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NOTATION

Area

Symbol defined by a matrix (see Appendix A)

Differential distance along shear element

Differential distances along x-, y-, 2-axes, respectively

Local Young's modulus of elasticity

Flexural rigidity of beam

Reference modulus of elasticity

Known stress functions (i = 1, 2, 3)

Local modulus of elasticity in shear

Known stress functions which are linear homogeneous functions of
F (y,z ) (i = 1, 2, 3)

Torsional rigidity

Equals K dA
E

area

Functions of li]

Areal polar moment of inertia of a cross section about its shear center

Shear rigidity

Effective area factor

E
k--
EO

Temporary unknown constants used to derive equations

Bending moments about the x-, y-, and z-axes, respectively; positive when the
vector representing them is in the positive coordinate direction

Bending moments about the y-, z-axes, respectively; positive when the vector
representing them is in the positive coordinate direction

Bending moments about a longitudinal axis passing through the center of shear;
positive when the vector representing it is in the positive coordinate direction

Shear flow

Arc length along shear element

Thickness

K 1, K2 , K3

MX, M, Mz

My, Mz

q

t
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U, U , Uz  Displacements of cross section of beam along x-, y-, and z-axes, respectively;
positive when the vector representing them is in the positive coordinate direction

U, y, Uz Displacements of cross section along 7-, y-, and z-axes, respectively; positive
when the vector representing them is in the positive coordinate direction

UP Uz  Displacements of cross section of beam along y-, z-axes, respectively; positive
when the vector representing them is in the positive coordinate direction

Vx , Vy, V z  Forces acting on positive side of cross section of beam (i.e., portion of beam
on -x side of section) along x-, y-, and z-axes, respectively; positive when the
vector representing them is in the positive coordinate direction

Vx  Force acting on positive side of cross section of beam (defined as for Vx) along
F-axis; positive when the vector representing it is in the positive coordinate
direction

Ty, Vz Force acting on positive side of cross section of beam (defined as for Vy and

S Vz, respectively) along 7- and z-axes, respectively; positive when the vector
representing them is in the positive coordinate direction

W, W Strain energy and strain energy per unit length, respectively

X, y, z Coordinates of a right-hand rectangular Cartesian coordinate system (see
or Figure 3); y, z are also the positions of the neutral axis in x-, y-, z-coordinate

X, y, z system

X, y, z Position of the shear center in x-, y-, z-coordinate system

Ax, Ay, Az Length of segment along x-, y-, and z-axes, respectively

Ox, 0y, 0z  Rotations of cross section of beam about x-, y-, z-axes, respectively

0x , Oy, Oz  Rotations of cross section of beam about x-, y-, z-axes, respectively

Ox, Oy, 0z  Rotations of cross section of beam about x-, y-, z-axes, respectively

a Stress components in rectangular coordinate system defined as the force per unit
area acting on a face perpendicular to the i-axis and in the j-direction
(i = a, y, z; j = X, y, Z)

SMass per unit length of beam

Ir Equals (a2 + U2z)1/2

Subscript i in test denotes node numbers unless otherwise indicated; thus yi,

zi, Ai are the coordinates and corresponding area for ith node.
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ABSTRACT

For the purpose of vibration and load analysis a ship hull is often regarded

as a flexural beam. This report describes a method and numerical computer (digital)

program to calculate ship section properties (i.e., equivalent beam parameters)

needed for the beam vibration equations and its internal shear distribution, using

data tabulations obtained from hull plans by a pre-established orderly procedure.

The program has been written in FORTRAN and can be used on an IBM 650, 704,

709, or 7090. Comparison between digital computer and hand calculations for a

sample problem shows excellent agreement.

INTRODUCTION

For several years the David Taylor Model Basin has been concerned with the compu-

tation of the natural frequencies and mode shapes of a ship hull, 1 the whipping response of

a ship subject to slamming loads, 2 ,3 and the flutter response of hull-appendage systems. 4

In solving these problems, the ship hull has been treated as a beam and the physical para-

meters (i.e., equivalent beam parameters) have been computed for a ship subdivided into n

sections of equal or unequal length (usually n = 20). 1 These parameters include the inertia

properties (mass, location of center of gravity, and moments of inertia), bending (location of

neutral axis and bending flexibilities), shear (location of shear center and shear flexibilities),

and torsional flexibility parameters.

The accurate calculation of ship properties has been a laborious task because it

requires a detailed examination of ship scantlings, a tabulation of pertinent basic data (such

as location and cross-sectional areas of longitudinals), and the performance of routine but

lengthy calculations. It is therefore of interest to develop a digital computer program for

calculating the inertia-elastic parameters of a ship hull to materially reduce the time, labor,

cost, complexity, and errors associated with the present method of hand calculation of these

properties.

The objective of this report is to describe a method and numerical computer program

for calculating the section properties (i.e., equivalent beam parameters) of the hull starting

with information derived from drawings of the hull. These parameters are to be used in the

finite-difference form of the beam vibration equations developed in Reference 1; these equa-

tions have been used in vibration, slamming, and hydroelasticity problem areas in which the

hull is also treated as a beam. 1 - 4 The theory, program derivation, and operation associated

with the determination of these parameters are presented. 5 ,6 This includes the mathematical

development of the necessary equations and a description of the input and output statements

1References are listed on page 86.
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of a digital computer routine which could be used to compute the parameters. The data to be

furnished to the computer are discussed in detail. Parts of the task, the examination of ship

scantlings and the tabulations of basic data, will remain manual operations not included in

the program. The input forms for the digital computer program should also serve the auxiliary

purpose of assisting in the orderly and efficient recording of the basic data. Data input is

prepared on cards and the computer calculates parameters for one ship section at a time. The

output of the program gives the internal shear flow (stress) distribution (in the hull, per unit

beam shear or torque) in addition to the parameters needed in the beam equations. The pro-

gram has been written in FORTRAN 5 ' 6 and can be used on IBM 650, 704, 709, or 7090.

To test the program, a hand and digital computer calculation is compared for a sample

problem.

The method has been developed for bodies with a plane of symmetry (typical of most

ships) and also for the general case where there is no symmetry.

The report has been organized to meet the needs of the program user.

DATA TO BE FURNISHED TO THE COMPUTER

GENERAL

Based upon a theory presented in Appendix A, a digital computer program for calculat-

ing the section properties (i.e., equivalent beam parameters) of ship hulls, presented in

Appendix B, has been devised. Computation of these parameters requires that certain data

(geometry, areas and thicknesses, effectiveness, etc.) be furnished to the computer using

input forms discussed in Appendix C; output forms are also discussed in that appendix. These

data and the method for obtaining them are now discussed. In the next section of the text,

a "hand" calculation of the beam parameter for a sample ship section shows how these data

are used in making this calculation on the "digital" computer; this is true because a digital

computer operates on these data in a similar fashion. A comparison of the results of hand

and computer calculations is given.

DATA

Geometry

Consider the y-z coordinate system of a ship cross section shown in Figure 1, where

y is taken in the plane of symmetry for a symmetrical cross section. Otherwise the origin is

arbitrarily chosen. The geometry of every cross section obtained from ship plans is given by

the y-z coordinates of each node (Figure 1).

A numerical assignment of nodes is made (1) at every point where there is a longitudinal

beam (2) at the junction of more than two plates* (e.g., junction of lower deck to hull), and

*"Plate" here designates segments of decks, hull, bulkhead, inner bottom, etc.

1 ad i II YIm alY I IYIi YYI Y l IIm IlIh I
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(3) if desired, at other points in the section;

if there is a plane of symmetry, only one-

half of the section need be used but a node

is assigned where any number crosses this

plane. Assuming linear plating between

two nodes, extra nodes should be assigned 7

along curved members. Moreover, sub-

division of long straight sections by

assignment of additional nodes along the i
length improves the accuracy of the results

obtained. Each node, and plate which must

lie between two nodes, is numbered with an /
integer which runs sequentially from 1 to - z

150; the positive direction of each plate is 3I

indicated by an arrow drawn beside the plate.

Areas* and Thicknesses

To calculate the elastic parameters,

data are required on the areas (A) (see 2

FORTRAN symbols defined in Table lb).

If a node represents a longitudinal beam, its

area should be found; otherwise zero area is Figure 1 - Typical Symmetric Section

assigned to the node. The area of nearby Showing Node and Plate Numbering

plates is not assigned to the node because

this is done by the computer program. The program also computes the length of each plate as

the distance between the nodes it joins. The thickness (PT) of each plate is found and must

not be zero. To maintain constant plate thickness, a node is assigned at each point where

the thickness changes, thus subdividing the plate. If symmetry is used, nodes on the center-

line and plates lying along the centerline are assigned only one-half the total area and thick-

ness, respectively.

Effectiveness (AK for Nodes, PK for Plates)

Longitudinal members which end a relatively short distance from the section to be

analyzed will not be completely effective in carrying tension loads. An effectiveness value

is assigned to each node area; 1.0 for completely effective members, 0.0 for members which

*It is convenient to replace the actual area distribution by a set of "concentrated areas" at a set of nodes.

These nodes will be closely spaced and the area of any struCture between nodes can be divided between the

nodes at the ends of the segment. This idealization separates the problem so that the nodes (longitudinals)

carry all the tension, and the panels between the nodes carry only shear.

a I



TABLE 1

Input Forms

TABLE la Column Headings for Input Forms

IDENTIFICATION
2 10 20 30 40 50 60 70

d I I I I I I I 1 I I I I l
NN NP NW KEY DX RHO SCALE

NIX IXI IXi [><M I M I M I EE <l< I

IN Y Z A AK AD

IX I I N I M I I N I < r'<IXI

IP NT NH PG PT PK PD

1 IX] M N I K I I] I WM I WZ<I
IW W YW ZW WYY WYZ WZZ

IX ] I I I I] I l I l I I] I

TABLE lb'Definitions

IDENTIFICATION' Any statement consisting of characters printable by the computer,
a-numeric. This will not be used in the calculations, but will ap-
pear as a heading on the printout.

NN The number of nodes used, an integer.

NP: The number of plates used, an integer.

NWe The number of nonstructural weights used, an integer.

KEY- A three digit integer used to control machine operation.

Ist digit (1, 2) -+(do not use symmetry, use symmetry).

2nd digit (1, 2, 3, 4) +.(mass, bending, torsion and shear:
bending, shear, torsion; bending only, torsion only).

3rd digit (1, 21 -0, (output beam parameters only; also out-
put shear flows).

DX: Length of hull section (A X), floating point number.

RHO: Density of structural material, floating point number.

SCALE: Equals 1.0 unless mixed units are used. Node areas will be
divided by ISCALE)

2 
and plate thicknesses divided by ISCALE).

IN. Number associated with a node, integer.

Y, Z" Coordinates of the node, floating point numbers.

A Area of the node, floating point number.

AK Area effectiveness, floating point number.

AD Area density ratio, floating point number.

IP Number associated with a plate, integer.

NT: Number associated with node at tail end of plate, integer.

NH: Number associated with node at head end of plate, integer.

PG Plate shear effectiveness, floating point number.

PT: Plate thickness, floatng point number.

PK. Plate tensidn effectiveness, floating point number.

PD Plate density ratio, floating point number.

IW Number associated with mass item, integer.

W Weight of item, floating point number.

YW, ZW Coordinates of center of gravity, floating point numbers.

WYY, WYZ, WZZ Moments of inertia about its c.g., floating point numbers.

TABLE Ic Format of Input Numbers

Integer.

Three spaces are provided for integers. All integers used

by this routine are positive so no sign is needed. Leading

zeroes may be omitted.

Samples:

3 I ,, do not use

Floating Point.
Nine spaces are provided for floating point numbers.

One space must be used for the decimal point and one

for the sign if negative.

Samples:

S , , ,-, 6 1 261 82, 3 5

i. t o , 0 3 ,6 1 , 4

* I
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can carry no tension, and an intermediate value for partially effective members. A tension

effectiveness is also assigned to the plates, which in addition may be used to account for

cutouts such as hatches in the deck; see footnote on page 52.

"Effectiveness" can also be used if more than one material has been used in the

construction. The effectiveness is taken as the product of the above number times the modu-

lus ratio. The modulus ratio is the actual modulus of the material divided by a reference

value of the modulus.

Density

Structural mass is calculated as the product of the volume and density of the structural

element. If more than one material is used, a density factor, which is the ratio of the actual

density to the reference density, is associated with each element. For sections made of one

material, all density factors will be 1.0.

Plate Shear Factor (PG)

A plate shear factor (similar to the tension effectiveness) is needed for each plate.

As with tension effectiveness, there are two factors, one due to inability to carry shear and

the other due to shear modulus. Plates which end at a nearby cross section should have a

low effectiveness, and plates with a modulus greater than the reference value should have

an increased effectiveness. PG must never be 0. If the plate has no shear effectiveness, it

is not considered as a structural element.

Mass Items*

If mass calculations are to be made, additional information is needed for each non-

structural mass. Nonstructural mass includes machinery, cargo, fuel, virtual mass, etc. For

each item, the weight (W), location of its center of gravity (YW, ZW), and moments of inertia

about its own center of gravity (WYY, WYZ, WZZ) are required. Here WYY is the moment of

inertia about an axis through the center of gravity of the item and parallel to the z-axis. The

YY indicates that the integral which gives the moment of inertia has the factor Y2 .

Other Numbers

A count of the total number of nodes (NN), plates (NP), and masses (NW) is needed.

If masses are to be computed, the length of the section (DX) and the basic material density

(RHO) are needed.

*See pages 59 and 60.
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Key

Some control over which calculations should be made is provided by KEY. Each of

the three digits which make up KEY (Table lb) has a specific meaning and must be assigned

one of the allowable values. The first digit is 1 if information is given about the complete

section; 2 if symmetry is used and information given for half of the section. The second

digit is 1 if all mass, bending, shear, and torsion parameters are to be calculated; it is 2

for only elastic parameters (bending, shear, torsion), 3 for only bending parameters, and 4

for only torsion parameters. The third digit controls only the output; if 1 it prints all section

parameters specified by the second digit; if 2, it will in addition print the shear flows in the

plates.

Units

Any consistent set of units may be used. Masses may be computed in weight or mass

units. The values of RHO, W, WYY, WYZ, and WZZ should be given in the same system.

Provision is made to give lengths in mixed units if desired. If consistent units are used,

then SCALE = 1.0. If lengths are given in feet (i.e., Y, Z, DX), areas in square inches, and

plate thicknesses in inches, SCALE = 12.0 and RHO is in (-) per cubic foot.*

These data are collected and put on an input form such as Table 2, from which it is

punched into cards for input to the computer. The input and output forms (Tables 2 and 3a,

respectively) and the associated operation and rules of the computer program are discussed

in Appendix C.

COMPARISON BETWEEN COMPUTER AND MANUAL
COMPUTATIONS FOR SAMPLE PROBLEM

To test the program, a sample hand calculation was made and compared with a solution

of the s ame problem using the computer routine. Figure 1 shows the plates and nodes, and

Table 2 indicates the data for the sample problem. The manual calculations are shown in

Table 4, and are compared in Table 3b with the computer output shown in Table 3a. The

shear flows (from the computer solution) are shown in Figure 2. The theoretical basis for

these calculations is presented in Appendix A.

Node calculations are shown at the top of Sheet 1, Table 4; plate calculations at the

bottom of Sheet 1; shear flows due to y-shear at the top of Sheet 2; shear flows due to z-shear

at the bottom of Sheet 2; and shear flows due to torque on Sheet 3. On Sheet 1, data are given

in Columns &-4 for nodes and T--0 for plates. Columns @- for plates are found by

Column © and node Columns and ®. Plate Columns 0 and © are used to calculate

© , and thus also b and Q.

*(-) indicates the mass unit. (Text continued on page 11.)



Table 2a - Sample

Table 2

Sample Input Sheets

Input Sheet Showing Data for

IDENTIFICATION

ST TEST CASE 8/20/62 STA 7 APPROX

NN NP NW KEY DX RHO SCALE

8 9 0 NA 222 >< I1.0 M 11.0 M 12.0

IN Y Z A AK AD

1 -22.05 0 17.6 1.0 _J 1.0

2 X -20.45 w 15.15 23.5 1.0 _ 1.0

3 - 4.50 1 29.05 0 1.0 1.0

4 12.55 31.10 0 1.0 __ 1.0/

5 21.25 31.40 12.4 1.0 1.0

6 21.50 15.00 0 1.0 X _1.0

7 21.50 0 2.8 1.0 X 1.0

8 12.55 15.00 0 1.0 X 1.0

X x ~~X X 'X

Sample Problem

1(



Table 2b -Sample Input Sheet Showing Data for Sample Problem

IP NT NH PG PT PK PU

1 1 X 2 1.0 _ 1.478 X 1.474 _ 1.0 X

2 2 3 1.0 0.957 1.399 1.0

3 3 4 X1.0 0.750 X 1.223 1.0

4 X 4 5 ( 1.0 0.983 X 1.110 1.0

S 5 X 5 X 6 x 1.0 0.947 x 1.030 1.0

6 6 7 1.0 0.675 0.927 1.0

7 6 8 1.0 0.625 0.358 1.0

8 8 2 1.0 0.625 0.707 1.0

9 8 4 1.0 0.459 1.098 1.0X X × -", X × >.

