =V, = Vy = 0. By Equations

{12] and [20], this means that {q } ={gyy¢ i} = 0 also. Equations [25] now become:

part j

‘?le (¥ Zpj = YnjZy;)

(L by L coefficient

matrix is identical

a6

K L. Ty ~V,.Z
4 2{ {7 j2 (ytJ hj = Yhj tj)>

to the coefficient - .G x [37]
matrix of Equation R [ ax
[321.)

\KL ) ?LjL (Yt Znj = Ynj Z;) ]

a0
Equations [37] are solved, giving K, K,, . . ., K| in terms of G—Xx . Again, substituting

into Equations [18] and [11] gives {qloop ; =1g;} in terms of G 96, /9x. Express the latter
as

90,
lq;} =1Qq;} G Fw (38]
Now substituting into Equation [26], using M, = ﬁx from Equation [30] gives:
96, =
My =G —= 2Qg; (e 20 = YnjZej) = My 391
a0
Solving Equation [39] for G ax-x and substituting into Equation [38] gives:
fq,} - (Qg,} M (401
q. = 0
U IQg (et YniZy)
whereupon, by definition of {QTJ.} , we have
- - 1Qg} [41]
Q! ?on YejZnj = Ynj Ze;) %

Thus, by three applications of Equations [25] we have determined ¥ and Z (the shear
center location) and the entire matrix [Q] in
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QVyl QVzI QTI
§y QV)’Z QVz2 QTZ -7 .
{qjl = [Q] 7 =Y (271, (28]
=7 Vv,
Mx QVyj szj QTj Hx
L. .. PRI .. ._~
We have also determined (from Equation [39]) the term
38,
1\ = = 1
— = N33 = dX =
GJe ﬁ G?QOj (ytj Zpj ~ Yhj Zt_j) [42]

Now, to apply Castigliano’s Theorem, note that the shear strain energy per unit
length in all the plates is (see pages 45, 53, 54 and 69):

2
- W 1 T 11 [%)2
W=— = — — (Vol.), = —Y — [—1] (t.As.A
Ax szj: s Vo= 525G 3 (t; As;Ax)
or . j (43]
As;
- 1 i
Wo—Y— g2
6l
;
Substituting from Equations [27] and [28] yields:-
As — S
pa— 1 j ey = = = =
- EGZT Quy;2 Vo2 +2Qyy; Quyy Yy V, +2Quy; Qpy Vo M,
§
+szj2vz +2QV:,1Q'I.‘jV M +QTj2-—lx2) [44]

Application of Castigliano’s Theorem gives:

Wy, = W ir= As, =
e | VyZ] 0y oV T Qs
i j

M, ZT Quyj Qm] (45]

j

[



U, = M 1 [= «Bs = j
R R e | T 2
% 5T N TG [VY Zj: t; Quy; vz +VZZ;' t; Qva;
= As;
+ Mx Z t. QVZJ QTJ]

- i
36 w1 As; As

= . = =-—[ Z‘_ Q'Vyj QTJ +V Z— QVZJ QTJ
ox aMx G ;

From Equations [45] and Equations [2a, b, c] of Appendix A.1 (see also pages 51 and 74) we

can write the shear flexibility terms of the beam:

1 = 1 As;
(KA G> N =EZ . ~ Quy? (461
yy j j
L As;
(KA G) =N T E QVYJ Qv (47]
vz i
1 — 1
[e) TR
zZz J
To verify results previously determined or defined, the following relations will always hold:
= As;
G N13 = Z 't— vaj QTJ =0 [49]
j i
= As;
GN,, = Z QVZJQTJ = [50]
( = N Z L [51]
GJ ) 33
€ i G 2Qg(¥e;2n; = Ynj 24y

INERTIAL PARAMETERS

In this section we discuss the method for computing the inertial parameters by the
digital program, the data required as input for the inertial calculations, the form of input
and cutput data, and the weight calculation for the sample problem.

In determining the inertial parameters, the weight and first and second moments are
calculated first by the following equations. The operations performed by the computer are

those indicated by these equations:
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Due to Due to

Item Additional Longitudinal Members Due to Plates
Masses at Nodes
IM = 3IM +p Ax X ¢ Ay +p AX Z ¢ bk
IMY =3IM vy, +pAx X Ay, +p Ax 2 ¢ .40,
IMZ =3IM z +pAXZ LAz, +p AXE Gtz
IMY? = My 2+ 1) +pAXZT LAy 2 +p AXE LY
IMYZ = SM_y 2z, +1,,)  +pAX S A vz teAXE G yj"z'j
S MZ2 = E(M,,,Zrn2 +1om) +pAXI Az +pAxEgekE?

In the above, the subscript m refers to the additional (nonstructural) mass items, for
which

M = weight of the item,

Y%, = coordinates of the center of gravity of the item,

I m =weight moment of inertia of the item about an axis through its center of
gravity and parallel to the z-axis,
Iyzm = weight product of inertia of the item with respect to axes through its center

of gravity, and

I, . =weight moment of inertia of the item about an axis through the center of
gravity of the item and parallel to the y-axis.

