INVESTIGATION OF THE INFLUENCE OF STIFFENER SIZE ON THE BUCKLING PRESSURES OF CIRCULAR CYLINDRICAL SHELLS UNDER HYDROSTATIC PRESSURE, PART II

by

James A. Nott

STRUCTURAL MECHANICS LABORATORY
RESEARCH AND DEVELOPMENT REPORT

January 1963

Report 1688
From: Commanding Officer and Director, David Taylor Model Basin
To: Chief, Bureau of Ships (440) (in duplicate)

Subj: Theoretical and experimental analyses on the effects of stiffener size on the response of cylindrical shells under hydrostatic pressure; forwarding of report on

Encl: DTMB Report 1688 entitled, "Investigation on the Influence of Stiffener Size on the Buckling Pressures of Circular Cylindrical Shells under Hydrostatic Pressure, Part II" (2 copies)

1. As part of the fundamental research program in the analysis of submarine hull structures, various mathematical and experimental criteria for the evaluation of complex ship structural designs have been developed at the David Taylor Model Basin. One such project was the investigation of the effects of the size of ring-stiffeners on the response of cylindrical shells under hydrostatic pressure. Results of this investigation were reported in David Taylor Model Basin Report 1600 entitled "Investigation on the Influence of Stiffener Size on the Buckling Pressures of Circular Cylindrical Shells under Hydrostatic Pressure".

2. Enclosure (1) is reprinted from pages 24 through 32 of the Journal of Ship Research, Volume 6, Number 2, October 1962, published by The Society of Naval Architects and Marine Engineers. It summarizes the detailed theoretical and experimental analyses presented in Report 1600, and also discusses the comparison between the theoretical analysis of this report and a later analysis.

E.E. Johnson
By direction
Copy to:
BUSHIPS (320) with 1 copy of encl (1)
 (335) with 3 copies of encl (1)
 (341A) with 1 copy of encl (1)
 (342A) with 1 copy of encl (1)
 (420) with 1 copy of encl (1)
 (421) with 1 copy of encl (1)
 (423) with 1 copy of encl (1)
 (443) with 1 copy of encl (1)
 (525) with 1 copy of encl (1)

CHONR (439), with 1 copy of encl (1)
CNO (OP 07TB), with 1 copy of encl (1)
CDR, USNOL, with 1 copy of encl (1)
CDR, USNRL (2027), with 1 copy of encl (1)
CDR, USNOTS, China Lake, with 1 copy of encl (1)
CO, USNUOS, Newport, with 1 copy of encl (1)
CO, USNUSL, New London, with 1 copy of encl (1)
CDR, ASTIA, with 10 copies of encl (1)

NAVSHIPYD PTSMH, with 2 copies of encl (1)
NAVSHIPYD MARE, with 1 copy of encl (1)
NAVSHIPYD CHASN, with 1 copy of encl (1)
NAVSHIPYD NY MATL LAB (948), with 1 copy of encl (1)

SUPSHIP, Groton, with 1 copy of encl (1)
EB Div, Genl Dyn Corp, with 1 copy of encl (1)
SUPSHIP, Newport News, with 1 copy of encl (1)
NNSB and DD Co, with 1 copy of encl (1)
SUPSHIP, Pascagoula, with 1 copy of encl (1)
Ingalls Shipbldg Corp, with 1 copy of encl (1)

DIR DEF RandE, Attn: Tech Lib, with 1 copy of encl (1)
CO, USNROTC and NAVADMINU, MIT, with 1 copy of encl (1)
 O in C, PGSCOL, Webb, with 1 copy of encl (1)
Dr. E. Wenk, Jr., Tech Asst, The White House, with 1 copy of encl (1)
Dr. R. C. DeHart, SW Res Inst, with 1 copy of encl (1)
Prof. J. Kempner, Polytech Inst of Bklyn, with 1 copy of encl (1)
Dean V. L. Salerno, Fairleigh Dickinson Univ, with 1 copy of encl (1)
Dr. G. Gerard, Allied Research Associates, with 1 copy of encl (1)