4 4

1 5 10 15 20 25 30 35 40 45 50 55 60 55 70

xx x x ><x
x x x

x x x × ><>><Xx x ×xX×X
x X M I >

.. . __

- - -- - - - - I

-- -- -- -- --
Z

-- --__ __



Table 2c -Sample Input Sheet

WYY WYZ WZZ

xXx x X X ><X
x X x x - <::

X X x x X x "<XSx M.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 72

X X
X X xX x XX

x x x x xx

X ×X x x XX
A I -_ X] <



TABLE 3

Sample Output and Comparison of Results of Sample Problem

ST TEST CASE 8/20,'62 STA 7 APPROX

MASS = 0.2136E 02

Y-CG= 0.5945E00

Z-CG= 0.

I-YY = 0.5486E 04

1 -YZ = -0.

I -ZZ = 0.8576E 04

I-MX = 0.1406E 05

STRUCTURE AREA
Y EL AXIS

Z EL AXIS =

YY FLEXIBILITY

YZ FLEXIBILITY
ZZ FLEXIBILITY =
Y SHEAR CENTER =

Z SHEAR CENTER =

TORSION FLEXIBILITY -

YY SHEAR FLEXIBILITY =

YZ SHEAR FLEXIBILITY -

ZZ SHEAR FLEXIBILITY =

0.2359E 02

-0.1823E 01

0.

0.9469E-04

0.

0.1337E-03

-0.6138E 01

-0.

0.1083E-03

0.1090E-00

0.

0.1087E-00

Item

7

YY-FLEX

YZ-FLEX

ZZ-FLEX

YY-SHEAR FLEX
YZ-SHEAR FLEX

ZZ-SHEAR FLEX

TORSION FLEX

(a) Sample Output (from Computer) (b) Comparison of Results of Sample Problem

Sample Output
(Program)

-1.823
0

0.00009469

0

0.0001337

-6.138
0

0.1090

0

0.1087

0.0001083

Table 4 (Hand
Calculation)

-1.823
0

0.00009474

0

0.0001337

-6.228

0

0.1090

0

0.1085

0.0001081

3



Column @ under plates, which is

defined as 1/2 (12k tAs) = 6.0 ) ) @,
represents the division of the plate effec-

tive tension area, one-half being assigned

to the node at each end. This division is

effected in Columns ® - ) under nodes;

then the net node area is computed in node

Column .* Plate Columns and @

are used as Columns , ®, and of

Table 4, Sheet 2, in carrying out the calcu-

lations for the distribution of y- and z-shear.

Compute 7 from 13 - /1 (. Because

of symmetry, = 0.** Compute Columns

0- @ for nodes as indicated. Bending

parameters are calculated on Sheet 1; the

factor of 2 is for symmetry and 144 is to

change from square inches to square feet.

To compute the shear parameters,

first find a tree; that is, a set of plates so

that one and only one path exists between

every two nodes (see section Shear and

Torsion in Appendix A.2). The tree chosen

consists of all the plates except 5 and 9

(see Figure 1). For y-shear, Columns 0
and ( of Sheet 2, Table 4, represent all

nodes further from the root (node 1) than

the plate in question. The [Tji] matrix

discussed in Shear and Torsion of Appendix

-1.279
8.185

.242

45.851
1.559

- .0512
1ss

- 4.069
-12.217

.242

.015
- 1.926
- .6 20

Figure 2 - Sample Problem

Shear Flow X 103 per Unit Vy 1/ft

Shear Flow X 103 per Unit Vz  1 /ft

Shear Flow x 104 per Unit M. 1/ft2

The numbers in Figure 2 give the shear flows in the

plates corresponding to the following conditions:

Vy = 1, Vz = 0, Mx = 0 (top numbers)

Vy =0, Vz = 1, Mx = 0 (middle numbers)

Vy=0, Vz = 0, Mx = 1 (bottom numbers)

The scales are indicated under the caption. The numbers

come from Sheet 2, Col. ( Sheet 2, Col. & and

Sheet 3, Col. @of Table 4, respectively.

A.2 is applicable to these columns; in particular,
see Equation [14]. Considering Plate 2, it is seen that shear flows from nodes 3, 4, and 5

* represents one-half the effective area of each plate employed in Columns ®, (, and 8 at the top of

the sheet in determining total node areas. Hence, the factor of 1/2 is introduced in calculating @ (bottom).

The assignment to proper nodes is carried out by entering values from @ (bottom) in appropriate spaces under

0, Q, and @ (top). For example, for Plate 7, which corrects nodes 6 and 8, one-half the effective area is

12.0 (Column , bottom). This value is entered as "Plate Area" once at node 6 (( top) and once at node 8

(0 top). Whether a particular number is entered under Columns , f, or is of no significance. Effective-

ness k '= k = PK, Column ®. Plate thickness (inches) t = PT, Column . Plate length (feet) As =

Column @. 6 = 1/2 x 12 converts inch feet to square inches. Columns 0 and ) were arbitrarily chosen as

sample problem input data. They were used only as indicated in calculating the entries of Columns , G .

**See Figure 3.
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,, Ux

Figure 3 - Coordinate Systems

Ux , Uy, and Uz are displacements; Ox,, 0, and 0z are rotations. The forces Vx, Vy, and Vz

and moments Mx , MY, and Mz act upon the section shown

are effective, and that the sign of the summation is negative since the positive sense of

Plate 2 is away from the root. Hence qparticular = qpart = (-) I qout = -qout 3 -qout 4

-qout 5* Qpart means Qparticular, or a particular solution of the shear flows out of the

nodes, as discussed in Appendix A.2. However, since Qpart is based on a tree which omits

several plates or paths of flow (2 or 3 in the example) it is not completely general. Additional

shear patterns (one for each plate omitted in the tree) are superposed. These are the Qloop
terms. The amount of shear flow in each loop to be added to the particular solution is unknown

a priori, and is indicated by the coefficients K,, K2 , or K1 , K2 , K3 (2 if symmetric and 3 if

antisymmetric). For the method of solving for the K's, the matrix operations on Sheets 2 and

3 of Table 4 illustrate this for the sample problem and it is further discussed below. In

general, the method of solution is outlined in section Shear and Torsion in Appendix A.2.

The solution of simultaneous equations for K, K2 , etc., is by matrix inversion and

multiplication in the sample calculation, as indicated on Sheets 2 and 3 of Table 4. In the

sample calculation, as indicated on Sheets 2 and 3 of Table 4. In the digital computer

*Columns ( andQ include the sign associated with each value of qout i and, therefore, represent [Tji]
[qout i] . Hence a separate computation for [Tji] is unnecessary. This is the reason Column ) is multiplied by

a factor of 1. It is possible, of course, to treat qout i (without regard to sign) and Tji separately as on page 65

(see Equation [14]). This is less convenient for calculation.

II I



program, it is accomplished by the "Gram-Schmidt Reduction" indicated in Figure 4.* This

is a standard technique in matrix algebra. Equations [25] and [321 of Appendix A.2 show the

matrix derivation.

For reasons discussed below, Column @ is formed by summing entries from @ ,

Sheet 1 (top) as indicated in ) , ,, of Sheet 2. For example, for Plate 2:

Column = - (nodes 3 + 4 + 5) = - (-0.6572 + 2.6709 + 3.5423)= - 5.5560. Similarly,

Column is generated by the same combinations of nodes; however, in this case the shears

are taken from the entries in Column , Sheet 1 (top).

That Columns @ , and @ are proper expressions for qout from each node for the

section sustaining y-shear and z-shear, respectively, is seen from the equations for Iqi (out)

in Appendix A.1, remembering that Iyz= 0,z = 0 in the example. Columns @ and @ are

loops (Column 5 is associated with Plate 5, ) with plate 9 by- random selection). They

could as easily have been reversed. The selection of entries in ) and Gi is based on the

following statement in Appendix A.1, "For each plate which is not on the tree, there exists

a closed loop through that plate and others in the tree." Reference to Figure 1 shows that

the loop, including Plate 5 in the positive sense (but excluding Plate 9), includes Plates 2,

3, 4, 7, and 8 (all in the positive sense). Also, the loop involving Plate 9 in the positive

sense (but excluding Plate 5) includes Plates 2, 3, and 8 (all in the negative sense). The

entries in ® and @ reflect these statements.** See also Equations [131-[15] for the

Iqloop j1 and discussion of the Ljl matrix in Appendix A.2. Column 0 of Sheet 2, Table 4,

is plate Column @ of Sheet 1, Table 4. Next, solve for the factors K 1 and K2, which are

the amount of shear flow in the loops. This is indicated as a matrix operation to the right on

the calculation sheet (not the same method used in the program, but equivalent). t The follow-

ing hand calculations and those used in the program are based on the set of Equations [32] of

Appendix A.2. While these equations are for a general cross section, the equations of the

sample problem are for cross sections with only two or three loops.

The y-shear calculation for the symmetric hull cross section involves the solution of

two simultaneous equations for K, and K2 (see Appendix A.2, Equation [32]). The numerical

values for the elements in the matrix to the left of the Ki matrix in Equation [321 are obtained

as follows (see Table 4, Sheet 2 ): tt (Text continued on page 39)

*The digital computer program and Flow Charts (see Figures 4 and 5) are discussed in Appendix B.

**For z-shear the entries in Columns G  and are identical to those in@ and@, respectively. Since the

force is antisymmetric (see Figure 6) a third loop consisting of Plates 6, 7, 8, and 1 must be considered. The

entry in reflects the shear flow in this loop.

tThe solution of the matrix equation is performed differently in the sample problem and in the computer program

because the sample calculation inverts a 2-by-2 or a 3-by-3 matrix by hand with a desk calculator, and the com-

puter program permits inversion of an n-by-n matrix (where n may be any integer up to 30, the maximum number of

loops) by high-speed digital computers (Gram-Schmidt Reduction). The optimum method is naturally different in

the two instances.

ttThe rationale underlying the y- and z-shear calculations are similar. For the latter, a detailed calculation is

given on page 39.

I I I I I II



- 22.05

- 20.45
- 450

12 55

21.25

2150

2150

12.55

)';-3096 3
V = 1823

DATA

0

15 15

29 05

31 10

31.40
15 00

0

15.00

Y- 0

TABLE

199 1

199 1

170 0

94 5

57 0

96 0

56 3

12 0

PLATE
AREAS

TABLE 4
Sample Calculations

4a Node Calculations and Plate Calculations

216.7
480 1

264 5
200 2

165 4
164.3
59 1

148 2

Y 1698 5

Y - Y AIY -Y) A(Y- )2

T kf , D"' 1 0 La I @ 1 * 12 13 14

111@4 +G+ 01,+1.823 @@ OO 0 OX
-20 227

-18.627

- 2 677

14 373

23 073

23 323

23 323

14 373

-4383.2

-8942.8
- 708 1

2877 5

3816 3

3832 0

1378 4

2130 1

yy 1,077,362

88659

166578

1895

41358

88053

89374

32148

30616

538681

0

7273.5

7683.7
6226.2

5193.6
2464.5

0

2223.0

0

110192

223211

193635

163078

36968

0

33345

760429

A( - Yi A
A(Y -Y) 103

yy

©
-4.0684

-8.3006

-0.6572

2.6709

3.5423

3.5568

1.2794

1.9771

AZ
x 10-zz

Q 6

0

4.759

5.052
4.094
3.415

1.620
0

1.462

IP NT NH PG PT PK Y YT Z Z Y-YT ZH - Z AS 12'tAS AS/t YHZT- YTZH

(-O ®-® ,- l"o)+@2 2 6.0 ( . /-

0 0(0 ( ( D @ 0 @ @ @ @ @
1 1 2 1.0 1.478 1.474 -20.45 - 22.05 15.15 0 160 15 15 15.23 199 1 10 30 334 06

2 2 3 0 957 1.399 - 4.50 - 20.45 29.05 15.15 15.95 13.90 21 16 170 0 22.11 525 90

3 3 4 0.750 1223 12.55 - 4 50 31.10 29 05 17 05 2.05 17 17 94 5 22 89 504.53

4 4 5 0.983 1.110 21.25 12.55 3140 31.10 8 70 0.30 8.71 57.0 8.86 266 80

5 5 6 0.947 1.030 2150 21.25 15.00 3140 0.25 - 16.40 16.40 96 0 17 32 356.35

6 6 7 0.675 0 927 21.50 2150 0 15.00 0 - 15.00 15 00 56 3 22 22 322.50

7 6 8 0.625 0.358 12.55 21.50 15 00 - 8 95 0 8 95 12.0 14 32 - 134 25

8 8 2 0 625 0.707 - 20 45 12 55 15.15 - 33.00 0.15 33 00 87.5 52 80 -496.88

9 8 4 1.0 0.459 1098 12 55 12.55 31.10 0 0 16.10 16.10 48 7 35.08 -202.06

*If AK 1.0 then = + + + 1698 5
*This holds by virtue of the equation for YY-FLEX in Appendix A, recognizing that for AREA =2 x - 23 59 FT

2

the symmetric hull of the sample problem, lyZ = 0. 144 is necessary because I.. here

has the units ft
2 in.

2 , and YY-FLEX. has units of ft-
4 . Similarly, ZZ-FLEX = =-1.823 =0

YY = FLEX. 144 0.9474 x 10
-4

Si.FT4

YZ- FLEX.= 0

144 1
ZZ-FLEX.** =1337x 10

-4

yy

--

Izz . 1,520,858



TABLE 4b Y.Shear and Z-Shear

QPART Q LOOPS As/t ]Qvyx10
3 l ox®

Qout Y's Lj,
1 -(7+6+8+2+3+4+5) -4.0687 0 0 10.30 -4.0687 334.1 170.51

2 -(3+4+5) -5.5560 1 -1 22,11 -6.5187 525.9 939,53

3 -(5+4) -6.2132 1 -1 22.89 -7.1759 504.5 1178.69

4 -(5) -3.5423 1 0 8.86 -4.4902 266.8 178.63

5 -- 0 1 0 17.32 -0.9479 356.4 15.56

6 -(7) -1.2794 0 0 22.22 -1.2794 322.5 36.37

7 (647) 4.8362 1 0 14.32 3.8883 -134.2 216.50

8 (6+7+8) 6.8133 1 -1 52.80 5.8506 -946.9 1807.32

9 -- 0 0 1 35.08 0 0148 -202.1 0.007

1.0000 -0.9479 +0.0148, 1= 4543.12

FACTORS

0 LOOPS As/t I , vx10 (2 28)2

_0 out ZS I ( (

L 1LS, JJtt
1 -20.402 0 0

2 -12.561 1 -1

3 - 7.509 1 -1

4 - 3.415 1 0

5 0 1 0

6 0 0 0

7 1.620 1 0

8 3.077 1 -,,1

9 . 0 0 1

FACTORS 1.000 4.736 -1.926

-1 " 10.30 -12.217
0 22.11 - 5.899

0 22.89 - 0.847

0 8.86 1.321
0 17.32 4.736

-1 22.22 8.185

1 14.32 - 1.829

1 52.80 1.559
0 35.08 - 1.926

-8.185

334.1

525.9

504.5

226.8

356.4

322.5

-134.2

-946.9
-202.1

1537.33

769.39

16.42

15.46
388.48

1488.61

47.90

128.33
130.13

E 4522.05
__ __ _ __ _ __ _ __ _ __ _I _ _I _ __I _ _ __I

S '38.30 - 97 8 - 132.55 =-0 949

K) =--L97.80 132.J 8 - 94.68) \ +0.0148

YY-FLEX. = 2 x 12 x (4543.12 x 10-
6) a 0.1090

Z - SHEAR CENTER = 0

(138.30 - 97.80 67.112 -(294.20) (4.736K =- 1-97.80 132.88 -52801 28714 = 1-1.926
K 67.12 - 52.80 99.64 395.80 -8.185

ZZ - FLEX. = 2 x 12 x (4522.05 x 10- 6) = 0.1085

Y - SHEAR CENTER = 2 xl x =2(-3.114)=-6.228

NOTE: , Description of lot loop

Description of 2nd loop

Description of 3rd loop
Qvy Shear flow in plates for Vy = 1, Vz = 0, Mx = 0

QVz Shear flow in plates for V y 0, Vz = 1, Mx - 0

, RA . Same a.. YHZT YTZH on Sheet 1, Column 15 (bottom). R is

perpendicular diatange from origin to plate. (See Figure 9 and page 72).

0 , 8 Used in calculating I L QVy, , j2 
for determination of

(ny-y) ( ,z ) (YY - FLEX. and ZZ - FLEX.)

(See Equations [461--[48] of Appendix A.2 and pages 84-85).