The subscript i refers to the longitudinal structural members associated with node i and the

subscript j refers to the plates. Here:

P = density of structural material (basic),

Ax = length of hull section for which weights are calculated,

¢, =density ratio, for material at node i, relative to p,

A, = cross-sectional area of longitudinal structural members associated with node i,

¥;>2; = coordinates of node i
Cj = density ratio, for material of plate j, relative to p,

t; = thickness of plate j,

Ij = \/(),Tj—ynj)2 + (th"Zhj)2 = length of plate j, and

YJ = (yhj + ytj)

{these are the coordinates of the midpoints of the plate j.

~|
1

1
2
1
5 (zhj + th)

Note that, contrary to the method employed in the calculation of elastic parameters of the

cross section of the hull, the weight of the plate j is not combined with the weights associated
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with the nodes at either end of the plate; instead, the entire mass of each plate is accounted
for as a lumped mass located at a point midway between the ends of the plate.

To take advantage of symmetry (if it exists) of the cross section about the y-axis, the
next step is to double the terms:

I M; = MY; 3 MY?; 3 MZ2
and to set to zero the terms:
3 MZ; = MYZ

In either case (symmetry or nonsymmetry), the final step is the use of the following
equations to determine the mass, the location of the center of gravity, and the moments of
inertia about the center of gravity:

MASS = M

Y-CG = SMY +3 M

Z-CG = SMZ =3 M

I-YY = 3MY? - (Y-CG)2 =M

I-YZ = SMYZ - (Y-CG) (2-CG) =M
1-ZZ = SMZ2 - (Z-CG)2 =M

I-MX = (I-YY) + (I-ZZ)

The final term represents the polar moment of inertia of the weight of the section about a
longitudinal axis.

Data required as input for the inertia calculations include items describing the por-
tions due to structural items (these are necessary for the flexibility calculations and need
not be duplicated) and the items describing the portions due to nonstructural members. The
following FORTRAN symbols are used for these latter terms:

FORTRAN Symbol in FORTRAN Symbol in
Symbol above equations Symbol above equations
Iw m WYZ ' Lom
Nw max. value of m - WZZ L.
w M, RHO p
YW,ZW Ymr Zgy AD éi
WYY Iyym DX Ax

For other FORTRAN symbols refer to Table 1b and to Figure 4b.
It is, of course, necessary that these inputs be in consistent units. For example, if
SCALE = 1.0 (no mixed units), the following may be used:



Y Z;s Yj, Zj, Ym® 2o tj 1n.

A, ) in.2
M 1b
1b-in.—3
i (dimensionless)
| 1b-in.2

yym?’ “yzm’ "zzm

Ax in.

In a second example, let SCALE = 12.0. Then the following may be used:

Y 2 ete. ft
tj in. ‘
Ai in.2
Mm 1b
P 1b-ft—3
2
Iyym, etc. 1b-ft
Ax ft

For a description of the form of the input data, refer to Tables 1a and 1c (for format),
Tables 2a and 2b (for structural items, sample problem) and Table 2c (for nonstructural items,
of which there are no entries in the sample problem).

For the form of the output data (sample problem), see Table 3a.

The weight calculation for the sample problem, which gives results agreeing with
Table 3a, is presented in Table 4.
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APPENDIX B
DESCRIPTION OF DIGITAL COMPUTER PROGRAM AND FLOW CHARTS

A digital computer program has been devised to solve for the problem just discussed.
The coding was done in FORTRAN. An index of FORTRAN symbols used (Figure 4b), a
listing of the FORTRAN statements (Figure 4a), and flow charts (Figure 5) are provided to

explain the program. Items will be discussed in the order they appear in the listing.

INPUT

Provision has been made for both card or tape input, under control of sense switch 5.
The input tape has been designated 5. The designation is immediately read out after it is
read; see Figure 5b.

SCALE RENUMBER

SCALE refers to modifying input data to allow the machine to work with numbers of
the same units if the user wants to use a certain mixed set of units for the data. Every node
and plate is assigned a number by the person who prepares the input cards. It is not required
that they be in sequential order. (This is useful because if one wants to see the effect of
removing a plate, the card in question can be removed, and the others do not have to be re-
numbered; the count NP must be changed of course.) A dictionary (called NRANK) is made
such that if NRANK(5) = 3, then the node that the user calls 5 is in the third location. The
nodes will be referred to (in the program) by the order in which they appear in memory (the
order of input), so that references (NH and NT) of the plates tc nodes must be changed.

Each NH and NT is found in the dictionary and replaced by that number. If anumber is speci-
fied on one of the plate cards for NH or NT and no node of that number had been given, an
output statement to that effect will be made, and after checking the rest of the cards to see
if any more errors were made, the computer will immediately return to try the set of data for

the next section, if any.

EXTRACT KEY

No test was made here to see that the value is allowable. The first and third digits
must be 1 or 2, the second digit may be 1, 2, 8, or 4. Other values will probably result in
the computer becoming lost. See Figure 4b for the meaning of these symbols.

The arithmetic statements are quite straightforward and should cause no difficulty.