DTMB (w/o encl)
 (141)
 (727)
 (700)
 (720B)
CF
INVESTIGATION OF THE INFLUENCE OF STIFFENER SIZE ON THE BUCKLING PRESSURES OF CIRCULAR CYLINDRICAL SHELLS UNDER HYDROSTATIC PRESSURE,
PART II

by

James A. Nott

This report is reprinted from the Journal of Ship Research, Volume 6, Number 2, October 1962, published by The Society of Naval Architects and Marine Engineers. The original work was published as a thesis investigation under the supervision of Professor R.A. Hechtman at the George Washington University, and then as a formal David Taylor Model Basin report (Report 1600) to provide for a wider distribution.

The present report summarizes the detailed theoretical and experimental analyses presented in the two previous manuscripts, and also, discusses the comparison between the theoretical analysis of this report and a later analysis developed by Doctor G. Gerard.
Investigation on the Influence of Stiffener Size on the Buckling Pressures of Circular Cylindrical Shells Under Hydrostatic Pressure

By James A. Nott

A theoretical derivation is given for elastic and plastic buckling of stiffened, circular cylindrical shells under uniform external hydrostatic pressures. The theory accounts for variable shell stresses, as influenced by the circular stiffeners, and critical buckling pressures are obtained for simple support conditions at the shell-frame junctures. Collapse pressures for both elastic and plastic buckling are determined by iteration and numerical minimization. The theory is applicable to shells made either of strain-hardening or elastic-perfectly plastic materials. Using the developed analysis, it is shown that a variation in stiffener size can change the buckling pressures. Test data from high-strength steel and aluminum cylinders show agreement between the theoretical and experimental collapse pressures to within approximately six percent.

Since the USS Holland was launched, the Navy has been interested in the design of reinforced cylinders for submarine structures. Collapse pressures for various modes of failure must be determined before the naval architect can arrive at a rational design. The collapse of a cylindrical shell stiffened by circular frames may occur in one of three modes depending upon its geometry. Considering a given shell-thickness to shell-diameter ratio, failure may occur by

1. General instability.
2. Asymmetric shell buckling.
3. Or axisymmetric shell collapse.

General instability occurs when the size of the frames is critical for a given frame spacing, resulting in collapse of the frames together with the shell. Failure may occur along several frames or it may occur over the entire length of a compartment. Shell buckling occurs when frame size is sufficient to prevent general instability, but the frame spacing is critical. In this type of shell failure a series of asymmetric lobes forms in the shell between frames. Axisymmetric shell collapse occurs when the frame size is sufficient to prevent general instability and