QPART

, es 72-75



TABLE 4c Torsion

qT* qT X 103

IP rAs As/t Q Loops Not =0.888 O 'A32
Lji Normal x 0

U3 0 0 (0 (7 CO (D
1 334.06 10.30 0 0 -1 0.273 0.242 0.6032

2 525.90 22.11 1 -1 0 0.214 0.190 0.7982

3 504.53 22.89 1 -1 0 0.214 0.190 0.8263

4 266.80 8.86 1 0 0 0.190 0.168 0.2500

5 356.35 17.32 1 0 0 0.190 0.168 0.4888

6 322.50 22.22 0 0 -1 0.273 0.242 1.3012

7 -134.25 14.32 1 0 1 -0.083 -0.074 0.0783

8 -496.88 52.80 1 -1 1 -0.059 -0.052 0.1426

9 -202.06 35.08 0 1 0 -0.024 -0.021 0.0154

FACTORS 0.190 -0.024 -0.273 1= 4.504

-- - -1-[-4

K - 97.80 132.88 -52.80 - 7.3 -0.024
2

K: 67. 12  - 52.80 99.64 -12.8 -0.273
ZI x( = 563

FACTOR= 1 = 0.888 x 10- 3

FACTOR = -
2 x 563

TORSION FLEX. - 2 x 12 x (4.504 x 10-6) = 0.1081 x 10- 3 1/FT4

NOTE: rAs same as RAs, Cols. @,@ Sheet 2.

i) ®,5, @ Q Loops Specification of three loops.
qT* (Not Normal) = (0.190) 0 +(-0.024 , + (-0.273)

These are shear flows for Vy = Vz = 0, G dx =1
dx

q T. These are shear flows in plates for Vy = Vz - 0, x = 1.

Calculation of A") QT 2 for torsion flexibility. See Appendix A.2,

Equation [51) and page 84--85.
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Figure 4 - FORTRAN Statements and Symbols

DIMENSION A(150),AK(150)tAD(150)*C(30)LINK(150).IN(150)9
1NT(150)tNH(150),NEXT(150),NRANK(150)tNC(30)tPK(150)*IP(150)9
2PD(15O0)PG(150)P150PT 0) .QOY(150) Q00Z(150) 0(15030) IW(100)
3QY(15O)*QZ(150),T(15010)R(150)RDS(150)oW(100)*WYY(100)o
4WYZ(100)tWZZ( 100),Y(S50).YW(100) Z(150) tZW(100)MTYPE(150)

99 IF(SENSE SWITCH 5)5249523
523 READ 1

IF(SENSE SWITCH 6)5009501
500 WRITE OUTPUT TAPE 691

GO TO 502
501 PRINT 1
502 READ 2#NNkNPvNW,KEY9DXRHOSCALE

READ3.(IN(I),Y(I),Z(I)*A(I)*AK(I),AD(I) ,m1s NN)
READ4 ( IP(I)NT( I ) NH(I) PG( I) PT(I)PK( I)PD(I) Il NP)
IF (NW) 9999100.999

999 READS,(IW4I)*W(I)*YW(I)*ZW(I),WYY(I )WYZ(I).WZZ( I s)oIoNW)
GO TO 100

1 FO.MIAT(72HCOMPUTER ENGINEERING ASSOCIATES* A DIVISION OF SUS
1A SCIENCES. INC.)

2 FORMAT (41595X*3F10.4)
3 FORMAT (I595F10.4)
4 FOXAT (315.4F10.4)

5 FORMAT(I156F104)
FC.'AAT IOH
FORMAT(IOH
FORMAT 10H
FORMAT(10H
FO.4AT O0H
FOR4AT1OH
FCj4AT( 410H
FORMAT(18H
FORMAT( 18H
FORMAT(18H
FC.:IAT I18H
FOR'MAT l 8H
F01MAT(18HFOMAT( 18H
FORMAT (24H
FORMAT(24H
FORMAT( 24H

MASS a .E11*4)
Y - CG = E11.4)
Z " CG = 9E11.4)
I - YY = 'E11*4)
I YZ a *E11.4)
I ZZ *a E11.4)
I - MX *E1ll.4)
STRUCTURE AREA • *E
Y EL AXIS a *E
Z EL AXIS *E
YY FLEXIBILITY * .E
YZ FLEXIBILITY sE
ZZ FLEXIBILITY.- *E
Y SHEAR CENTER
Z SHEAR CENTER
TORSION FLEXIBILITY

11.4)
11*4)
11.4)
11.4)
11*4)
11.4)

* ,

3 ,

QUEHAN

INPUT

E11&4)
Ell.4)
E11.4)

Figure 4a.1 - The FORTRAN Statements
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22 FORMAT(24H YY SHEAR FLEXIBILITY = *El1.4)
23 FORMAT(24H YZ SHEAR FLEXIBILITY = E114)
24 FORMAT(24H ZZ SHEAR FLEXIBILITY = ,E11*4)

524 READ INPUT TAPE 5.1
IF(SENSE SWITCH 6)5259526

525 WRITE OUTPUT TAPE 691 PUT
GO TO 527

526 PRINT 1
527 READ INPUT TAPE 5,2,NNNPPNWKEYtDXtRHO*SCALE

READ INPUT TAPE 5,3,(IN(I),Y(I)tZIA(I)A)*AK(I)AD(I)Isl1NN)
READ INPUT TAPE 54,*(IP(I)*NT(I)tNH(I)*PG(I)*PT(tIoPK(I)tPD(I)tlIl
1,NP)
IF (NW) 100,100,528

528 READ INPUT TAPE 595(IW(lI),W(1)tYW(I),ZW(1)WYY(I).WYZ(I)tWZZ(I),I
=I1sNW)

100 DO 101 I=1.NN
101 A(I)=A(I)/(SCALE**2)

DO 102 I-lNP
102 PT(I'IPT(I)/SCALE

KEYD1l
DO 300 K=1,150

300 NRANK(K)=0
DO 301 J=1tNN
KiN(J)

301 NRANK(K)=J
DO 399 I=1.NP SCALE
KwNT(I) RENUMBER
IF(NRANK(K))303,3039304

304 NT(I)wNRANK(K)
KwNH(1)
IF(NRANK(K))30593059302

302 NH(I)*NRANK(K)
GO TO 399

398 FORMAT(7H PLATE 13916H REFERS TO NODE *13.23H WHICH WAS NOT DEFIN

303 IF(SENSE SWITCH 6)5039504 NMERING
503 WRITE OUTPUT TAPE 69398 IP(I)*NT(I) ERROR

GO TO 505 DIAGNOSTIC

504 PRINT 398# IP(I).NT(I)
505 KEYD=2

Figure 4a-2
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GO TO 304
305 IF(SENSE SWITCH 6)506.507
506 WRITE OUTPUT TAPE 693989 IP(I).NH(I)

GO TO 508
507 PRINT 3989 IP(I)*NH(I)
508 KEYD=2

GO TO 302
399 CONTINUE

GO TO(306,99) KEYD
306 KEYA=(KEY/100)

KEYBm(KEY/10)-10*(KEY/100)
KEYCzKEY-10*(KEY/10)
GO TO(i03,1069106108)KEYB

103 SW=00
SWY 0.O
SWZwO0O
SWYYOeO0
SWYZBOO0
SWZZe0.0
IF (NW) 997,997,998

998 00 104 I=1zNW
SWOSW+W( I)
SWY=SWY+W(I)*YW(I)
SWZ-SWZ+W(I)*ZW(1)
SWYYaSWYY+WYY(I)+W(I)*YW(I)*Yw(1)
SWYZ=SWYZ+WYZ(I)+W(I)*YW(I)*ZW(1)

104 SWZZ=SWZZ+WZZ(I)+W(I)*ZW(I)*ZW(1)
997 DO 105 I:=1NN

G=A(I)*AD(I)*RHODX
SWsSW+G
SWY=SWY+G*Y(I)
SWZUSWZ+G*Z(I)
SWYYnSWYY+G*Y(I)*Y(I)
SWYZ=SWYZ+G*Y(I)*Z(I)

105 SWZZ*SWZZ+G*Z(I)*Z(I)
106 DO 107 1= lNN
107 A(l)=A(I)*AK(I)
108 DO 110 J=l1NP

JH=NH(J)
JT=NT(J)

NWUBERING ERROR
DIAGNOSTIC

Figure 4a-3

EFFECTIVE TENSION AREA

SCALE
RENUIBERI
4EXTRACT KEY

ADDI01TIONAL AND
NOIE MASS SLS

A
PLATE LENGTH, rAS
AS/Gt, TENSION AREA

B

--

0

- --

I



YHY (JH)
vTaY(JT)
ZH=Z(JH)
ZT=Z(JT)
G=S.QRTF((YH-YT)**2+(ZH-ZT)**2')
ROS(J)aYH*ZT-YT*ZH
R(J)=G/(PG(J)*PT(J))
A(JH)uA(JH)+(C,5*G*PT(J)*PK(J))
A(JT)=A(JT)+,(Oe*G*PT(J)*PK(J))
GO TO (109,~1 ! :10110),KEYB

109 G=G*PT(J)*PD(J)*RHO*DX
SW=SW+G
SWYSWYY+G*O.5*(YH*YT)
SWZ=SWZ+G*C.5*(Z+7?T)
WVYY=SWYY+G*O.25 (YP+YT)*(YH+YT)
SWYZ=SWYZ+C-O .25* ( 'i+vT) *(, '7+ZT)
SWZZeSWZZ+G*0.25*(ZH+ZT)*(ZH+ZT)

110 CONTINUE
GO TO(11,114.1149120),KEYB

111 GO TO(113,112)'<cYA
112 SW=2.0*SW

SWY=2*0*SWY
SWZ=04O
SWYY2eO*SWYY

SWYZmenO
SWZZ=2*C*SWZZ

113 SWY=SWY/SW
SWZ=SWZ/SW
SWYYmSWYY-SW*SWY*SWY
SWYZ-SWYZ-SW*SWY*SWZ
SWZZ=SWZZ-SW*Swk*SWZ

114 SA=O.0
SAYaC.0
SAZ=0O0
SAYY=OO
SAYZ=0eO
SAZZ=0.O
DO 115 ItlNN
SA=SA+A(I)
SAY=SAY+A(I)*Y(I)

PLATE LENGTH, rAS
AS/Gt, TENSION AREA

t
ADD PLATE MASS
TO MASS SIMS

MODIFY MASS SU~S

COMPUTE MASS PARAMETERS

COMPUTE AREAL MOMENTS

Figure 4a-4
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SAZmSAZ+A&, a. Ll
SAYVYSAYY+A( )*Y(I)*Y(l)
SAYZ=SAYZ+A( I )*Y( )*Z(I)

115 SAZZOSAZZ+A(I)*Z(I)*Z(I)
GO TO(117*116)#KEYA

116 SAs2*O*SA
SAYO2*0*SAY
SAZ*00
SAYYa2*0*SAYY
SAYZO0eO
SAZZ*2*0*SAZZ

117 SAYnSAY/SA
SAZ*SAZ/SA
SAYY SAYY-SASAY*SAY
SAYZSAYZSA*SASAY*SAZ
SAZZ-SAZZ-SA*SAZ*SAZ
Ga1 O/(SAYY*SAZZ*SAYZ*SAYZ)
SAYYmG*SAYY
SAYZ*G*SAYZ
SAZZ G*SAZZ
GO TO(118118,5099120)*KEYB

118 DO 119 IulNN
QOY( I )A(I)*(SAZZ*(Y( I )SAY)-SAYZ*(Z( I)-SAZ))

119 QOZ( l)A( )*(SAYY*(Z( I )-SAZ)-SAYZ*(Y( )-SAY))
120 DO 121 IlNMP
121 MTYPE(I)0O

DO 122 I-1eNN
NEXT( I ) "0
LINK(I) s0

122 NRANK(I*mO
NRANK(11)l
GO TO(1269123)*KEYA

123 LCmO
00125 IalMNN
IF(Z(I))1259124t125

124 LC&LC+1
NC(LC)nI

125 CONTINUE
NRANK(l )NC( 1)

126 Kal

I
COPULTE AREAL MOrIENTS

MODIFY AREAL SUMS

COMPUTE AREAL PARAETERS

S
COMPUTE Q OUT

Ia~~ u

SETUP FOR TIREE SEARO

I
f

AIOOIFY FOR S EtR

I
TREE SEARCH

IFigure 4a-5

T

I---- -



127 DO 137 J1.lNN
IF(NRANK(J))1969196,128

128 DO 136 I=19NP
IF(MTYPE(I))1369129.136

129 IF(NT(I)-NRANK(J))130.131.130
130 IF(NHII-NRANK(J))136.132,136
131 LAwNH(I)

LBw-I
GO TO 133

132 LAsNT(I)
LB.!

133 IF(NEXT(tA))1349135,134
134 MTYPE(I)o-1

GO TO 136
135 NEXT(LA)=NRANK(J)

K=K+1
NRANK(K)mLA
MTYPE( 1)i
LINK(LA)=LB

136 CONTINUE
137 CONTINUE

DO 138 1=1.150
DO 138 Jnl.30

138 Q(IJ)O*O0
LRO
DO 149 ImlNP
IF(MTYPE(I))139.1499149

139 LwL+1
O Q(L)w1.0
J*NH(I)

140 IF(LINK(J)1141,144*142
141 Ka-LINK(J)

Q(KL)mQ(KL)-1.0
GO TO 143

142 K*LINK(J)
O(K#L) O(KL)+1.O

143 J=NEXT(J)
GO TO 140

144 J-NT(I)
145 IF(LINK(J))146,1499147

TREE SEARCH

FIND TREE LOOPS

Figure 4a-6



146 KaL INK(J)
Q(K#L)wQ(KL )+1.0
GO TO 148

147 K=LINK(J)
Q(K*L)Q(K*L )-1.0

148 JaNEXT(J)
GO TO 145

149 CONTINUE
LA=L
GO TO(1569996)#KEYA

996 IF(LC-1156,156,150
150 DO 155 I"29LC

LA'LA+1
JwNC(I)

151 IF(LINK(J))152155,153
152 Ka-LINK(J)

Q(KLA)m-1*0
GO TO 154

153 K-LINK(J)
O(K#LA)1*0.

154 JONEXT(J)
GO TO 151

155 CONT INUE
156 IF(LAM 196,196*310
310 DO 163 JILA

DO 162 K"JOLA
200 G=O.O

FIND O EE LOOPS

DO 157 I=l1NP
157 G"G+R(l)*Q(IoJ)*Qt(IK)

IF(K*J)160O158*160
158 G1O*0/SORTF(G)

DO 159 Il1,NP
159 Q(IJ)mG*Q(IJ)

GO TO 162
160 DO 161 IulNP
161 Q(I K)SQO( lK)-G*O(I J)
162 CONT INUE
163 CONTINUE

GO TO(164164,509o177),KEYB
164 DO 165 Iul1NP

RAM SCHlIDT REIWCTION

FIND SHEAR FLOWS DUE TO Y-Z SHEARS

I
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QY( I )SOO
165 QZ(I)=O.0

K=NN
166 I=NRANK(K)

IFILINK(I))16791709168
167 Jn-LINK(I)

QY(J)-QOY(I)
QZ(J)U-OOZ(I)
GO TO 169

168 JzLINK(I)
QY(J )mOY(I )
0Z(JlOOZ( I)

169 J-NEXT(I)
QOY(J)QOY (J)+QOY( I)
OOZ(J)nQOZ(J)+QOZ( I)
K=K-1
GO TO 166

170 IF(L) 31293129311
311 DO 173 I-1L

G=O.0
DO 171 J'1.NP

171 G*G+R(J)*QY(J)*Q(Jol)
DO 172 JltNP

172 OY(J)QGY(J)-G*Q(JoI)
173 CONTINUE

312 DO 176 I1,LA
GO.0
DO 174 J*19NP

174 G-G+R(J)*QZ(J)*Q(JI)
DO 175 Jw1lNP

175 QZ(J)*OZ(J)-G*Q(JoI)
176 CONTINUE
177 Gz0*0

DO 179 K1,sLA
C(K)*O*O
DO 178 I 1 NP

178 C(K)uC(K)+Q(ItK)*ROS(1)
179 G=G+C(K)*C(K)
185 GO TO(510.186)oKEYA
186 G=2.0*G

FIND SHEAR FLOWS
DUE TO Y-Z SHEARS

i

.FIWO SMEAR FLOWS
DUl TO UE
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510 Gml.O/G
DO 180 I=1NP
QT(I tO
DO 180 J=1tLA

180 QT(I)QT(I)+G*C(J)*Q(I*J)
GO TO(181181S5099509)SKEY8

181 UYSOO0
UZEO0O
UYYO0e0
UYZUO*O
UZZ000
DO 182 Il9NP
UY*UY+RDS(I)*QY(I)
UZaUZ+RDS(I)*QZ(I)
UYYRUYY+R(I)*QY(I)*QY(I)
UYZ*UYZ+R(I)*QY(I)*QZ(I)