No provision is made to branch an overflow.



TREE SEARCH

The tree search (Figure 5c) is given a node to start. It looks through all plate items
(both NH and NT) which have not yet been used to see if one joins the node. If not, it is by-
passed. If so, it looks at the node at the other end and determines if that node has been joined
to the tree. If not, it puts the new node on the tree by giving the value of NEXT for the new
node, the present node, and puts the new node on the bottom of the list of nodes to be searched,
NRANK. A value for LINK is given each node as it is entered on the tree, which tells which
plate goes back to NEXT. The sign of LINK specifies the direction of the plate. The branch
is put on the tree by making MTYPE = 1. If, when the other end of a branch is being examined
to see if it should be added to the tree, it is found that it is already on the tree (NEXT # 0),
then the branch is one that will close a loop and MTYPE = - 1~ After all branches have been
examined to see if they touch the first node, the computer will take the next item on NRANK,
and if it is on the tree (NRANK # 0), it will look through the remaining branches, etc. There
are two possible exits. Normal exit occurs if all nodes are found (it finds NN of them). If
all nodes are not connected, then, at some time all nodes which were connected to the first
node have been searched, but no more nodes are in NRANK to use. The computer prints a

statement if nodes are not properly connected, and starts to the next case.

FIND TREE LOOPS

To find the loops (Figure 5d), take each plate which is not on the tree (MTYPE = -1).
Go back down the tree from both ends to the origin to close loop. For symmetric sections,
shear flow can cross the centerline for z-shear and torsion but not for y-shear. More loops
are generated by going directly from the first node to the other nodes on the centerline and
then returning via the tree. L = number of loops for y-shear, LA = number of loops for z-shear
and torsion.

The word NEXT was used in connection with going back down the tree to the first

node.

OUTPUT

Output may be either on-line (printer) or off-line (tape) by proper choice of sense

switch 5 (see output flow chart, Figure 3b).



APPENDIX C
OPERATION AND RULES OF THE COMPUTER PROGRAM

INPUT FORMS

All data are to be collected and put on an input form from which it will be punched into
cards for input to the computer. Table 2 is an example of one such input form and includes-
data for the sample problem treated on page 6. Only one ‘‘identification’’ (see Tables 1a and
b) is used per section. This first card is used to identify the deck of cards which is punched
and will also appear as a heading on the output (Table 3). A second card will contain the
number of cards which follow in each of the three categories (nodes, plates, and masses);
operating instructions; and some constants. The data cards follow these first two cards.

All of the node cards must come next, and there must be more than one such card. Next come
all of the plate cards; there must be at least one of these. The mass cards, if any, follow
next. The cards must be stacked in the order indicated, and there must be exactly as many
of each type as indicated on the second card; however, the cards within any of the three
categories may be in any order. If more than one section is to be analyzed, the cards for
each section may be stacked together. Each section must begin with its identifier. After
the calculation for one section is completed, the computer will automatically begin the next

section.

OUTPUT FORMS

The output data will be identified by headings (see Table 3). The units are consistent,
the length always being the same as Y and Z. (If areas are given in square inches and Y in
feet, SCALE = 12.0, the output will all be in feet units.) Mass output includes mass, location
of the center of gravity, and the moments of inertia about the center of gravity. Areal output
includes the total tension area (not used in beam analysis unless there is an axial load),
loq?tion of the elastic (neutral) axis, and bending flexibilities. If Iyy is the moment of inertia
about an axis parallel to the Z-axis through the elastic axis (Iyy = £AY?), etc., and
A=Iy I -12_, then*

y zz yz’

YY Flexibility = Iyy/A, (=1/1,, for symmetric section)
YZ Flexibility = Iyz/A , (= 0 for symmetric section)

ZZ Flexibility =1__/A, (<1/1,, for symmetric section)

*See page 53 and Sheet 1 of Table 4.



These flexibilities should be divided by the reference value of E to be used in the beam
equations. Shear output includes the location of the shear center and flexibilities (torsion

and shear).

Torsion Flexibility = 1/J_, (GJ, is torsional rigidity)

YY Flexibility =_1
yy A
- 1
YZ Flexibility =
K,.A
- 1
77 Flexibility = K A

These should be divided by the reference value of G for use in the beam equations.

TROUBLE SHOOTING

If the machine stops on an arithmetic overflow, the operator should make sure that:

SCALE > 0.

All PT> 0.

All PG > 0.

There is some mass if second digit of KEY = 1.

o o=

5. There is some area, and it does not all lie upon a straight line if the second digit
of KEY =1, 2, 3.

The machine may print THE STRUCTURE IS NOT PROPERLY CONNECTED.
This may be due to one of the following two causes: All nodes must be joined by at least one
path through the plates and there must be at least one closed loop. (For the case of symmetry
when only half of the structure is drawn, it is sufficient to have at least one closed loop in
the complete section.)
Limits
2 SNN (number of nodes) £150
2 < NP (number of plates) <150
0 < NW (number of masses) <100

FLOW CHART

A copy of the flow chart of the computer program (Figures 5a—h) is included for

reference.
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