Nomenclature

\[A_f = \text{effective area of frame cross section, sq in.} \]
\[A_i = \text{coefficient for plastic-buckling equation, in.}^{-4} \]
\[b = \text{faying width of frame, in.} \]
\[D = \text{bending rigidity of shell, } E_i h^3/12(1 - \nu^2), \text{lb-in.} \]
\[E = \text{Young's modulus, psi} \]
\[E_t = \text{tangent modulus, psi} \]
\[h = \text{shell thickness, in.} \]
\[k = \text{mode shape coefficient, } n/R, \text{ in.}^{-1} \]
\[L_f = \text{center-to-center spacing of frames, in.} \]
\[L = \text{unsupported length of cylinder, } L_f - b, \text{ in.} \]
\[M = \text{moduli parameter, } 1 - E_i/E_t, \text{ dimensionless} \]
\[m, n = \text{numbers of half-waves of buckling configuration in axial and circumferential directions, respectively, dimensionless} \]
\[N_x, N_y, N_{xy} = \text{forces per unit length, lb per in.} \]
\[p = \text{pressure, psi} \]
\[p_e = \text{elastic buckling pressure, psi} \]
\[p_{pl} = \text{plastic buckling pressure, equation (10), psi} \]
\[p_c = \text{plastic collapse pressure, equations (10) and (13), psi} \]
\[p_s = \text{yield stress, psi} \]
\[\phi = \text{stress function, dimensionless} \]
\[\sigma = \text{effective stress, psi} \]
\[\sigma_x, \sigma_y = \text{membrane stresses, psi} \]
\[\lambda = \text{Poisson's ratio, dimensionless} \]
\[\nu = \text{Poisson's ratio, dimensionless} \]
\[\theta = \text{shell flexibility parameter } 3(1 - \nu^2)\nu/L_e/(Rh)^{3/2}, \text{ dimensionless} \]
\[\epsilon = \text{mode shape coefficient, } n/R, \text{ dimensionless} \]
\[R_p = \text{radius of cylinder to midplane of shell, in.} \]
\[R = \text{radius of cylinder, to CG of frame, in.} \]
\[u, v, w = \text{shell displacements, in.} \]
\[x, y, z = \text{coordinates, dimensionless} \]
\[\alpha = \text{effective stress parameter, } 3(1 - E_i/E_t)/\epsilon; \text{ dimensionless} \]
\[\gamma = \text{measure of beam-column effect, } (R/kp/2E(1 - \nu^2))^{1/3}, \text{ dimensionless} \]
\[\xi = \text{property parameter, } h/R, \text{ dimensionless} \]
\[\theta = \text{shell flexibility parameter } 3(1 - \nu^2)\nu/L_e/(Rh)^{3/2}, \text{ dimensionless} \]
\[\lambda = \text{mode shape coefficient, } m_e/L_e, \text{ dimensionless} \]
\[\nu = \text{Poisson's ratio, dimensionless} \]
\[\epsilon = \text{elastic value of Poisson's ratio, dimensionless} \]
the frame spacing-diameter ratio is relatively small, preventing shell buckling. Failure occurs by a combination of yielding and axisymmetric buckling of the shell, resulting in an axisymmetric fold in the shell between frames.

Theoretical solutions for the elastic instability of cylindrical shells have been derived by Mises [1] and Sanden and Tölke [2], and their solutions apply when stresses in the shell are linear when buckling occurs. The problem of plastic collapse has been recently treated by Reynolds [3] for the asymmetric mode of failure and by Lunchick [4, 5] for the axisymmetric mode. In their solutions the nonlinear effect of the stress-strain curve in the elastic-plastic region is considered.

A subject of current interest to the naval architect is that of the effect of the size of the reinforcing circular frames on the asymmetric shell-buckling strength of cylindrical shells under external hydrostatic pressure. This problem becomes important in the design of submarines, since it is advantageous to have the structural material in the shell and frame so distributed that it gives a maximum collapse pressure for a minimum weight.

In this report a theoretical analysis of the asymmetric shell-buckling mode of a circular, framed, cylindrical shell loaded under external uniform hydrostatic pressure is shown. Gerard's [6] equations of equilibrium for plastic buckling are solved using realistic expressions for stresses in the shell determined by the Salerno-Pulos [7] theory, which accounts for the effect of circular frames. The plasticity coefficients in Gerard's equations of equilibrium are expressed in terms of variable shell stresses determined by Salerno and Pulos. The feature of variable shell stresses becomes important in this problem, as a change in frame size will produce a change in shell stresses.