182 UZZOUZZ+R(I)*QZ(I)*QZ(I)
GO TO(184*183)oKEYA

183 UYO.O
UZ2eO*UZ
UYY=2*0*UYY
UYZwO.O
UZZ*2*0*UZZ

184 UYw-UY
509 IF(SENSE SWITCH 6)5119187
87 GO TO(1889189,189#191)tKEYB
188 PRINT 69SW

PRINT 79SWY
PRINT 89SWZ
PRINT 9#SWYY
PRINT 10OSWYZ
PRINT 119SWZZ
SWYYOSWYY+SWZZ
PRINT 129SWYY

189 PRINT 139SA
PRINT 149SAY
PRINT 159SAZ
PRINT 169SAYY
PRINT 179SAYZ
PRINT 189SAZZ

FIND SHEAR FLOWS DUE TO TORQUE

I

CO4PUTE Y-Z SHEAR PARM ETERS

OUTPUT

Figure 4a-9
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GO TO(190919091939193)#KEYB
190 PRINT 199UZ

PRINT 20,UY
GO TO( 191 191 193193) KEYB

191 PRINT 219G
GO TO(1929192,193193)#KEYB

192 PRINT 22#UYY
PRINT 23UYZ
PRINT 249UZZ

193 GO TO(99194)tKEYC
194 GO TO (9009900999195)oKEYB
900 PRINT 25

PRINT 26,(IP( I) QY(I) ,Is1NP)
PRINT 27
PRINT 28*(IP(I) QZ( I ) I1NP)

195 PRINT 29
PRINT 30 ,(IP(I)QT(1)9IlNP)
GO TO 99

511 GO TO(51295135139515)tKEYB
512 WRITE OUTPUT TAPE 6,6,SW OUTPUT

WRITE OUTPUT TAPE 6,7,SWY
WRITE OUTPUT TAPE 6,8,SWZ
WRITE OUTPUT TAPE 6,9SWYY
WRITE OUTPUT TAPE 61OSWYZ
WRITE OUTPUT TAPE 6,11SWZZ
SWYYZSWYY+SWZZ
WRITE OUTPUT TAPE 6912,SWYY

513 WRITE OUTPUT TAPE 6*139SA
WRITE OUTPUT TAPE 6*14.SAY
WRITE OUTPUT TAPE 6,159SAZ
WRITE OUTPUT TAPE 69169SAYY
WRITE OUTPUT TAPE 6,17*SAYZ
WRITE OUTPUT TAPE 6.18#SAZZ
GO TO(514,51495179517)*KEYB

514 WRITE OUTPUT TAPE 6*19,UZ
WRITE OUTPUT TAPE 6920UY
GO TO(51551595179517)#KEYB

515 WRITE OUTPUT TAPE 6921#G
GO TO(516951695179517)#KEYB

516 WRITE OUTPUT TAPE 69229UYY
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WRITE OUTPUT TAPE 6923*UYZ
WRITE OUTPUT TAPE 69249UZZ

517 GO TO(999518)*KEYC
518 GO TO(5199519.99.520)*KEYB
519 WRITE OUTPUT TAPE 6925

WRITE OUTPUT TAPE 6,26v(IP(I)*QYII1ml.NP)
WRITE OUTPUT TAPE 6*27
WRITE OUTPUT TAPE 6,28,(IP(I)QZ(I)sIltNP)

520 WRITE OUTPUT TAPE 6,29
WRITE OUTPUT TAPE 6,30,(IP(I),QT(I),Il,1NP)
GO TO 99

196 IF (SENSE SWITCH 6) 5229521
521 PRINT 31

GO TO 99
522 WRITE OUTPUT TAPE 6931

GO TO 99
25 FORMAT(29H SHEAR FLOWS PER UNIT Y SHEAR)
26 FORMAT(15,E15S4)
27 FORMAT(29H SHEAR FLOWS PER UNIT Z SHEAR)
28 FORMAT(I5E15.4)
29 FORMAT(28H SHEAR FLOWS PER UNIT TORQUE)
30 FORMAT(15E15e4)
31 FORMAT(40H THE STRUCTURE IS NOT PROPERLY CONNECTED)

NOT PROPERLY CONNECTED

Figure 4a-11



A(150) Area of node, input; effecft-ve-tension area of node.

AK(150) Tension effectiveness of node, Input.

AD(150) Density ratio of node, input.

C( 30) QT R (Q T Is the transpose of Q.)

DX Length of hull segment, input.

G Mass of nodel length of plates mass of plates (used for

many items in calculations), the last definition is

1/(effective polar moment for torque calculations) * 1/J.

I Index used in many loops.

IN( 150) Node number, input (6 150).

IP(150) Plate number, Input (< 150).

IW(100) Additional mass number (not used).

J Index used in many loops.

JH Node at head of plate.

JT Node at taill of plate.

K Index used In many loops.

KEY Branching instruction, Input.

KEYA First digit of KEY, used to indicate symmetry.

KEYB Second digit of KEY, used to choose which calculations to make.

KEYC Third digit of KEY, used to output shear flows if desired.

KEYD Used to indicate error In plate numbering.

L Number of loop which is being found In matrix 91 number of loops.

LA New node found on tree search; number of loops symmetric case.

LB - plate which makes connection in tree search.

Figure 4b-1 - Index of FORTRAN Symbols and Switching

When one name is used for more than one variable, the

definitions are separated by a semicolon.
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LC

LINK(150)

MTYPE( 150)

NC( 30)

NEXT(150)

NH( 150)

NN

NP

NRANK(150)

NT(150)

NW

PO(150)

PG( 150)

PK(l50)

PT(150)

9(150,30)

QOY( 150)

OoZ( 150)

QT( 150)

QY( 10)

QZ( 150)

Number of nodes on centerline.

Plate which connects to next lower node on tree,

Relation of plate to tree (+1 If it is on tree, -1 If It

closes loop).

Numbers of nodes on centerline.

Next node down tree.

Number of node at head end of plate, input (-'i50)1 changed

to internal number.

Number of nodes, input (-0 150).

Number of plates, input ( 150).

Internal node number for external nodel order of searching

nodes for tree.

Number of node at tall end of plate, input (i'150)1 changed

to internal number.

Number of additional mass Items, Input (--100).

Density ratio of plate, Input.

Shear modulus ratio of plate, Input.

Plate effectiveness In tension, Input.

Thickness of plate, Input.

Matrix of tree loops; ortho-normal basis of loops.

Shear flow leaving node per unit y-shear.

Shear flow leaving node per unit z-shear.

Shear flow due to torque.

Shear flow due to y-shear.

Shear flow due to z-shear.

Figure 4b-2
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R(150)

RDS(150)

RHC

SA

SAY

SAYY

SAYZ

SAZ

SAZZ

SCALE

SW

SWY

SWYY

SWYZ

SWZ

SWZZ

UY

UYY

UYZ

UZ

UZZ

W(100oo)

WYY( 100)

wvZ(10oo)

Wzz(100)

As/Gt for plate.

Twice the area of the triangle from origin to plate.

Density of material, Input.

Cumulative area.

Cumulative 1st moment of areal y coordinate of area centrold.

Cumulative 2nd moment of area moment about centroid.

Cumulative 2nd moment of areas moment about centrold.

Cumulative 1st moment of area; z coordinate of area centrold.

Cumulative 2nd moment of area; moment about centrold.

Scale factor to modify A(I) and PT(I), input.

Cumulative mass.

Cumulative 1st moment of mass.

Cumulative 2nd moment of mass.

Cumulative 2nd moment of mass.

Cumulative 1st moment of mass.

Cumulative 2nd moment of mass.

z-shear center

Shear parmeters (last item In calculations).

y-shear center

Weight of additional meass item, input.

y inertia about center of gravity for mass Item, Input.

yz Inertia about center of gravity for mass item, input.

z Inertia about center of gravity for mass item, Input.

Figure 4b-3
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coord I nate

coordinate

coordinate

coordinate

coordinate

coordinate

coordinate

coordinate

node, input.

head of plate.

tall of plate.

mass item, input.

node, input.

head of plate.

tall of plate.

mass item, input.

SWITCH 5 (Read Tape 5, Read Card)

SWITCH 6 (Write Tape 6, Print)

(Generall Symmetric)

(Mass, Bending, Torsion, Shearl Bending, Shear, Torsion; Bending Tors.ion)

(Beam Parameters Only; Output Shear Flow)

jPlate Numbering Okay; Error in Plate Numbering)

Figure 4b-4

Y(150o)

YW(100)

Z( 150)
ZH

ZT

zw( 100oo)

SENSE

SENSE

KEYA

KEYB

KEYC

KEYD
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Figure 5a
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NOTE:

Figure 5c

=777.7'77, .r 07MMUL



Find Tree Loops*

1+1

J=NT(I)

TEST LINK(J)
=0

K=-LINK(J) K=LINK(J)
Q(K,L)=Q(K,L)+ 1.0 Q(K,L)=Q(K,L)-1.O

J=NEXT(J) DOES I=NP

YESI NO

LA=

KEYA

TEST LC-1

>0

1+1

FgTEST LA
ES I=LC

NO ERROR EXIT
YES

Figure 5d



Find Shear Flows*
Due to Torque

Figure 5e Figure 5f



Figure 5g
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138.30 = I ( 2

- 97.80 = 1 . .@
132.88 = 1 . )2

and the numerical value of the elements in the right-hand matrix of Equation [32] are

132.55 = . G
-94.68 = z . .®@

0.0148J= The solution obtained by matrix inversion and multiplication, as indicated

in Sheet 2 of Table 4.

In accordance with the statement following Equation [321, we substitute the Ki's in

Equations [11], [12], and [13] of Appendix A.2. This requires the use of Equations [14] and

[151. For the present problem, the procedure is then as follows:

Multiply Column @ by 1.0 (see footnote on page 12), Column ) by (K 1 ) = (-0.9479)

and Column @ by (K2) = 0.0148, and add to find Column @, which is the shear flow distri-

bution due to a unit y-shear.* The YY Flexibility is calculated at the right of Sheet 2 (see

Equations [461-[48] of Appendix A.2 and pages 84 and 85.) The z-shear center is obviously

zero. In general, it is calculated by Equation [36] of Appendix A.2.

The z-shear calculation is almost the same, but now there is a third loop for anti-

symmetric forces, which is from nodes 1 to 6 (along centerline) and return via tree (see
Column 0 on Sheet 2 and footnote on page 50).

Figure g and Sheet 2, Table 4 show how the sample hull cross section, which is
symmetric and has five compartments, is treated with two loops for symmetric loading (y-shear),
and with three loops for antisymmetric loading (z-shear). It is evident that the third loop
cannot carry shear symmetrically. Column 0 defines the third loop. The z-shear solution
now involves the solution of three simultaneous equations for K1 , K2 , and K3 as follows
(See Appendix A.2, Equation [32]).

138.30 - 97.80 67.12 02
-97.80 132.88 -52.80 y ® 2

67.12 -52.80 99.64 @

*The operation performed here is = + K 1 + K 2 , which is equivalent to qj = qpart j + [Ljl] IK1

(see Appendix A.2). Here, Column is [qpart ji by the indicated operation Jqpart ji = [Tji qout i) and

Columns @ and Oconstitute [Lj1]. Since this is done with Vz = Mx = 0 and Vy = 1, the values assumed by

fqj are those of Qvy.

p 39



6
5

Ist loop 4

3

2

2nd loop

zero shear

3rd loop -i

Symmetric
(y-shear)

Figure 6 - Shear Flows in the Loops
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Asj

t.
LJ 2

7 As

t.
J

As.

t.

Asj

t.3

Lj 2

Lj3 Lj2

Asj

Asj

As

t.
~0~0)-J

As,

t.

Asj

t.JJ

Asj

tJ

LjI qpart J

Lj2 qpart j

L 3 qpart j

+4.736 K
1.926 = the solution K2  , obtained by matrix inversion and multiplication, as

-8.185 K
indicated in Sheet 2 of Table 4.

QvZ is obtained in a manner similar to that for finding Qy as shown on Sheet 2 of

Table 4. The ZZ Flexibility is calculated at the right of Sheet 2; see Equations [46]-[48]

of Appendix A.2 and pages 84-85. The y-shear center is calculated by Equations [34] of

Appendix A.2.

The solutions for torque involve the same loops as for z-shear; however, there is no

particular solution due to qout because when Vy = Vz =0, qout = 0 at each node; see page

76 of Appendix A.2. The solution for K1 , K2 , and K3 is now shown. (Refer also to Appendix

A.2, Equation [37].)

138.30 - 97.80 67.12] (g 2 2 (
97.80 132.88 -52.80 =Q @ (2 ( D 2
67.12 - 52.80 99.64 1. ®® @® @® 2

0 (RAs)j L 1  Area Loop

S= (RAs) 3 L 2 , Area Loop 2
1 (RAs)j L 3 Area Loop 3

(Entries are identical to
those in the previous
matrix)

As.

tj

LAstj

10.2

-7.3=

-12.8

.7



dO
so that for G - = 1

dx

0.190 KI
-0.024 = the solution K , obtained by matrix inversion and multiplication as

-0.2731 K3
indicated in Sheet 3. Columns and of Sheet 3 come from Columns and 6 at

the bottom of Sheet 1. Column Q = ( K1 + . K2 + ). K3 , and is the shear flow

dO
per unit G -- ; see statement following Equation [37]. The net torque is ®. , and

dx W

when Column Q is divided by twice (for symmetry) this sum, then Column () is obtained.*

The torsional flexibility is computed at the right of Sheet 3; see Equation [51] of Appendix

A.2 and pages 84 and 85.

Comparison of these computed results shown on Sheets 1 through 3 can be made with

Figure 2 and Table 3. The principal difference between these calculations and those used

by the program are the units (in sample problem, scaling was done after computing, in program

before computing) and the method of solving simultaneous equations. The weight calculation

for the sample problem (discussed in section Inertial Parameters in Appendix A.2, which

gives results agreeing with Table 3a) is presented in Table 4.

CONCLUSIONS

A procedure has been developed for computing the inertia-elastic parameters of a ship

hull in a mechanized manner by use of a digital computer. This procedure requires the routine

tabulation of basic data systematically obtained in a prescribed fashion directly from ship

plans for use as input to the digital computer. The computer then calculates the ship param-

eters as output to be used in the finite difference form of the beam vibration equations

developed in Reference 1. Such mechanization fits the trend toward routinizing complex

calculations leading to eventual design utility.

dO*If Vy = Vqout=, (Ki} is found from Equation [37] of Appendix A.2 for G - = 1. Then from Equations
dx

[11], [13], and [38] jqjI d = qloop dO = [Lji] Ki dO =1 Q0j which is represented
G- =1 G -- =1 G- =1

dx dx dx

by Column (. From Equation [26] the net torque is (D *O where ®and, therefore, the torque corresponds
dO dO

to a value of G - = 1. The shear flow for V Vz = 0, Mx =1 (but G - # 1) is obtained from Equation
dx @ _ dx

[401. Thus JqjVy = Vz =0 2Z Q 2 563 =0.888 10 3 .Q or qj * 103 =0.888 10, which is

Column (. The factor 2 in the denominator has been added for symmetry.
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RECOMMENDATIONS

1. Both manual and digital computer calculations of the section properties of ship hulls

(i.e., equivalent beam parameters) should be made for a number of ships.

2. The digital computer method for obtaining these properties should be generally used

if the comparison is favorable or if the comparison between theoretical results (e.g., fre-

quencies, mode shapes, whipping response to slam, flutter response), based on the computer

program, and experiment is at least as good as the comparison between theoretical results,

based on hand computations, and experiment.
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APPENDIX A

The author recognizes that reader interest will vary widely on the theoretical aspect

of the paper. A working knowledge of the physical meaning of the equations used in the

coding may be required only. Or, interest may also be centered upon all of the fundamental

ideas underlying the derivation and use of these equations. Therefore, this Appendix has

been subdivided into two parts; Appendix A.1, which describes the method for evaluating

the section properties of the ship (sufficient for understanding the general procedure), and

Appendix A.2, which supplements this description with additional fundamental concepts and

mathematical detail. Thus, the theory can be pursued to the degree desired.

A.1 - METHOD FOR EVALUATING SECTION PROPERTIES

The theory of beams may be considered as the limiting case of the general theory of

elasticity applied to slender objects. In the theory of elasticity, the displacements and

stresses are unknown functions of position. Strain displacement, stress-strain, and equilib-

rium laws are available to solve for the unknowns. Most engineers consider the strain-

displacement laws and the equilibrium laws as independent unrelated ideas; however, one is

obtain able from the other by using the stress-strain law and a minimum principle (minimum

potential energy theorem). In the theory of beams, instead of taking unknowns in three spatial

dimensions, quantities are define1 only along one line, the "axis" of the beam. The unknowns

become six displacements (linear displacements in three directions and rotations about three

axes) of the cross section, and six forces* (tension, two bending moments, two shears, and a

torque). In the following, the elastic relations between the forces and displacements will be

found for beams constructed of stringers and plates. The equilibrium laws which come from

an application of Newton's Second Law (force = mass - acceleration) are not given, but they

may easily be found to complete the beam theory.

Choose a rectangular cartesian coordinate system with the x-axis along the beam and

the y- and z-axis such as to form a right-hand coordinate system; see Figure 3. The dis-

placements of a cross section parallel and perpendicular to the x-axis will be given by U,

and Uy, Uz, respectively. The rotations of the cross section about these axes are Ox, Oy,
and Oz, where positive sense is given by the right-hand rule. The resultant force associated

with these motions acting on the positive side of the cross section (acting upon the body which

consists of those portions of the beam on the -x side of the section) will have three linear

components Vx, Vy, and V z and three moments Mx, My, and Mz . All displacements, rotations,

moments, and forces are positive if the vector which represents them is in the positive

coordinate direction. In general, these 12 unknowns are functions of x (and possibly time).

Six equations for the unknowns come from equilibrium; the other six from elasticity.

*Forces here is used in a generic sense in that it includes moments and torques.
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In the following, we shall use the Theorem of Castigliano, 7 which is a corollary of

the energy theorem. The theorem states that if the strain energy is written in terms of the

applied forces, the displacements at the point of application of any force (in the direction of

that force) is the partial derivative of the strain energy with respect to the force. Thus, if

W is the strain energy in that part of the beam corresponding to a value of x, then

dW dW dW
Ux U= U=

aW oW aW
X=- -dM y My Z= d

Consider a short segment going from x to x + Ax. The foregoing expressions will

give the elastic deformations, to which we add the rigid-body motions, due to deflections at

station x. Let the strain energy between x and x + Ax be Ax W. Then the total deflections

at x + Ax are given by

dWUx x + Ax= Ux x+ Ax 0V-

Ox, + Ax = Ox Ix + Ax aMw

Uy x + Ax = Uy + Ax 
-dM

aW

0z x + Ax = 0z z + Ax MZ

If Ax goes to zero, W becomes the strain energy per unit length. Then

ow dUx  o dUy W dUz
S 0 ;  - - + 

0y
aVX dx' av dx Z dV' dx

aW d0x aW de a de0

OMx  dx ' dM dx ' OM dx

If the strain energy per unit length W can be expressed in terms of Vx, Vy, Vz , M , My

and Mz , these six equations will give the desired elastic equations.
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Beam theory assumes that the stresses ayy, ayz, and ,,zz vanish (aij is defined to be

the force per unit area acting on a face perpendicular to the i-axis and in the j-direction).

Thus the strain energy per unit length is given by (see Chapter 6 of Reference 7):

- 1 e 2x y + a2z
a + dA24 area E G

The stresses axx, axy, and axz must be determined in terms of the beam forces V ,
S.., Mz . Statics alone is not sufficient, and assumptions consistent with the theory of

elasticity must be made to solve for the stresses. If the distribution (except for a constant

factor) of the stresses is known, then statics can be used to find the stresses (find the

factor). Assume that the axx stresses are due to Vx, My, and Mz; axy and axz stresses are

due to Mx, Vy, and V z .

For axx stresses, let Fl(y, z), F 2 (y, z) be three given functions and K1, K2 , and K3
be three unknown constants. As a simple example, the functions might be selected (see

Chapter 7 of Reference 8 or Chapter VI of Reference 9):

F 1 = 1; F 2 = y; F 3 = z

This would duplicate the stresses existing due to tension, moment about z-axis, and moment

about y-axis if elementary beam theory is adopted, requiring tensile strain proportional to the

distance from the elastic axis when bending moment is carried; i.e., the basic assumption of

beam theory is that the longitudinal strain in the ship hull, deck, longitudinal members, etc.,

varies linearly with the coordinates of a cross section. Hence assume*

oxx(y, z)= K 1 F1 (y, z) + K2 F 2(y, z) + K3 F3 (y, z)

Applying statics gives:

Vx = faxdA = Kf FdA + K2 F 2 dA + K3 F 3 dA

My =f zaxxdA = Kif zFldA + K2 zF 2 dA + K fzF 3 dA

Mz =f(-y)uxxdA = K f (-y)FldA + K2 (-y)F 2dA + K3 (-y)F 3 dA

Since F 1 , F 2 , and F 3 are assumed to be known functions, the above three equations can be

solved for K1 , K2 , and K3 as linear homogenous expressions in Vx, My, and Mz;

KI Fld A  
F'F 2dA F 3 dA -1 Vx

f f

i.e., K2  [zF dA fzF2dA zF3dA M

K - yFldA - yF2dA - yF3dA M z

*This will be shown to give rise to the bending parameters.
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Substituting these into the formula for axx(y , z), we get

xx(y, z) = VxGl(y, z) + M G2 (Y, z) + MzG 3 (y, z)

where G1 , G2 , and G3 are known linear homogenous functions of F1 , F 2 , and F 3 . By substi-

tuting this expression for axx(y, z) into the above definitions of V,, My, and Mz, we obtain:

Vx = VxfG,dA + MyG 2 dA + MzJG 3dA

M = VxfzGidA + My zG 2 dA + Mz ZG 3dA

Mz =-VxfYGldA - M yG 2 dA - Mz yG3 dA

Then inserting the following conditions (one at a time)

Mz =0

Vx = 0; My = 1; Mz = 0

Vx = 0; M = 0; Mz = 1

It is seen that the G functions must satisfy the following relations:

GdA = 1; G2 dA = 0; G3 dA = 0

zG,dA = 0; f zG 2 dA = 1; fzG3 dA = 0

yGidA = 0; yG 2 dA = 0; fyG3 dA =

Then the terms in W, depending upon ax, become:

-IW
xx terms

1 f [VxG(Y,z) 2 (y z ) + M G2 3 (y, z)] 2

area

dU
x

dx

aW
c9v,

ad0

dx dM

ax dMy

SVxf - dA
area E

SG1 G2

SEarea

-vx
area

+M f G1 G2+ My -
area E

A +M

are a

G3G1
- dA + MYE 7 f

area

dA + Mz f
area

G1 G3
dA

E

G2G,
dA + M - dA

area

G3 G2

E
dA + M z

area

G

E

These equations are three of the elastic equations for the beam. The other three can be

derived from the axy and axz terms of the strain energy and will give expressions for

Hence

dA

re In~ a I I anr a n rnr nr aal I a nnn a nnrrmr

V x = 1; My = 0;



0 x  auy auz  *
a - 0O , and - + 0 y Thus, in order to find the beam parameters, all that is

dx x Zax 

is needed from the theory of elasticity is the distribution of the stresses over the cross

section!

These equations can be simplified somewhat by choosing a particular coordinate

system. Let
JGiGj

ij - E dA
area

Then

I12 = 121, etc.

and

dUx

=- I11 Vx +I1 2 My + I 1 3 Mz

90

do0
aoz

-=I 31 V x + 3 2M + I 3 3Mz

Choose a new coordinate system whose origin is at y, Z in the original coordinate system.

Let Ux, 0y O, Vx, My , and Mz be the unknowns in this new system (see Figure 3). Then

Ux = U x + 'y -Y z

Oy =0 0y O =0

Vx =V; M =M +zVx; Mz=Mz-yVx

*To similarly derive expressions for d0x/a X, (dUy/dX) - 0z, (dUz/aX) + 0y in terms of assumed distribu-

tions of Oxy and axz over the cross section we would repeat the development for dUx/dx, 0 y/x, 0z/9x

almost identically. The importance of this derivation is not the integrals (G 1G2 /E)dA, etc., but the demonstra-

tion that the strain energy per unit length W is a quadratic form in the terms Vx, My, Mz (for terms dependent

on Uxx) and a quadratic form in the terms Vy, Vz , Mx (for terms dependent on axy and oxz); see page 74.

The value of the expressions for dUx/dx, etc., is to validate the use of Castigliano's Theorem in obtaining

expressions for flexibility terms based on energy expressions.

As seen in the subsequent theory, the actual distribution chosen for oxy and axz (i.e., the shear flows in the

plates) is forced to be compatible with and dependent on the distribution chosen for axx; namely, that indicated

by F 1 = 1, F 2 = y, F 3 = z, and axx(y, z) = KIF 1 + K2 F 2 + K3 F 3 , which is restated on page 52.
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Il = 111 + 2ZI 1 2 - 2y1 1 3
+ Z2122 - 2Y 2 3 + y2133

112 = 112 + Z12 2 - YI3 2

113 = I13 + I 2 3 - I33

122 = 122; I23 = 23' 133 = 33

Since I22 133 - I22 will in general be nonzero, it is possible to solve for y and i such that

112 = 113 = 0 (i.e., select y, z coordinate system such that 112 = 113 = 0). If this barred

coordinate system is used, it is customary to call 11 = 1/EA,1 2 2 = Iyy/E(IYYIzz - Iyz),

123 = Iyz/E(IyyIzz - Iyz 2 ), and I33 = Izz/E (I Izz - yz2); Equation [10] of Appendix A.2

validates the expressions for 12 2 , 12 3 'T3 3. (These terms are defined conventionally either

as geometric integrals, or by the geometric summations given below.) Thus*

aU,, V
[la]

ax EA

ay IyMy + yzMz [1b]

ax E(Iyyz z -_iZ)

az IyzMy + IzzMz-= __[lc]

ax E(IyIzz  2 )

Thus the choice of this coordinate system (elastic axis coordinates y, T) uncouples

the tension and pure bending elastic equations. For the other three equations, a coordinate

system (generally not the barred system for bending) 7, T can be found to uncouple the tor-

sion from the shear. The center of this system is called the shear center.

aUz  = 1 1

dx Z KA yG Vy KAYZG Vz  [2a]

9UZ 1 - 1 [2b]

d* KY yz G KAzz

ao 1
- M [2c]

ax GJ e  x

The foregoing equations follow from the discussion in the footnote on page 48, that the shear

and torsion deformations can be expressed in the form:

aU

z - z = N , 1 Vy + N12Vz + NI3Mx

*An alternative method of derivation is given in Appendix A.2.
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aUz

d+ 0 = N 2 1V + N 22Vz + N 2 3Mx

80

Ox =N31V 
+ N23Vz 

+ N33Mx

where the N's are constants for a given section and N1 2 = N2 1 , etc.

Next, redefine quantities with respect to axes through a point s at y = y, z = by

these equations:

Vy = Vy

Vz= Vz

Mx = - V +YVz

Uy = Uy - z 0x

Uz = Uz + y x

Ox = Ox

Oy = Oy

O0 = O

Substituting in the above equations for deformations gives:*

Nil N1 2 N1 3

N1 2  N2 2  N2 3

N 13 N 2 3 N 3 3

Ni1 - 92zN 1 3 +

N12 13 Z

N 1 3 - zN 3 3

2N33

N 2 3 -YZN 3 3

N1 2 + YN13 - ZN2 3 - 'zN 3 3

N2 2 + 23 + 2N33

N 2 3 + yN 3 3

N 1 3 - N33 V1

N 2 3 + N 3 3  V

N33 M

Next choose
N 2 3

N 3 3

and = +-
N3 3

Now the above equations may be written:

*To transform the variables, let
U 10 U

U 0 1 y ({z 0 I {00

Then IU} = [N] [V}, U = [Q 1] EN] [Q 2 ] V}I.

z+ O

+ 0 y

Uy

au.ax
du
(30X

0 -z

0 1

0 0

0 1 0

V I
and V -11 -

0 0 y
0 v

y 1



y 0 N NM

where the definitions of Nl1 , N12, etc., are obvious. Such a choice of Tand W uncouples

shear deformation from torsion deformation and is said to locate point s at the "shear center"

of the beam. The N matrix may be written:*

1 1

KA yyG KAyzG 0

1 1

KA G KAZZG 0
1

0 0
GJe

which yields Equations [2a, b, c]. The uncoupled form of this expression is validated by the

above development. The symbols are arbitrary but are chosen to be written in conventional

form. This expression (matrix) itself is a definition of the symbols Aij, or Ayy, Ayz, Azz

and Je-

In the accompanying program, each of the above coefficients (KKA G) appear as a

single number. However, here they are written as products of several terms for comparison

with the conventional shear and torsion flexibility coefficients and .

Equations [la, b, c] and [2a, b, c] are the six elastic equations for beam theory.

For ship problems, Equation [la] is usually not used. For motions symmetric with respect

to the x-y plane, use Equations [Ic] and [2a]. By rotating the y-z coordinates, it would be

possible to completely uncouple the equations (i.e., choose principal axes so that Iyz = 0),

but this has not been done here.** For symmetric sections typical of ship hulls, the axes

chosen are principal axes.

*The N matrix may be written as shown because the left-hand side of the matrix equation above is related to

the shear and moment terms on the right side respectively, by constants which are called the shear and torsional

flexibilities having the form 1/KAG and 1/GJe, respectively.

**The terms Aij are defined by the above matrix. The program of this report is applicable to sections of any

structures which are prismatic and may be treated as beams. These structures may be symmetric or unsymmetric.

The sample problem chosen is symmetric (as are most ship hulls) and is, therefore, a special case of the general

theory presented. The following terms exist in general, but are zero in the special case (symmetric with respect

to the y-axis): Iyz,, 1/Ayz , i. It is true that Figure 1 appears to have a symmetric outline, but it need not have.
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For cross sections consisting of stringers and plates, we make the following assump-

tions in order to calculate the tension stresses:

1. All of the area has been concentrated into points which shall be called nodes. This

is done by assigning the areas of the plates and stringers to the nearby nodes. By this

means, the integrals on page 46 can be replaced by sums.

2. For effective members, the strain is a linear function of position K1 + K2 y + K3 z.

Some members may end near the cross section to be analyzed and, hence, their stress Would

be less than a completely effective member. For the nodes, an "effectiveness" is assigned

which is 1.0 for effective members* and less for others. Thus the assumed form for stresses

is (see page 156 of Reference 8 or page 209 of Reference 9):

oxx = Kl (kE) + K2 (kEy) + K3 (kEz)

where Ki, K2 , K3 are unknown constants to be determined as shown above,

k is effectiveness,

E is Young's modulus, and

y, z are coordinates.

Except for the addition of effectiveness and the possibility of having different moduli at

the nodes, this is exactly the same as ordinary beam theory and would give the usual equa-

tions (this means that "ordinary beam theory" is based on a form of distribution of the

tensile stress such as exx = K1 + K2 y + K3 z). Another factor k'= k (E = reference
E

value of modulus) is defined so that the tension at node i is given by:

(axx)i =E o [K 1(k'i) + K2 (k 'iy) + K3 (k'iz)]

(This expression for azx is the same as that previously used where F 1 = 1, F 2 = y, F 3 = z

except that a term k, providing for the effectiveness of the section, is included). The

values of 3 and li are given by (Ai is the node area and yi, zi are the node coordinates):

k iYiAi k i ziAi

i ii i

*Since the effect of cutouts (such as doors and hatches) and regions near the ends of members is to reduce

the stress in that region, we introduce a tension effectiveness factor k, 0 - k 1. k = 1 if there are no

cutouts or ends nearby in the axial direction. References 10 and 11 give rules for determining effectiveress.

I I I II



The elastic constants to be used are:*

EA = E o k IAi
1

EI = E0 k(yi 7)2 A

Ely, = Eok (yi -7)(z i -z)A i

EI = Eo k (z i - )2 Ai

These numbers are calculated by the computer, and in the output statement:

EA
Structure Area = EA

Eo

Y EL Axis** = 7

Z EL Axis** = z

YY Flexibility = Eoyy/E(IyyIzz - Iyz 2 )

YZ Flexibility = oyz/E(IYYzz - Iyx2

ZZ Flexibility = EoIzz/E(IlyI - Iyz2)

These latter equations are not independent of materials and effectiveness. The values of

Iyy, lyz Izz are obtained from the equations for EIyy etc., given previously in which k '

accounts for effectiveness and modulus at each node.

For cross sections consisting of stringers and plates, assume the following in order

to calculate shear stresses (see Chapter 6 of Reference 8):

1. All of the shear is carried in the plates (see Chapter 2 of Reference 7).t The plates

are thin, and the component of shear perpendicular to the surface of a plate must vanish;

hence, the shear stress 7 has a direction along the plate direction (i.e., if the plate has a

slope Az/Ay, then the condition for zero component of shear perpendicular to the surface of

the plate is oaz/xy = Az/Ay). tt Assume that the magnitude of the stress does not vary

across the thickness and call this magnitude r .

( 2 = 2 + 2 )

*Note that A (=/#Ai) is defined as part of the term EA which is defined as Eolk Ai. The term EA is

defined as a single unit, and E and A are not employed separately. Similarly, for subsequent equations.

**Coordinates of the elastic axis.

tShear stiffness of a rod is small compared to that of a plate and is assumed to vanish.

tiThe projection of - along the y- and z-axis is equal to Oxy and ,xz, respectively.