Theory

Plastic-Buckling Theory

In the case of stiffened circular cylindrical shells loaded under external hydrostatic pressure the two principal stresses occur in directions parallel and perpendicular to the longitudinal axis of the cylinder, Fig. 1. Therefore, the shear stress is given by

\[\tau = \frac{N_z}{h} = 0 \]

Using membrane-stress theory, which considers only stresses on the middle surface of the shell (neglecting bending), the longitudinal membrane stress can be determined from the equation of equilibrium in the longitudinal direction:

\[\sigma_z = \frac{N_z}{h} = \frac{pR}{2h} \]

The circumferential membrane stress can be obtained by the analysis of Salerno and Pulos [7] who express the stress as follows:

\[\sigma_z = \phi \frac{pR}{h} \]

where

\[\phi = \phi(p) \]

In the theory of buckling, a certain stress condition at a point in the shell is assumed to reach a limiting value at the onset of collapse. The circumferential stress varies with \(x \) and the stress condition is assumed to be most critical at midbay; therefore, the stress is taken at the midbay, midplane fiber location. The function, \(\phi \), which determines the axisymmetric stress at this location of a circular framed cylindrical shell loaded under external hydrostatic pressure is given by the theory of Salerno and Pulos [7] and expressed by Krenzke and Short [8] in the following convenient form:

\[\phi = 1 - \frac{1 - \frac{\beta}{2} \alpha_1 F_2}{\alpha_1 + \beta + F_1(1 - \beta)} \]

where \(\alpha_1 \) is the ratio of frame area to shell area and is expressed as

\[\alpha_1 = \frac{A_F}{hL_r} \]

and \(\beta \) is the ratio of faying width of the stiffener to the center-to-center spacing of the stiffeners and is expressed as

\[\beta = \frac{b}{L_r} \]

\(^4 A_F \) is the effective area of the frame obtained by multiplying the true area of the frame by \(R/R_F \) for internally framed cylinders and \((R/R_F)^2 \) for externally framed cylinders.

1 Numbers in brackets designate References at end of paper.
The functions F_1 and F_2 are defined as follows:

$$F_1 = \frac{1}{\sin \theta} \left[\frac{\cosh \eta \theta - \cos \eta \theta}{\cosh \eta \theta \sinh \eta \theta + \cos \eta \theta \sin \eta \theta} \right]$$

$$F_2 = \frac{\cosh \eta \theta \sin \eta \theta + \sin \eta \theta \cos \eta \theta}{\cosh \eta \theta \sinh \eta \theta + \cos \eta \theta \sin \eta \theta}$$

where

$$\eta_1 = \frac{1}{2}(1 - \gamma)$$

$$\eta_2 = \frac{1}{2}(1 + \gamma)$$

Gerard’s [6] equilibrium equations for cylindrical-shell structures made of an isotropic, incompressible material subjected to external hydrostatic pressure can be written in terms of the shell stresses, σ_r and σ_θ, as follows:

$$\left(1 - \alpha \left(\frac{\sigma_r}{2}\right)^2\right) \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \left(3 - \alpha \left(\frac{\sigma_r}{2}\right)^2\right) \frac{\partial^2 u}{\partial x \partial y} + \left(1 - \alpha \left(\frac{\sigma_r}{2}\right)^2\right) \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{4E_h}{R^2} \left(\frac{1}{2} - \alpha \left(\frac{\sigma_r}{2}\right)^2\right) \frac{\partial u}{\partial x} + \frac{4E_h}{R^2} \left(\frac{1}{2} - \alpha \left(\frac{\sigma_r}{2}\right)^2\right) \frac{\partial w}{\partial x} + N^2 \frac{\partial^2 w}{\partial x^2} + p = 0$$

where

$$\alpha = \frac{3}{\sigma_r} \left(1 - \frac{E_i}{E_r}\right)$$

in which the effective stress, σ_r, is determined from the octahedral shear-stress theory of Hencky, Huber, and Mises; i.e.,

$$\sigma_r = (\sigma_r^2 + \sigma_r^2 - \sigma_r \sigma_\theta)^{1/2}$$

If simple support conditions are assumed at the shell-frame junctures, the boundary conditions which must be satisfied are

$$w|_{x=0} = w|_{x=L} = 0$$

and

$$\left.\frac{\partial^2 u}{\partial x^2}\right|_{x=0} = \left.\frac{\partial^2 w}{\partial x^2}\right|_{x=L} = 0$$

Simple support implies that the frames offer no restraint to longitudinal bending in the shell at the shell-frame junctures. This assumption at the boundary may be justified by concluding that, when plastic behavior begins in the shell at the shell-frame junctures, the frames produce little restraint against rotation of the shell. The general solution of equations [5] satisfying the boundary conditions, equations (7) and (8), can be expressed as

$$u = A_0 \sin ks \cos \lambda x$$

$$v = B_0 \cos ks \sin \lambda x$$

$$w = C_0 \sin ks \sin \lambda x$$

In small-displacement theory, the criterion for bifurcation of equilibrium is that the deflections increase beyond limit. To satisfy this stability criterion, the expressions for the displacements, u, v, and w, given by equations (9), are substituted into the equilibrium equations, equations (5), and the determinant formed by the coefficients of the arbitrary mode-shape parameters, A_0, B_0, and C_0, is set equal to zero. Equating this determinant to zero, a characteristic equation for the determination of the plastic buckling pressure is obtained. The method of solution is shown in detail by Nott in [9]. The plastic buckling pressure is expressed in the form

$$p = \frac{4D[A_1 - (CM)x_1 + (CM)x_1] + \frac{E_h \lambda^4}{R^2}}{R \left(\frac{\lambda^2}{2} + k^2\phi^2\right) \left(k^2 + \lambda^2\right) - M}$$

where

$$C = \frac{3}{4(4\lambda^4 - 2\phi + 1)}$$

$$M = 1 - E_i$$

$$x_1 = A_1 - A_1 \phi + A_1 \phi^2$$

$$x_2 = A_2 + A_2 \phi + A_2 \phi^2 - A_2 \phi^3 + A \phi^4$$

and

$$\lambda = \frac{1}{2}(k^2 + \lambda^2)^4$$

$$A_1 = \frac{1}{2} \lambda^2 (k^2 + \lambda^2) (2k^2 + \lambda^2)$$

$$A_2 = 2k^2 \lambda^2 (2k^2 + \lambda^2)$$

$$A_3 = \frac{1}{2} \lambda^2 (4k^2 + \lambda^2)$$

$$A_4 = 2k^2 \lambda^2 (2k^2 - \lambda^2)$$

$$A_5 = 2k^2 \lambda^2 (2k^2 - \lambda^2) (k^2 - 2\lambda^2)$$

$$A_6 = 8k^2 \lambda^2 (k^2 - 2\lambda^2)$$

$$A_7 = 4k^2 (k^2 + 4\lambda^2)$$

Equation (10) is an exact solution for the case of simple support conditions at the shell-frame junctures. Gerard, in [10], obtains an approximate plasticity reduction factor for asymmetric buckling. In his solution, Gerard makes the assumption that
Elastic buckling can occur, the intersection of the horizontal line \(p_c \) and (13) represents the vertical line \(\sigma_i = \sigma_e \). Equations (10) and (13) represent transcendental equations for the plastic-buckling pressure, \(p_p \), and equation (14) can be plotted in the form \(\lambda \) versus \(\theta \). As shown in the graph, the flexibility parameter, \(\theta \), has a limiting value of 4.0, for which an increase of the relative frame size will not produce any increase in collapse pressure. Thus, at this limit the ratio of frame area to shell area need only be sufficient to prevent combined frame and shell failure. Since \(\theta \) is a function of \(h \) and \(R \) and is directly propor-
Analysis of the spacing, L, it is seen that for a constant h and R, θ is totally dependent on L. For this case, frame spacing is an important aspect on the effect of frame size.