2. In order for the plate to be in equi-

librium in the x-direction, the product of T F2

times the thickness must not vary along

the plate [i.e., for a given plate, ( T. thickness)
is independent of y and z]. This is explained 2

as follows: Figure 7 shows the shear forces

acting on a plate. For equilibrium in the

x-direction, F 1 = F 2. But the thickness at

end 1 could be different from the thickness

at end 2: t 1  t 2 . Then defining the shear

flow 8 ,9 q (force per unit length along the plate)
by q = r. thickness:

F1 = q, Ax = rltlAx

F 2 = q 2 Ax = r 2t 2 Ax

Thus 71 / r 2. But F 1 = F 2 , and, there-

fore, q = q2. Also, by rotational equilib-

rium, q3 = q1 at corner 1 and q3 = q2 at

corner 2. x

However, we could have selected Figure 7 - Shear Forces Acting on a Plate

slices 1 and 2 at any points on the plate,

not just at the nodes at the end. Consequently, no matter where one looks along edge 3,

q3 = q1 = q2 is the same at any point on a single panel between nodes where tensile force

(in the x-direction) acts on the plate from an external source; i.e., the shear flow is a con-

stant for each plate. Thus the problem of finding the shear stresses has now been reduced

to finding one unknown (shear flow) for each plate.

3. Each plate begins and ends at a node.* Also, each node has at least one plate

attached to it. The shear stress in a plate exerts an axial force on the node. This force is

q per unit length in the x-direction. 8 ' 9 Assign a positive direction to shear flow. When

looking at the cross section from the +x side, the shear stress acts upon the plate in one

direction. This is the direction of the flow. If the shear flows into a node, the plate exerts

a force on the node in the -x direction. Hence, the net force per unit length on a node by

all the plates which join it is the sum of the shear flows out of the node. (Hence, the name

"shear flow." For problems with no tension, the sum of the flows out of any node vanishes.)

From this study of the nodes, the tensile stress in a node is given in terms of the forces

Vx, My, and Mz (see Equations [91 and [16] of Appendix A.2 and the preceding development):

*For additional detail on this section, see Figure 16 and the associated text in section Shear and Torsion in

Appendix A.2; also see footnote on page 55.



k Izz(yi -) - yz(z i -Z)

(exx)i = Vx - Mzk i
yy zz yz

y I
yy Izz - yz

For ships with a plane of symmetry, Iyz = 0.

If this expression is differentiated with respect to x, assuming the node locations and

areas do not depend upon x, then the rate of change of tension is the same expression except
dVx  dM dM dV dM

that V x is replaced by -, My by , and Mz by . Assume that = 0, - V z,s yx dx dx dx dx
dM,

and d- = - VY (equilibrium of beam). Then, since rate of change of tension in a node is the

sum of the shear flows, it follows that (note that shear flow is out of node, hence, force on

node is in +x direction; see Equations [161-[20) of Appendix A.2):*

Izz(y i  ) - Iyz(Z i -
I qi (out) = - V k iAi

Iyy (Zi -z) - Iyz (Yi - )
- Vzk iA

yy zz yz

This gives one equation involving the shear flows for each node. Usually there are more

plates than nodes, so additional equations are needed to solve for the shear flows. Any set

of shear flows which satisfies the above condition for the sum of q out of the nodes will

automatically have the correct resultant V and Vz, thus no additional information is gained

by writing overall equilibrium equations; see page 70.**

*~q i (out) is better termed (qout )i or merely qout i' and is the algebraic sum of shear flows q on each plate

connected to node i. Such a term q is positive if the force acting on the portion of the plate AA on the -x side

of the section shown in Figure 16 (as viewed from the +x side) is away from the node; another plate or portion

of a plate contiguous with side AA is assumed to exist to the left of AA. And ( qout)i is positive if the net

shear flow in all connecting plates is outward.

**Overall equilibrium equates the total shear forces sustained by the section to the shear flows of the plates:

Vy= C qj (Yhj - Ytj) ; Vz = qj (zhj - Ztj)
3 J

Here, subscript j refers to all the plates, qj is the shear flow in a plate, and Yhj' Ytj' Zhj, and ztj locate the

head (h) and tail (t) of the plate.

The point of the statement is that for shear flows qj based on a tree and values of (Xqout)i at each node

given by the preceding equation, the above equations are automatically satisfied (and for loop shear flows they

give zero for Vy and Vz); therefore, there is no point in invoking them.

'"~~T""""-~~~.~~~r~-D-l.tt~l ~ ~ ~ 1=~~n".. I-i~m~n n-^ rr,.I~ni-:Fn*, T ~-s M"7-"--- 'T "-'7' ial-- ~ - ----- ~



4. By appealing to the equations of elasticity, and making assumptions about no change

of shape of the cross section, it can be shown that the integral around any closed path per

ds
unit length through the section 0 q equals twice the enclosed area times the rate of

d0x 1 qds
twist, or -- = - -t. (Rate of twist = d0x/dx); see Chapters 16 and 17 of Reference

dx 2A Gt

8, or Chapter VII of Reference 9; also, see pages 69-72 of Appendix A.2. By assuming that

the plate segments are straight lines, it is possible to compute these areas by knowing about

the connections made and the locations of the nodes. Since q is a constant along each path,

As
the integral may be replaced by a sum (±qi) -A-, where +qi is used if the positive

Gt
direction assigned to the unknown qi is in the same direction as the positive direction of the

qds
closed loop; see Equation [23] of Appendix A.2. The integral 0 G- is evaluated around

each of the loops. In the sample problem, remember that the tree is formed by omitting plates

5 and 9. For example, the loop formed by the tree and plate 9 is shown heavy in Figure 8,

and the area associated with this loop is shaded. This area can be written (see page 72 of

Appendix A.2): A =1 j (RAs) =1 (YhZt - YtZh)j
2 j (yz - yjzh)

where the summation is over Plates 2, 3, 8, and 9 which make up the loop. Here R is the

perpendicular distance from the origin to the plate and As is the length of the plate. See

Figure 9, in which the contribution of Plate 2 to this summation is shaded. The.proper sign

of (RAs)j is assured by the head-tail polarity of the plate. The entry into the summation is

multiplied by (8 = +1) if the direction around the loop agrees with the sense of plate j and by

(8 = -1) if the direction around the loop is contrary to the polarity of plate j. In this example,

2,' 3, 8, and 39 are -1, -1, -1, and 1, respectively. (See Column 0 , Table 4, Sheet 3,

and the discussion of the [Ljl] matrix in Appendix A.2, pages 68-75.) q is constant on

any plate. Positive values of q in the plates are given by the arrows in Figure 8.

5. The resultant torque must be equal to the moment of the shear flows (see Chapter 6

and Figure 6.15 of Reference 8 or page 219 of Reference 9.) The resultant torque or twisting

moment about the x-axis is M= qj (Ytjzh - YhjZtj) (see Equation [26], Appendix A.2).

It represents moment about the x-axis. Its polarity is given by the Ox arrow in Figure 3.

Since the shear flow on a plate is a constant, the total force is just q times the length. The

moment about the origin is the net force times the moment arm. Therefore, the net torque due

to one plate about the origin is given simply by the shear flow times twice the area of the

triangle which would be formed if the ends of the plate were joined to the origin by straight

lines (see Equation [26] of Appendix A.2).

The above assumptions give exactly the correct amount of equations to yield a unique

solution for the shear flows in the panels in terms of M x, Vy and Vz. Only a general discus-

sion of the method of solution is given here. See pages 71-78 for a detailed discussion.

rl II I I I I I



5

7

81

9

Figure 8 - Loop Formed by Tree and Plate

Figure 9 - Contribution of Plate 2 to Area
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Three solutions for the q's are needed, one for Mx = 1, Vy = Vz = 0; one for Mx= 0,

Vy = 1, Vz = 0; etc. Mx is the twisting moment about the x-axis. There is no dependence of

(axx)i on twisting moment. For that reason the solution for plate shear flows corresponding

to Mx = 1, Vy = Vz = 0 has no component due to qpart , which is based on (Yqout)i and, there-

fore, on (axx)i; this solution arises entirely from qloop for the various loops (see Item 4 given

previously). The reason for three solutions for qj, the shear flows in the plates, being needed

is covered extensively elsewhere in Appendix A.2. In particular, refer to the section Shear

and Torsion, the section following Equation [26] through page 75.

The solution per unit torque Mx is the solution for the shear flows in the plates qj
existing when Vy = V z = 0, MX = 1. It is found as follows: First find the most general set

of shear flows which satisfy the condition that the sum of the q's out of every node vanishes

(see pages 54-55 and 75-76). This set can be found in terms of circulating flows. ("Circulating

flows" refer to the plate shears in the loops, qloop. The section Shear and Torsion in

Appendix A.2 elaborates on the point.) In the computer program this was done by first finding

a tree, that is, a set of plates so that one and only one path exists between every two nodes.

For each plate not on the tree, there exists a closed loop through that plate and others in the

tree. The most general set of shear flows that have zero net flow out of each node consists

of a linear combination of flows in these loops. The new unknowns are the flows in the loops.

By integrating around those loops (see Item 4, page 56), there will be sufficient equations to

solve for these unknowns, but a new unknown (d0x/dx) is introduced (Equation [37] of

Appendix A.2). The shear flows can now be written in terms of this one unknown, which can

be found since the resultant torque is to be unity (Equations [38]-[41] of Appendix A.2).

The details of the method of solution for the plate shears qj existing for unit y-shear

Vy (or per unit z-shear Vz) are presented in the section Shear and Torsion in Appendix A.2.

The location of the center of shear =, z is also determined from V z shear and V shear,

respectively. In particular, see the paragraph following Equation [311.

The inertial parameters come from structural and nonstructural items. Structural items

include ship hull, deck, longitudinal members, etc. Nonstructural items include machinery,

cargo, superstructure, transverse bulkheads, the virtual mass of the water, etc. The inertial

parameters which must be calculated are mass of a section IM, the position of the center of

gravity Y-C.G., Z-C.G.; the rotary inertias I-YY, I-ZZ, I-MYZ; and the polar moment of interia

I-MX. For symmetric motions of a symmetric ship, only IM and I-ZZ are needed. For anti-

symmetric motion of a symmetric ship only IM, Z-C.G., I-YY, and I-MX are needed. For the

general case, however, all parameters are needed. Y-C.G. and I-MYZ vanish in the case of

symmetry. IM is obtained by adding all mass items in a Ax section. The Y-C.G. and Z-C.G.

come from dividing the mass moments by the total mass. The rotary inertia will not be calcu-

lated by the equation on page 35 of Reference 1, since this can be properly evaluated from the

input data (see section Inertial Parameters in Appendix A.2).
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The values of the ship parameters should be plotted versus the axial coordinate x.

Virtual mass and mass moments of inertia should be added to these curves (if not included in

the input) and average-values of the parameters over a Ax section read from the curves (see

Chapter 3 of Reference 1). The effects of other nonstructural items should be incorporated in

accordance with this reference.

The determination of inertial parameters 1 (mass,IM; center of gravity Y-C.G., Z-C.G.;

rotary inertias I-YY, I-YZ, I-Z Z; and polar moment of inertia I-MX) is reviewed separately in

Appendix A.2. It is essentially identical to the determination of the terms A, ', -, I , Iyz,
Izz, etc., for the elastic properties associated with tension and bending. The weight calcula-

tion for the sample problem which gives results agreeing with Table 3a is presented in

Table 4.
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A.2 - ADDITIONAL THEORY USED IN EVALUATING
SECTION PROPERTIES

ASSUMPTIONS

Figure 10 illustrates the general class of structures to which this theory and digital

program are applicable, and it shows the idealizations incorporated into the representation of

the structure. In applying beam theory to a structure such as a beam hull, it is recognized

that the section properties will vary with position along the beam; however,\ the calculation

of the elastic parameters of the beam at a particular cross section is based on the assumption

that the structure is prismatic; that is, all sections are identical, at least in the immediate

vicinity of the section under consideration. Thus, Figure 10 shows the structure as a prism,

with all tension and shear members parallel to the x-axis. It is assumed that the section

lying in the plane x = 0 is the section to be analyzed. For the purpose of establishing the

elastic properties of this section, the prismatic structure is assumed continuous, both in the

-x direction (shown) and in the +x direction (not shown).

In Figure 10, the coordinate axis x, y, z locate points on the structure. The displace-

ments of points from their basic positions as in Appendix A.1 is given by Ux , Uy, and Uz in

translation and by Ox, 0y, and 0z in rotation, with positive directions in the same sense as

the x-, y-, and z-axes (rotation established by the right-hand rule). Section forces are Vx,

Vy, and Vz; section moments are Mx, My, and MZ. These forces and moments are positive

if the force (or moment) exerted by the portion of the structure not shown (x > 0) upon the

portion shown (x - 0) is in the direction of positive displacement.

The figure shows that the structure has been idealized so that all the tensile stress

is carried by a finite number of axial elements, each located at a distinct node of the section

and having associated with it a finite area, Ai . The remainder of the structure carries only

shear and consists of straight panels of constant thickness t. connecting pairs of nodes. For

the sake of simplicity, it is assumed here (although not in Appendix A.1) (1) that -each

tensile element has full effectiveness and all are composed of the same material and

(2) that each shear element has full effectiveness and all are composed of the same material.

These assumptions do not really limit the generality of the theory.

In this report the following subscripts are used:

i to indicate the various nodes of the cross section

j to indicate the var ious plates of the cross section

g to indicate the independent loops formed by the plates

60



X

Figure 10 - Coordinate System for Idealized
Prismatic Structure

TENSION AND BENDING

As in Appendix A.1, it is assumed that the distribution of tensile strain over the cross

section is linear in both y and z. Thus the axial stress in the tension-carrying material at

node i, which is located at y = yi, z = zi, is

(ax)i = B + Cyi + Dz i

where the positive values denote tensile stress.

By summing over all the nodes of the section, we get the following

tension and bending moments Vx , M , and Mz :

Vx = + (axx)iAi  = B Ai +ClyiAi + DziAi

My = + Y(axx)i ziAi = BI ziAi + C ,yiz Ai + D Zi2 Ai

Mz = - I (axx)i YiAi = -BlyiA i - C 1yi 2 Ai - D lyiziAi

*All summations given in section Tension and Bending are with respect to subscript i.

expressions for

[2]*
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Now, transforming to forces, moments, and locations measured with respect to point e (see

Figure 10) located at y = y, z = z, we define Vx,I y Mz to be forces and moments referred

to axes at point e:

V x = Vx

My = My - i Vx

Mz = Ms +Y Vx

Also we define:

where Yei' zei locate node i relative

Substitution of the definitions

Yi = Y + Yei

i = Z + Zei

to point e.

of Equations [3] into Equations [2] leads to:

V x = (B + Cy + Di) IA i

My = (B + Cy+D + D) ZeiAi

Mz = -(B + Cy + DZ)C YeiAi

Now choose Y and i by the following:

SyiAi

I A.1

+ CZYeiAi+D z e iA i

+ C 'YeiZeiAi + D Zei 2 Ai

- C 'Yei2Ai - D 'YeiZeiAi

Then

YeiAi = (y i -- )Ai = yiAi - Ai = 0

Iz.iAi = I(zi - i) Ai = 1z i A i - IA. = 001 1 1 11

and Equation [41 now becomes

Vx = (B + Cy + DY) IA i

M

M =z

C XYeizeiAi + Dzei 2 Ai

-C ZYei2Ai - D 'YeiZeiA i
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Equations [6] indicate that this choice of 7 and-z has uncoupled tensile force Vx from the

bending moments Ny and MI. Point e, so located, is called the elastic axis, and is located

at the center of effective tension-carrying area.

We make these further definitions:

A = IA i  = total area of cross section.

Iyy ly i 2 Ai = area moment of inertia of cross section about
axis through e and parallel to the z-axis.

lyz = YeizeiAi = area product of inertia of cross section relative
to axes through e.

IZZ = z ei2Ai = area moment of inertia of cross section about
axis through e and parallel to the y-axis.

Then Equations [6] may be written:

Vx = (B + C + D) A

SIy C + Izz D [71

iZ - -Iy C-Iy D

We can solve Equations [7] for B, C, D in terms of V,, M , Mz, obtaining

Vx (Iyy -YIyz) My - (yzz - yz )Mz

A - Iyy Izz - Iyz

-Iyz y Iz z
C = [8]

I -I 2
yy zz yz

Iyy My + Iyz Mz
D=

Iyy Izz - Iyz2

Substituting into Equation [11, the initial expression for axx at node i, gives

(axx)i = B + Cyi + Dz i = (B + Cy + DI) + Cyei + Dzei

Vx (ZeiIyy YeiIyz)My - (YeiIzz - ZeiIyz)Mz

(xx)i = +  
[9]

Alyy Izz - yz2

The elastic parameters for bending and tension may be obtained from the associated strains

as follows (see page 232 of Reference 7):

I liM M ll r rI I lI I LII I



x X VX
3X xx y = y xx Yei = 0 EA

Iz Zei = O

ay dExx D IyyM y + IyzM z
= + - + E = [101

xz E E (Iyylzz - Iyz2 )

0z xx C IyzM + IzzMz

ax ay E E (IyyIzz - Iyz 2 )

Equations [10] summarize the elastic flexibility parameters of the beam, which describe

bending and tensile deformations in terms of bending moments and tensile force.

SHEAR AND TORSION

Next it is desired to determine the elastic flexibility parameters of the beam which

relate shear and torsion deformations to beam shear forces and twisting moment. We will use

Castigliano's Theorem, which requires that the total strain energy be expressed in terms of

the beam shear forces and twisting moment Vy, Vz , and Mx . All the strain energy associated

with these deformations is in the shear of the plates. By statics it is shown that any single

plate sustains a shear flow q (force per unit length) which is the same at all points of the

plate (see page 54). Thus the shear strain energy of any plate j depends only on the shear flow

of that plate qj. The first step is to express all the shear flows qj as functions of Vy, V,,

and Mx . The second step is to express strain energy per unit length of the beam W as a

function of V , Vz , and Mx . The final step is to apply Castigliano's Theorem by differentiat-

ing this expression for W with respect to Vy, Vz , and Mx .

To find the panel shear flows qj as functions of Vy, Vz, and Mx, we will first compose

qj of the sum of shears flowing in a tree qpart j, a particular solution, and shears flowing in

loops qloop j"

The tree is selected by omitting sufficient plates so that the remaining plates are

simply connected. In a tree thus formed, all nodes of the section are part of the tree, and

any two nodes are connected by one and only one path through the tree. One node is arbi-

trairly selected as the "root" of the tree.

Each loop is formed by taking one of the plates which was omitted in forming the tree

and all of the plates which are part of the tree. One loop is formed by this procedure, and

the plates of the tree which are part of this loop are retained in the loop, whereas extraneous

plates of the tree (not needed in the loop) are omitted from a description of the loop.

The shear flows of the particular solution arise from the shear flowing out of the nodes

qout i. In a particular panel j, this shear flow qpart j is given by the sum of q out i for all nodes

I I



farther from the tree root than panel j. The sign of this summation is plus (+) if the positive

sense of panel j is toward the root, and minus (-) if the positive sense is away from the root.

The above relations and definitions may be summarized in matrix form by the following

equations. In these equations the vector (qpart ji represents shears in the plates due to

(qout il at the nodes, which is, in turn due to Vy and Vz . Also the vector Iqloop ji represents

plate shears due to all the loop shears (K1. In Figures 13, 14, and 15 the light arrows

associated with the plate numbers represent plate shears. The heavy arrows on the loops

(heavy lines) represent loop shears.

Ij ( part Jj + iloopl [j111

part j = [' T out i [12]

{qloop ji = [Lj 1KL [13]

The formation of the [Tji]and [Lj]matrices, which describe the tree and the loops,

respectively, is illustrated for a simple example in Figures 11 to 15. Figure 11 shows a

section composed of nodes numbered 1 to 7 and plates numbered 1 to 9. An arrow indicates

the polarity of each plate. Figure 12 shows how a tree has been selected by omitting plates

6, 8, and 9. Node 1 is chosen as the root of the tree. The

matrix [Tji], which describes the tree (also see page 11):

" qpart

qpart

qpart

qpart

qpart

qpart

qpart

qpart

qpart

part

= Tji

qout 1

qout 2

qout 3

qout 4

qout 5

qout 6

qout 7

t
1qout

-1

0

0

0

0

0

0

0

0

Figures 13, 14, and 15 illustrate loops 1, 2,

6, 8, and 9, respectively. In each case, a polarity

The following equation shows how the matrix [Ljd
1qloop j I to the (as yet unknown) loop shear flows

-1

-1

0

0

0

0

0

0

0

following equation gives the

-1 -1

-1 -1

-1 -1

0 -1

0 0

0 0

0 0

00

00

[Tji

-1

-1

-1

-1

-1

0

0

0

0

-1

-1

-1

0

0

0

+1

0

0

qout 1

qout 2

qout 3

qout 4

qout 5

qout 6

qout 7

{qout i

> [14]

and 3, formed by adding to the tree plates

of the loop has been chosen and indicated.

is formed to relate the plate shear flows

1K I (see page 13 also):*

*In Equation [151 note that the loop including Plate 6 in the positive sense includes plates 1 through 6. Hence

L1 1 , L2 1 , L31 , L41, L 5 1 , L6 1 are denoted by +1, whereas L 7 1 , L8 1 , and Lgl are designated zero. Similarly

for elements in Columns 2 and 3.
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tt2
. 9 2

Figure 11 - Cross Section of Prismatic
Structure Showing Nodes and Plates

-3

4

Figure 12 - Tree (Omits Plates 6, 8, and 9)

4 3
-. 0--

Figure 14 - Loop 2 (Shear Flow K2 )

5
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Figure 13 - Loop 1 (Shear Flow K 1)



4 3

12
9

Figure 15 - Loop 3 (Shear Flow K3)

qloop 1 +1 -1 0

qloop 2+1 -1 -1

1oop 3-

qloop 4 Kz +1 0 0 K1

qloop 5 [L ] K2 = 0 0 K2  [15]

qloop 6 0 +1 +1 K3

qloop 7 0 +1 o
91o 9° 0 0 +

qloop j {K [L ] {KA
It has been shown that the particular solution Iqpart j I for shear flows in the plates

arises from the shear flows out of the nodes {qout i). We will now derive an expression for

the terms qout i in terms of Vy and Vz by differentiating Equation [9] with respect to x.

Figure 16 shows how the rate of change of tensile stress in a node is related to the

shear flows out of that node via all connecting plates. The arrows indicate forces exerted

on the members with which they are associated. The sum of qj of all the plates connected

to the node (two plates are shown in Figure 16) equals qout i of the node. Equilibrium in

the longitudinal direction of the small tensile element of cross section Ai and length Ax
ad xx i

requires that (since, axx i + Ax) A out i ax - xxA = :

(d Oxx).

a Ai - -qout i [161
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q. As.
IJJ

q out

q* s.
j

xx A.
XX I I

ad .

( oxxi +  Ax) Ai3 x

q j 6s

Figure 16 - Tensile Stress-Shear Flow Relationships at a Node

Lateral equilibrium of a small section of the entire structure requires that

am
S- V z

axm

z

- = -V
Longitudinal equilibrium of a small section of the entire structure requires that

aVX
- = 0

[17]

[18]

119]

Differentiating Equation [9] with respect to x and substituting Equations [16] to [19]
gives

(Yeizz - ZeiIyz) (ZeiIyy - YeiIyz)

qout i = - A i V - A i v z

yyzz yz yyzz yz

[20]

By means of Equations [111, [121, [13]1, [141, [151, and [201, we can express the plate shear
flows qj in terms of Vy, Vz , K1, K2 , . .. , K, . .. , K L , where L is the number of loops and
the K's are the unknown loop shear flows.

I I I I I II I I I III

"
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of sec-

RH

-
position df
section at
x=O

z 0

Figure 17 - Torsion in Two Sections of a Prismatic Structure

Now we can write L equations, introducing the unknown rate of twist - , by

integrating around each of the loops an equation relating geometry to shear strain as shown

in Figure 17. This figure shows two sections of a prismatic structure undergoing torsion, the

section at x = 0 (dotted) and the section at x = Ax (solid). The solid section exhibits rota-

tion of magnitude A0 x with respect to the dotted section. At some point H, not necessarily

known, there is no relative translation between the two sections. As shown by the following

detailed development, a segment of plate (shown), ds wide by Ax long by t thick, has a shear

AOx  q h
strain of RH - , a shear stress* of 7" -= R G - , where RH is the distance from

Ax t Ax

H to ds, measured perpendicular to the direction of ds.

Figure 18 shows the shear strain in the plates comprising a loop. The definition of

shear strain in the plates is conventional; assuming the shearing forces are applied in the

x-direction (longitudinal) and the s-direction (circumferential), shear strain is

dux  dus

xs ds dx

Thus, if lines are inscribed on the undeformed plate which are parallel to the x- and s-axes,

respectively, they form a right angle; after the plate undergoes shear deformation, the differ-

ence between the angle of intersection of these two lines and 90 deg is the shear strain.

*See pages 53 and 54.
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(a) SECTION OF THE HULL, AX IN LENGTH

(b) SECTION OF THE HULL, SHOWING ONLY THE PLATES
COMPRISING ONE LOOP

(c) THE SECTION SHOWN IN (b) HAS BEEN
UNFOLDED, OR DEVELOPED INTO A
PLANE SHEET

(d) UNDEFORMED POSITION OF THE DEVELOPED

SECTION (DOTTED LINES), AND DEFORMED

POSITION (SOLID LINES)

(e) EQUATION FOR THE SHEAR STRAIN OF A

X PLATE OF FIGURE (d)

7 q bA8 dux
SHEAR STRAIN = = RN X d+s

xG G Gt HAX ds

du dOx  dO
ds a- ds = dx R. ds = 2A d

(f) INTEGRATION OF EQUATION (e)

AROUND THE LOOP

Figure 18 - Shear Strain in the Plates Comprising a Loop

AX

6

AX

,$"- 6 5

F - -

RH X

du, AOx
dx - aXdx AdX

qds
fssds= ( = RH

dO)x

\dx

I



In Figure 18, (a) shows a cross section of the hull, having a length Ax in a direction

parallel to the longitudinal axis of the hull; (b) shows only those plates which comprise the

first loop (I = 1) of the section (refer also to Figure 13); and (c) shows the same plates as

(b) but, for clarity in what follows, the structure has been unfolded, or developed, into the

form of a plane sheet. In (c) the plates are undeformed by shear stresses. The same plates

are shown in (d) but now they are deformed by shear stresses. (e) gives the equation for

shear strain in a plate, making use of the definition of shear strain and the fact that RHAOx
in the hull is the equivalent of du s in the definition, This is evident by inspection of the

geometry of Figure 17 if we consider that a point on element ds on the cross section at x = Ax

is twisted through an angle A0 x relative to its original position on element ds (same position

as that shown in Figure 17 for the section at x = 0). This point moves a distance RH A Ox
dus

during the deformation. The point is also displaced a distance yAx =- d Ax = du s (y=

angle of shearing strain and dx - Ax). Hence RH AOx = du s . In (f) this expression for shear

strain is integrated around the loop , resulting in the equivalent of Equation [211. Equation

[211, which gives a relation between the integral of shear strain around a loop and the rate of

twist of the hull structure, is obtained by integrating r around any loop as follows (letting
A OX  dOx

take its limiting value, ):
Ax dx

<trds = ds =G - R ds = 2A G [211

du xt a H ax
X

The term - in the definition of shear strain will exist only if cross sections of the
ds

hull are permitted to warp out of their plane when the hull is deformed, as illustrated in (d)

of Figure 18.

In Equation [21] the expression for shear strain neglects warping of the section and

omits the term dux/ds. However, the integration of the simpler expression for shear strain

gives the correct result, as shown in (f), because the i'ntegral of the term dux/ds around the

loop equals ux (end point) - ux (start point), which must equal zero if the loop is closed

because the end point is the start point. Therefore, Equation [21] is valid whether or not

warping is permitted.

Equation [21] shows another simplification compared with (f) of Figure 18 in that the

shear modulus G is a constant outside the integral. The reason is that here the analysis is

based on the simplification that all shear elements are composed of the same material. The

last step in Equation [21] recognizes that < RH ds equals twice the area of the loop around

"~-r-~ l-- -- *-rrn~~~~- ~.. .-.l-r,. - ------~----,r -- -ri --rr *1R- -nr-a~tR1: -mrp'-a.- -. -7-a~-rril.-- --- ----m~--r~~~n~~r l li-l-irrt~-r*.r.alir-nanr I-nn--,. _-:-i~p~,~grr7mrr,-n.i, la ,..n ~rrs~-?-rr~- -m -m, -i~- -T



which the integration is performed.* Note that this latter equality is independent of the loca-

tion of H, the point from which RH is measured. Thus, although Equation [211 is derived

based on rotation about H, it may be rewritten (for convenience in calculating), with RH

replaced by R, the distance from the origin O to ds, measured perpendicular to the direction

of ds. Thus

q x aex
q ds = ( R ds) G - =2AG [22]

t x ax dx

For the idealized structure of this report, the loops are comprised of a finite number of

plates, each of constant thickness tj, so that the integrals may be replaced by summations:**

hs x ox
t- qj = (11 Rj Asj) G - = 2A G - [231

Here j1 indicates a summation of only those plates j which comprise loopf, with signs alter-

ed, when necessary, to conform to the polarity of loop,(; see page 56. This operation can be

indicated by premultiplying the terms to be summed by the appropriate column of the [Ljj]

matrix:

a ox, ao,

LjLqJ =( L R Asj) G ax - 2AIG - [24]

Now this summation is carried out over all plates j. For convenience in calculating, we can

replace Rj As by Ytj Zhj - YhjZtj' where Yhj' Zhj locate the head end of plate j, and ytj, ztj
locate the tail end. t Also substituting for qj from Equation [11] and [131 yields:

-- G -]
j jj (qpart j +  LjI Kj) = Lj(Ytj Zhj - Yhj Ztj G --

*The loop L about which we integrate to get Equation [21] is any one of the L loops, 1 = 1, 2 ..... , L. For
the example of Figure 17 in which L = 3, the integration would be done around loop 1 (Figure 13), then around
loop 2 (Figure 14), and finally around loop 3 (Figure 15); A is then the cross-sectional area enclosed by the
loop around which the integration is performed, and it is that area which is indicated in Figures 13, 14, or 15,
depending on whether /= 1, 2, or 3.

**The q of Equation [22] and the q. of Equation [23] and Equation [24] are the total plate shears qj of Equation
[11]. In the steps from Equation [23 to Equation [25], the elements of the loop matrix Ljgare introduced twice,
once to ensure that the plate shears qj dre correctly computed in terms of the loop shears K and once to ensure
that the summation of (As /tj)qj over all plates j is restricted to those plates comprising the loop . over which
the summation (or integration) is to be performed.

tTwice the area of the triangle formed by the vector Asj and two position vectors A and B from the origin to the
head and tail ends of the plate, respectively, are j X j I A X B = (izhj + hj) X (iztj + jytj) or

Rj As Ytj Zhj - Yhj * ztj"
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giving the following L equations (£ = 1, 2, .. . , L):

As j + s

t Ljqpa rt j + L ) Kj + t LLj2 K2 +...

t J L J

S +  L LL KL = L(YtZhj -YhjZtj) G 25

SIn these equations, qpart j is determined by Vy and Vz according to Equations [12] and [20].*

Another equation relates Mx , the twisting moment sustained by the entire section, to

the plate shear flows (see Figure 9):

Mx = . R Asj = qj (Ytj zhj -Yhj Ztj) [26]
j J J

K1, K2 ,.., KL and substitute into Equations [131, [121, and [111.** This is done three

times:

once for Vz = Mx = 0, giving as solutions qj = QVyj Vy ;

once for Vy = Mx = 0, giving as solutions qj = Qvzj Vz ;

and once for V, = Vz = 0, giving as solutions qj = QTj Mx

Since Vy = Vy and Vz = V z (see below), we then have:

qj I = IQ 2 [271]

where the elements of Q are defined by the above solutions:

*The physical significance of Equation [251 is that it represenis one expression of strain compatibility for

each independent loop comprising the cross section of the structure. Basically, in a structure with a loop, strain

compatibility ensures that when you go around the loop once you return to the starting point. Contrariwise, for

a structure without a loop (for example, a deep channel or U-shaped section), there is no requirement that the

adjacent, but unconnected, edges be aligned when torsion is carried.

**Equations [13], [12], and [11] may be combined to give:

JqjJ + [Tji] qout it + [LX I [Kf

Solutions of Equation 25 (under the condition [25 (under the conditions listed) give K in terms of y Vz , and x Also Equation

[20] gives Iqou t iI in terms of V and Vz .

Thus, substituting for Iqout it and [Ki in the above equation will give the plate shears qIj in terms of

V, Vz. and Mx3
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QVyl Qvzl QT1

QVy2 QVz2 QT2

QVyj QVzj QTj

[28]

Because the strain energy per unit length W is quadratic in qj and, therefore, in Vy,

Vz, Mx (see page 48) we know that the form of the equations relating deformation to forces

and torques will be:

Y
x O = N1 1 Vy + N 1 2 V z + N 1 3 Mx

dU
S + 0y - N12 Vy + N22 Vz + N23 MxOx y 12

dox

8x
= N 1 3 V + N 2 3 Vz + N 3 3 Mx

where N.. is constant and N.. = N...