Experiment

Description of Models

To determine experimentally what effect the circular frames have on a cylindrical shell loaded under external hydrostatic pressure, four structural models were fabricated and tested in a pressure tank. Pioneering structural research is currently being conducted in the use of aluminum for oceanographic research vehicles, for example, the Aluminaut, a high-strength aluminum alloy was chosen. The four models were constructed of 7075-T6 extruded aluminum. Machined structural models were favored as opposed to welded models to eliminate the effects of initial deflections and residual stresses which occur in welded structures. Lunchick and Short [12] and Krenzke [13] have shown that, in welded models, the heating and cooling process occurring when the webs of the frames are welded to the shell causes an initial outward shell deflection for an externally-framed cylinder. On the other hand, an initial inward shell deflection occurs for an internally-framed cylinder. These initial deflections cause residual stresses and beam-column effects which can affect the collapse strength.

Each model had the same shell thickness, radius, and typical bay lengths, and only the cross-sectional area of the frames varied. The shell flexibility parameter, θ, was 2.5 for each model.

Model 1 had a frame area equal to 30 percent of the shell area. The frame area of Model 2 was 40 percent of that in the shell. Model 3 had a frame area 70 percent of the shell, and Model 4, 100 percent of the shell area. The shape of the frames on all four models was that of a T-section, and the faying width of the webs was held constant in order to hold the bay lengths the same.

Test Results

Fig. 3 shows the four models after collapse. Model 1, which had a cross-sectional frame area 30 percent of the
shell area, collapsed at a pressure of 1300 psi by plastic general instability. The frames were not of sufficient size to prevent frame failure, and both frames and shell failed simultaneously over the entire length of the model in a single "deep dish" lobe. Width of the lobe was approximately one eighth of the circumference of the model. Tearing of the shell from the end rings and frames occurred throughout the lobe, and the two center frames buckled inward.

Model 2, which had a cross-sectional frame area 40 percent of the shell area, collapsed at 1400 psi by plastic asymmetric buckling. Failure occurred in all three typical bays in a series of nonsymmetrical lobes accompanied by lateral twisting of the frames. The length of the lobes was approximately one tenth of the circumference of the model. In several places tearing occurred at the shell-frame junctures, but this was not as pronounced as in Model 1.

Model 3, which had a cross-sectional frame area 70 percent of the shell area, collapsed at 1420 psi by axisymmetric shell yielding. Failure occurred in the first typical bay from the end ring along a 180-deg arc length around the circumference. Tearing occurred at the two shell-frame junctures and at midbay.

Model 4, which had a cross-sectional frame area 100 percent of the shell area, collapsed at 1390 psi by axisymmetric shell yielding similar to Model 3; however, the area of collapse was more pronounced in Model 4. The length of the failure in this model extended over approximately 200 deg. Failure occurred in the first typical bay from the end ring and tearing of the shell at the hinge locations occurred as in Model 3.

Discussion of Experimental Results

The experimental results showed that an appreciable increase in collapse pressure occurred from the 30 percent frame-area case to the 40 percent frame-area case. At the 30 percent frame area a general instability failure occurred. At the 40 percent frame area buckling of the shell occurred between frames. Only a small increase in collapse pressure occurred between 40 percent and 70 percent frame size. At 70 percent frame size an axisymmetric yield-type failure occurred instead of asymmetric buckling. Strains at the frame indicated that longitudinal stresses grow with an increase of percent frame size, Fig. 5, which could cause premature yielding. A subsequent increase to 100 percent frame size caused collapse at a lower pressure than that of the 40 percent frame size. For an increase in percent frame size, the relative decrease in circumferential strains at a frame was greater than the decrease in circumferential strains at midbay. This shows that large frames lower frame deflections, but increase bending of the shell at the frames, thus causing relatively higher longitudinal stresses in the shell at the frame locations. Therefore, in the case of the 100 per-
Table 1 Comparison of Theoretical Versus Experimental Collapse Pressures