To transform these equations into a more meaningful form, we can redefine quantities

with respect to a point s at y = y, z = = instead of at the origin. This redefinition of quanti-

ties is given by:

[291]

Vz = V

V =Vz z

MX =MX - iV +7 Vz

Uy =Uy - x

UZ = Uz +YOx
U = 0+y

x x

0Y =y

0Z - OZ

It can be shown (see Equations [2a, b, c] and associated material in Appendix A.1)

that if we take = - N2 3 /N 3 3 , = + N1 3 /N 3 3 , the transformed equations are of the form:

aly
ax

au z

ax

do

ax

N1 1 N 1 2

N 12 22

7
0

0

3 3

V

V z [31]

[30]
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decoupling the shear and torsion terms, so that this location of point s is called the shear

center of the beam.

The first application of Equations [251 sets Vz = Mx = 0. By Equations [30] and [311,

aex aex
this implies that - = - =

x ax

qpart j are known multiples of V

As. As.

SL j
2 L j

i s L
j2 Lj2 * *

J J

As As.S Lj LiE 
LjL Lj2 .

0 also. Using these relations and the fact that the terms

(by Equations [121 and [201), Equations [25] become:

As.
SLj LjL

As

- Lj2 LjL
j

As.

t.

These equations are solved for K1 , K2, .
[12], and [13]1, we write qj in terms of Vy

solution of plate shear flows per unit V .

to get:

LjL LjL]

. . , KL.

As
KI t Lj1 qpart j

As
K, - Asi Lj 2 qpart j

[321

As
KL jLjL qpart

Then, substituting into Equationc [11],

= Vy, giving QVy, QVy2 Qy3'. . . , the

Having these, we substitute into Equation [26]

Mx = [Qyj (Ytj Zhi - Yhj tj) ]V

The third equation of Equations [30] then gives the z location of the shear center:

M x - Mx + V z  Mx
Z = = - - Qvyj (Yt Zhj - Yhj Ztj)

[331

[34]

aOx aox
The second application of Equations [251 sets Vy = M = - - x 0, leading to

x xax
equations identical to Equations [321 except that the terms on the right side are now all

proportional to Vz . The solution gives K1, K2, . . . , KL in terms of Vz and , by Equations

[111, [12], and [131, qj are written in terms of Vz = Vz , giving the terms Qvzj of matrix

Equations [271 and [281. Again we substitute into Equation [26] to get:

Mx = [ Qvzj (Yti Zhj - YhjZtj)] Vz [351

The third equation of Equation [30] now gives the y location of the shear center:

SMx - Mx + zV Mx
S V =+ -- =+

V z Vz
SQvzj (Ytj Zhj - Yhj Ztj)J

.... ~~"~.'""~"~ ."""^R"*-' .~-~l~ Ckn~:~~L~Ly i~lTt~l~F~~1~~TTTS-nl;~~.~ nEe~~l~hnwm r1---1
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The third application of Equations [251 sets Vz = Vz = Vy = Vy = 0. By Equations

[12] and [20], this means that Iqpart ji = 1qout il = 0 also. Equations [25] now become:

K1

(L by L coefficient
matrix is identical 2
to the coefficient
matrix of Equation
321.) K

- _ KL

SLj 1 (tj Zj - Yhj ztj)

SLj 2 (Ytj Zhj -Yhj Ztj)

J

a0o
Equations [371] are solved, giving K1, K2, .. . , KL in terms of G " "

2x

into Equations [13] and [11] gives (qloop j} = {qjI in terms of

as

0x

Again, substituting

G dOx/9x. Express the latter

[38]

Now substituting into Equation [26], using Mx = Mx from Equation [30] gives:

Solving Equation [39]

dox

M x = G Qo (YtZhj - Yhj Ztj) M

ax
for G 2- and substituting into Equation [38] gives:

1 1Qoj M
qj 1= (zIQYj M

{ Qj (Ytj Zhj - Yhj Ztj)

[39]

[40]

whereupon, by definition of QTj'1 , we have

IQTJ = Q0 (Ytzhj Z- Yhj Ztj)
3

{Q oj [41]

Thus, by three applications of Equations [25] we have determined 57 and T (the shear

center location) and the entire matrix [Q] in

xG
dx

[37]
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QVyl QVzl QT1

Qvy 2  QVz 2 QT2

Iqj1  = [Q] V ... ...

Mx  QVyj Qvzj QTj

We have also determined (from Equation [391) the term

X-e N33 G Q0 j (Ytj Zh - Yhj Ztj)
j

Now, to apply Castigliano's Theorem, note that the shear strain energy per unit

length in all the plates is (see pages 45, 53, 54 and 69):

W-
Ax = Ax. (

I

(Vol.)j = 2G 2(tjAsjAx)

1 As
q .2

2G t.

Substituting from Equations [271 and [28] yields:.

(Qvyj2 V+2QVy j QVzj

+ QV 2VZ 2 + 2 Qvzj QTJ Vz M

Application of Castigliano's Theorem gives:

Vy Vz + 2QVj QTj V Mx

+ QTj2 Mx2)

- - As

I vJ 2

= Asj

+Mx t QvyJQTJ

As.

+Vz "-vyjQVzj
i

[45]

[271, [281v
V

-z

Ixi

[421

[43]

I As

aUy =
-O -

ax "

[44]

aV

a Y
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dUz = W = As As
yG [V . Qvyj &vzj + Vz C vz2

SAAs+ Mx - vj Tj j

S dW - As As
ax + -" LVY Q- Qvyj j + Vz t QTjax (9 G t t

+I j .

x J+ M - t.i zjQ j

J J

From Equations [451 and Equations [2a, b, c] of Appendix A.1 (see also pages 51 and 74) we

can write the shear flexibility terms of the beam:

1s I As
G1 N - Q 2  [46]KAyy G .G1j

s i As
(KAG = t Qvy Qj [47]

1 1 As(KAG) G t. Vzj [4
=As.

G N 13  Q JQTJ = [49]

j J
SAs

GN 23 = QVzjTj =0 [50]

j J

e 33 G j t G Qj (Ytj Zhj -Yhj Ztj)

INERTIAL PARAMETERS

In this section we discuss the method for computing the inertial parameters by the

digital program, the data required as input for the inertial calculations, the form of input

and output data, and the weight calculation for the sample problem.

In determining the inertial parameters, the weight and first and second moments are

calculated first by the following equations. The operations performed by the computer are

those indicated by these equations:

II



Due to Due to

Item Additional Longitudinal Members Due to Plates

Masses at Nodes

SM = I M + p Ax I Ci Ai + p Ax Y i tjgj

IMY = I Mm m+ p Ax I i Aii + p Ax I j tjj Yj

I MZ = I Mm zm + p Ax I Ci Ai zi + p Ax Y Cj t j,-zj

I MY2 = Z(MmYm 2 + I yym) + p Ax i Ai i2  + Ax t

I MYZ = I(MmYmz m + Iyz) + p Ax I Ci Ai Yizi + p Ax Y Cj tj ij yj zj

I MZ2 - (M Zm 2 + Izzm) + p Ax i Ai zi + p Ax I t 2

In the above, the subscript m refers to the additional (nonstructural) mass items, for

which

Mm = weight of the item,

ymzm = coordinates of the center of gravity of the item,

Iyym = weight moment of inertia of the item about an axis through its center of

gravity and parallel to the z-axis,

Iyzm = weight product of inertia of the item with respect to axes through its center

of gravity, and

Izzm = weight moment of inertia of the item about an axis through the center of
gravity of the item and parallel to the y-axis.

The subscript i refers to the longitudinal structural members associated with node i and the

subscript j refers to the plates. Here:

p = density of structural material (basic),

Ax = length of hull section for which weights are calculated,

Ci  = density ratio, for material at node i, relative to p,

Ai  = cross-sectional area of longitudinal structural members associated with node i,

yi,zi = coordinates of node i

Cj = density ratio, for material of plate j, relative to p,

t. = thickness of plate j,

/(YtjYn) 2 +  tj-Zhj) 2 = length of plate j, and

1

S (Yhj +  these are the coordinates of the midpoints of the plate j.

Z 2 (Zhj + Ztj)

Note that, contrary to the method employed in the calculation of elastic parameters of the

cross section of the hull, the weight of the plate j is not combined with the weights associated

79
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with the nodes at either end of the plate; instead, the entire mass of each plate is accounted

for as a lumped mass located at a point midway between the ends of the plate.

To take advantage of symmetry (if it exists) of the cross section about the y-axis, the

next step is to double the terms:

yM; ZMY; yMY2 ; IMZ 2

and to set to zero the terms:

I MZ; I MYZ

In either case (symmetry or nonsymmetry), the final step is the use of the following

equations to determine the mass, the location of the center of gravity, and the moments of

inertia about the center of gravity:

MASS = Y.M

Y-CG = IMY + M

Z-CG = .MZ + M

I-YY = IMY2 - (Y-CG) 2 ZM

I-YZ = XMYZ - (Y-CG) (Z-CG) EM

I-ZZ = IMZ 2 - (Z-CG) 2 gM

I-MX = (I-YY) + (I-ZZ)

The final term represents the polar moment of inertia of the weight of the section about a

longitudinal axis.

Data required as input for the inertia calculations include items describing the por-
tions due to structural items (these are necessary for the flexibility calculations and need
not be duplicated) and the items describing the portions due to nonstructural members. The
following FORTRAN symbols are used for these latter terms:

FORTRAN Symbol in FORTRAN Symbol in
Symbol above equations Symbol above equations

IW m WYZ I
yzm

NW max. value of m WZZ I
zZm

W Mm

YW,ZW Ym' Zm

RHO p

AD ci

WYY I DX

For other FORTRAN symbols refer to Table lb and to Figure 4b.

It is, of course, necessary that these inputs be in consistent

SCALE 1.0 (no mixed units), the following may be used:

Ax

units. For example, if

IIII I II III I I i



Yil z, yj, Zj, YMI Zm) tj

in.
2

M

ci
lyym, yzm' zzm

Ax

lb

lb-in.-3

(dimensionless)

lb-in. 2

in.

In a second example, let SCALE = 12.0. Then the following may be used:

Yi' zi, etc.

t.
J

A.
1

Mm

p

lyy m, etc.

Ax

lb

lb-ft-3

lb-ft 2

ft

For a description of the form of the input data, refer to Tables la and ic (for format),

Tables 2a and 2b (for structural items, sample problem) and Table 2c (for nonstructural items,

of which there are no entries in the sample problem).

For the form of the output data (sample problem), see Table 3a.

The weight calculation for the sample problem, which gives results agreeing with

Table 3a, is presented in Table 4.
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APPENDIX B

DESCRIPTION OF DIGITAL COMPUTER PROGRAM AND FLOW CHARTS

A digital computer program has been devised to solve for the problem just discussed.

The coding was done in FORTRAN. An index of FORTRAN symbols used (Figure 4b), a

listing of the FORTRAN statements (Figure 4a), and flow charts (Figure 5) are provided to

explain the program. Items will be discussed in the order they appear in the listing.

INPUT

Provision has been made for both card or tape input, under control of sense switch 5.

The input tape has been designated 5. The designation is immediately read out after it is

read; see Figure 5b.

SCALE RENUMBER

SCALE refers to modifying input data to allow the machine to work with numbers of

the same units if the user wants to use a certain mixed set of units for the data. Every node

and plate is assigned a number by the person who prepares the input cards. It is not required

that they be in sequential order. (This is useful because if one wants to see the effect of

removing a plate, the card in question can be removed, and the others do not have to be re-

numbered; the count NP must be changed of course.) A dictionary (called NRANK) is made

such that if NRANK(5) = 3, then the node that the user calls 5 is in the third location. The

nodes will be referred to (in the program) by the order in which they appear in memory (the

order of input), so that references (NH and NT) of the plates to nodes must be changed.

Each NH and NT is found in the dictionary and replaced by that number. If a number is speci-

fied on one of the plate cards for NH or NT and no node of that number had been given, an

output statement to that effect will be made, and after checking the rest of the cards to see

if any more errors were made, the computer will immediately return to try the set of data for

the next section, if any.

EXTRACT KEY

No test was made here to see that the value is allowable. The first and third digits

must be 1 or 2, the second digit may be 1, 2, 3, or 4. Other values will probably result in

the computer becoming lost. See Figure 4b for the meaning of these symbols.

The arithmetic statements are quite straightforward and should cause no difficulty.

No provision is made to branch an overflow.

I



TREE SEARCH

The tree search (Figure 5c) is given a node to start. It looks through all plate items

(both NH and NT) which have not yet been used to see if one joins the node. If not, it is by-

passed. If so, it looks at the node at the other end and determines if that node has been joined

to the tree. If not, it puts the new node on the tree by giving the value of NEXT for the new

node, the present node, and puts the new node on the bottom of the list of nodes to be searched,

NRANK. A value for LINK is given each node as it is entered on the tree, which tells which

plate goes back to NEXT. The sign of LINK specifies the direction of the plate. The branch

is put on the tree by making MTYPE = 1. If, when the other end of a branch is being examined

to see if it should be added to the tree, it is found that it is already on the tree (NEXT 0),

then the branch is one that will close a loop and MTYPE = - 1.- After all branches have been

examined to see if they touch the first node, the computer will take the next item on NRANK,

and if it is on the tree (NRANK 0), it will look through the remaining branches, etc. There

are two possible exits. Normal exit occurs if all nodes are found (it finds NN of them). If

all nodes are not connected, then, at some time all nodes which were connected to the first

node have been searched, but no more nodes are in NRANK to use. The computer prints a

statement if nodes are not properly connected, and starts to the next case.

FIND TREE LOOPS

To find the loops (Figure 5d), take each plate which is not on the tree (MTYPE = -1).

Go back down the tree from both ends to the origin to close loop. For symmetric sections,

shear flow can cross the centerline for z-shear and torsion but not for y-shear. More loops

are generated by going directly from the first node to the other nodes on the centerline and

then returning via the tree. L = number of loops for y-shear, LA = number of loops for z-shear

and torsion.

The word NEXT was used in connection with going back down the tree to the first

node.

OUTPUT

Output may be either on-line (printer) or off-line (tape) by proper choice of sense

switch 5 (see output flow chart, Figure 3b).
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APPENDIX C

OPERATION AND RULES OF THE COMPUTER PROGRAM

INPUT FORMS

All data are to be collected and put on an input form from which it will be punched into

cards for input to the computer. Table 2 is an example of one such input form and includes

data for the sample problem treated on page 6. Only one "identification" (see Tables la and

b) is used per section. This first card is used to identify the deck of cards which is punched

and will also appear as a heading on the output (Table 3). A second card will contain the

number of cards which follow in each of the three categories (nodes, plates, and masses);

operating instructions; and some constants. The data cards follow these first two cards.

All of the node cards must come next, and there must be more than one such card. Next come

all of the plate cards; there must be at least one of these. The mass cards, if any, follow

next. The cards must be stacked in the order indicated, and there must be exactly as many

of each type as indicated on the second card; however, the cards within any of the three

categories may be in any order. If more than one section is to be analyzed, the cards for

each section may be stacked together. Each section must begin with its identifier. After

the calculation for one section is completed, the computer will automatically begin the next

section.

OUTPUT FORMS

The output data will be identified by headings (see Table 3). The units are consistent,
the length always being the same as Y and Z. (If areas are given in square inches and Y in

feet, SCALE = 12.0, the output will all be in feet units.) Mass output includes mass, location

of the center of gravity, and the moments of inertia about the center of gravity. Areal output

includes the total tension area (not used in beam analysis unless there is an axial load),
location of the elastic (neutral) axis, and bending flexibilities. If I is the moment of inertia

about an axis parallel to the Z-axis through the elastic axis (Iyy = ZAY2 ), etc., and

S= II - I2 then*
yy zz yz'

YY Flexibility = Iy /A, (=1/Izz for symmetric section)

YZ Flexibility = Iyz/A , (= 0 for symmetric section)

ZZ Flexibility = Izz/A, (=l/Iyy for symmetric section)

*See page 53 and Sheet 1 of Table 4.
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These flexibilities should be divided by the reference value of E to be used in the beam

equations. Shear output includes the location of the shear center and flexibilities (torsion

and shear).

Torsion Flexibility = 1/Je , (GJe is torsional rigidity)

1YY Flexibility -SKyy A

1
ZZ Flexibility AKA

These should be divided by the reference value of G for use in the beam equations.

TROUBLE SHOOTING

If the machine stops on an arithmetic overflow, the operator should make sure that:

1. SCALE > 0.

2. All PT> 0.

3. All PG > 0.

4. There is some mass if second digit of KEY = 1.

5. There is some area, and it does not all lie upon a straight line if the second digit

of KEY = 1,.2, 3.

The machine may print THE STRUCTURE IS NOT PROPERLY CONNECTED.

This may be due to one of the following two causes: All nodes must be joined by at least one

path through the plates and there must be at least one closed loop. (For the case of symmetry

when only half of the structure is drawn, it is sufficient to have at least one closed loop in

the complete section.)

Limits

2 -NN (number of nodes) 150

2 -NP (number of plates) -150

0 -NW (number of masses) -100

FLOW CHART

A copy of the flow chart of the computer program (Figures 5a-h) is included for

reference.
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