<table>
<thead>
<tr>
<th>Model Number</th>
<th>T-2</th>
<th>T-3</th>
<th>T-6</th>
<th>T-2A</th>
<th>T-7A</th>
<th>U-12</th>
<th>U-22</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Area/Shell Area</td>
<td>0.952</td>
<td>0.694</td>
<td>0.609</td>
<td>0.418</td>
<td>0.289</td>
<td>0.488</td>
<td>0.576</td>
<td>0.400</td>
</tr>
<tr>
<td>$\sigma_y/E \times 10^3$</td>
<td>2.93</td>
<td>3.60</td>
<td>3.83</td>
<td>3.43</td>
<td>2.60</td>
<td>2.27</td>
<td>2.35</td>
<td>6.89</td>
</tr>
<tr>
<td>$h/R \times 10^2$</td>
<td>0.679</td>
<td>0.669</td>
<td>0.953</td>
<td>0.653</td>
<td>0.979</td>
<td>1.093</td>
<td>0.873</td>
<td>1.525</td>
</tr>
<tr>
<td>Shape of Frame</td>
<td>Tee</td>
<td>Rectangular</td>
<td>Tee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>T-Steel</td>
<td>Mild Steel</td>
<td>7075-T6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Welded</td>
<td>Machined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Collapse Pressure (psi)</td>
<td>670</td>
<td>553</td>
<td>1005</td>
<td>680</td>
<td>770</td>
<td>975</td>
<td>735</td>
<td>1400</td>
</tr>
</tbody>
</table>

Plastic Buckling

| Equations (10) and (13), p_e | 662 | 548 | 980 | 691 | 743 | 917 | 707 | 1485 |
| Reynolds3 | 686 | 563 | 1016 | 705 | 748 | 928 | 724 | 1502 |

Elastic Buckling

Equation (14), p_e	878	603	1210	755	978	1895	988	1943
Reynolds3	906	626	1259	756	1010	1907	1002	1976
Sanden-Tölke2	930	631	1758	773	1032	2014	1054	1977
Mises1	786	585	1180	705	995	1786	963	1815

cent frame size, the bending stresses in the shell at the frames could have affected the collapse pressure adversely.

Comparison of Theory With Experiment

For the models tested, the asymmetric theory predicts an increase in shell-buckling pressure for an increase in frame size. Since only Model 2 failed in this mode, it is difficult to make a positive conclusion concerning the actual trend. However, it would seem reasonable to assume, from the much lower collapse pressure of Model 1 and the higher pressure of Model 3, that the experimental buckling pressures also increase with an increase of frame size to a point where axisymmetric collapse occurs. This increase in buckling pressure for an increase of frame size agrees with equations (10) and (13) as shown in Fig. 4. Using equations (10) and (13) and Lunchick's plastic-hinge theory [4] for axisymmetric collapse, the transition between asymmetric and axisymmetric collapse occurs for a frame area 62 percent of the shell area, which case is between Models 2 and 3.

The solution of equations (10) and (13) of this report, Reynolds' theory [3], and Lunchick's plastic-hinge theory [4] all predict collapse pressures on the conservative side of the experimental values. The theory of Kempner and Salerno [15] shows collapse pressures slightly lower than those given by the Hencky-Mises criterion.

Reynolds [3], in his comprehensive study of plastic buckling, also reported the test results of seven steel models, five of welded construction and two machined. Results of these tests and results of Model 2 are compared with theoretical formulae in Table 1. Fig. 6 gives a graphical representation of theoretical versus experimental collapse pressures for the steel cylinders shown in Table 1. Equations (10) and (13) and Reynolds' plastic equations are shown to agree within approximately 6 percent of experiments. The elastic equations, equation (14), and those of Mises [1], Sanden and Tölke [2], and Reynolds [3], predict collapse pressures which are unconservative when compared with the experimental results. This can be expected, since all the test models collapsed plastically.

A property parameter, defined

$$\xi = \frac{h/R}{\sigma_y/E}$$ \hspace{1cm} (15)

is shown superimposed on the graphs in Fig. 6. When h/R is relatively high and σ_y/E is relatively small, a high value of ξ is obtained. This is the case for Model U-12, in which h/R is 0.0193 and σ_y/E is 2.27×10^{-2} for 0.488 frame-area to shell-area ratio, Table 1. Also, for small values of h/R and large σ_y/E a low ξ is obtained, as is the case for Models T-2A and T-3. The trend of the ξ-curve in Fig. 6 agrees with the trend of the elastic-buckling equations. This should be expected, since for Model U-12 the large h/R increases the theoretical elastic-
buckling pressure, and the small σ_p/E lowers the experimental collapse pressure. Thus, for this case, a high ratio of theoretical collapse to experimental collapse is obtained. Conversely, for Models T-2A and T-3 the small k/h and large σ_p/E produce more conservative values for the ratio of theoretical collapse to experimental collapse.

Conclusions

The following conclusions can be made for stiffened cylindrical shells loaded under external hydrostatic pressure:

1. The theory presented by the author for asymmetric buckling adequately predicts collapse pressures for shell geometries constructed from (a) high-strength steel, and (b) high-strength aluminum, when the observed collapse is in the asymmetric mode.

2. A decrease in the shell flexibility parameter, θ, leads to:

 (a) An increase in the plastic asymmetric buckling pressures, P_θ, for a specified percent frame size.

 (b) A higher rate of increase in the plastic buckling pressures for an increase in percent frame size.

3. For a cylinder made of 7075-T6 aluminum and having a shell flexibility parameter of 2.5, an increase in relative frame size leads to:

 (a) A change in the observed mode of failure between 30 percent and 40 percent frame size from plastic general instability to plastic asymmetric buckling.

 (b) A change in the observed mode of failure between 40 percent and 70 percent frame size from plastic buckling to an axisymmetric yield-type collapse.

(c) A change in the predicted mode of failure from asymmetric buckling to axisymmetric yielding at 62 percent frame size; Lunchick's [4] plastic hinge and equations (10) and (13), p_θ.

(d) An increase in the theoretical asymmetric buckling pressures between 30 and 70 percent frame size.

(e) An increase in the experimental and theoretical longitudinal bending strains at the frame locations.

(f) A decrease in the experimental and theoretical circumferential strains at the midbay and frame locations.

References

INITIAL DISTRIBUTION

Copies
14 CHBUSHIPS
 2 Sci & Res Sec (442)
 1 Lab Mgt (320)
 3 Tech Info Br (335)
 1 Ships Res Br (341)
 1 Applied Sci Br (342)
 1 Prelim Des Br (420)
 1 Prelim Des Sec (421)
 1 Ship Protec (423)
 1 Hull Des Br (440)
 1 Struc Sec (443)
 1 Sub Br (525)

1 CHONR (439)
1 CNO (Op 07TB)
1 CDR, USNOL
1 CDR, USNRL (2027)
1 CDR, USNOTS, China Lake
1 CO, USNUS
1 CO, USNUSL
10 CDR, ASTIA
2 NAVSHI PYD PTSMH
1 NAVSHI PYD MARE
1 NAVSHI PYD CHASN
2 NAVSHI PYD NY
 1 Matl Lab (948)
1 SUPSHIP, Groton
1 Elec Boat Div, Genl Dyn Corp
1 SUPSHIP, Newport News
1 NNSB & DD Co
1 SUPSHIP, Pascagoula
1 Ingalls Shipbldg Corp
1 DIR DEF R & E,
 Attn: Tech Lib
1 CO, USNROTC & NAVADMINU, MIT
1 O in C, PGSCOL, Webb

Copies
1 Dr. E. Wenk, Jr., The White House
1 Dr. R.C. De Hart, SW Res Inst
1 Prof. J. Kempner, Polytech Inst of Bklyn
1 Dean V.L. Salerno, Fairleigh Dickinson Univ
2 Dr. G. Gerard, College of Eng, New York Univ