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NOTATION

Slope of logarithmic velocity law
Linearization constants

Intercepts of logarithmic velocity law; see Equations
(7], [8], and [10]

B, for smooth surfaces

B8, for fully rough regime

Derivative of 82 with respect to In £ *, Eouation [76]
Derivative of B, with respect to In &*, Equation [77]
Coefficient of total resistance; see Equation [67]
Coefficient of local resistance; see Equation [13]
Linearization constants; see Equations [91] and [95]
Velocity profile constants; see Table 2

Base of natural logarithms

Outer law function, Equation [4]

Inner law functions, Ecuations [2] and [3]

Subscript for auantities at junction of inner and outer
turbulent sublayers; see Table 2

Shape parameter, Equation [63]

Integrals of outer law velocity profiles; see Table 2
Transitional sublayer factors, Equations [42] and [44]
Linear parameters defining roughness

Roughness Reynolds number; see Equation [2]

Value of £* at start of fully rough regime, Equation [53]
Value of £* at end of quasi-smooth regime

Subscript for quantities at junction of laminar and tran-
sitional sublayers; see Table 2

Mixing length

Constants in logarithmic resistance formulas for flat
plates, Equations [93] and [98]

Constant in logarithmic resistance formula for flat plates
with engineering roughness, Equation [117]

iv



al, 02

By By

Constants in logarithmic resistance formulas for flat
plates, Equations [94], [99] and [103]

Constants in local resistance formulas, Equations [145]
and [150]

Constants in local resistance formulas, Equations [146],
[156] and [151]

Frictional resistance
Reynolds number based on length

Reynolds number based on momentum thickness, Equation
[61]

Factor given in Equation [172]
Subscript representing smooth conditions

Subscript for quantities at junction of transitional and
inner turbulent sublayers; see Table 2

Velocity at outer edge of boundary layer
Tangential velocity in boundary layer
Fluctuation in u

Shear velocity

Fluctuation in normal velocity
Distance along boundary layer
Nondimensional z, Equation [124]
Normal distance from wall
Nondimensional y

Velocity profile constants; see Table 2

Velocity profile constants; see Table 2

Constant in logarithmic resistance formula for flat plates
with engineering roughness, Equation [116]

Boundary layer thickness

Displacement thickness

Boussinesq eddy viscosity, Equation [22]
Momentum thickness

Slope of € with respect to ¥

Constant for engineering roughness, Equation [109]



Viscosity of fluid

Kinematic viscosity, u/p

Density of fluid

Local resistance parameter, U/u..

Shearing stress

Shearing stress at wall
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ABSTRACT

By means of the similarity laws of the turbulent flow in boundary
layers, a’ general relation is developed for the frictional resistance of
flat plates with arbitrary roughness from which logarithmic formulas are
obtained for the special cases of the fully rough regine, the quasi-
smooth regime, and engineering roughness. Among other uses, this
general relation permits for the first time a simple rational extrapolation
to full-scale conditions of the frictional resistance of model plates
covered uniformly with any irregular full-scale roughness encountered
in practice. Furthermore, for calculations of turbulent boundary layers
in pressure gradients on rough surfaces, relations are derived for the
local skin friction and velocity profile shape parameter in terms of mo-
mentum thickness Reynolds number. Simplified relations are also de-
rived for the velocity profile of the transitional sublayer in the vicinity

of a rough surface.

INTRODUCTION

The analysis and prediction of the frictional resistance or drag of rough surfaces pre-
sents in general a more complex problem than that of smooth surfaces owing to the geometric
diversity of roughness and the accompanying involved effect on turbulent flow.

Since research into the fundamentals of turbulence has yet to achieve a method for pre-
dicting frictional resistance, recourse as in the case of smooth surfaces is made to the sim- :
ilarity characteristics of the mean-velocity profiles of shear flows for a general method of
analyzing the resistance of rough surfaces.

For turbulent shear flows, such as fully developed viscous flow in pipes or boundary-
layer flow on flat plates, the two laws which provide similarity in the mean-velocity profile

by linking it to the wall shearing stress are:

1. The inner law or law of the wall which applies to the flow immediately adjacent to the
solid boundary.

2. The outer law or velocity-defect law which applies to the remaining outer region of the

shear flow.

The overlapping of the range of application of the two laws requires a logarithmic functional
form for both similarity laws within the common region of overlap.

The similarity laws of the velocity profile were originally developed for pipe flows by
Prandtl! and separately by Von Karman,?’ 3 though with some significant differences. Pranatl

lReferences are listed on page 44.



used the logarithmic form for the velocity profile of the whole flow which in effect assumed
the region of overlap of the two similarity laws to extend over the whole flow. Von Kirman,
on the other hand in a more general presentation, used the logarithmic form for only a limited
region of overlap and wrote the outer law as an unspecified functional relation for the flow
outside the region of overlap. The difference between the Prandtl and Von Kirman procedures
is not significant for pipe flows since a logarithmic form fits very closely most of the flow,
but it is significant for boundary-layer flows on flat plates since a logarithmic form fits ade-
quately only about 15 percent of the flow.

Inasmuch as the differences between pipe and flat-plate flows were not apparent at the
time, Prandtl and Schlichting® used the simpler Prandtl procedure of a logarithmic form for
the whole boundary-layer flow as well as numerical values from pipe tests in determining the
resistance of rough plates from Nikuradse’sS tests on pipes coated with sand grains. Conse-
quently, one of the purposes of this report is to determine the resistance of sand-coated plates
by applying Von Karman’s procedure of a limited logarithmic region together with the some-
what different numerical values from flat-plate tests.

More importantly, the whole subject of the application of the similarity laws to the re-
sistance of rough plates is developed in detail. The logarithmic form of the similarity laws
in the region of overlap is derived in a simple fashion which emphasizes the nature of the re-
sulting constants. Detailed consideration is given to delineating the different sublayers
within the boundary layer. Expressions are derived for the velocity profile of transitional
sublayers of rough surfaces by an extension of a method of Squire® for smooth surfaces. The
boundary-layer factors of displacement thickness, momentum thickness, and shape parameter
are determined for rough surfaces by combining integrated quantities of the velocity profiles
of the separate sublayers.

The relation for momentum thickness is then used to determine the coefficient of total
resistance of flat plates as a function of Reynolds number and relative roughness in terms of
a local-resistance parameter for the general case of roughness. Then by eliminating the local-
resistance parameter and dropping terms which become negligible at larger boundary-layer
thicknesses, a simpler logarithmic formula is obtained for the total resistance coefficient of
flat plates with arbitrary roughness. From this, special logarithmic resistance formulas are
developed for the special cases of the fully rough regime, the quasi-smooth regime, and engi-
neering roughness.

The general logarithmic resistance formula is used to prepare resistance charts from
empirical roughness characterizations, to obtain roughness characterizations from total re-
sistance data, and to predict full-scale resistance from plate tests with arbitrary roughness.
The last procedure should be especially useful in studying the {rictional resistance of ship
hulls in newly painted and in fouled conditions. Towing a representative sample of the hull
roughness would be required instead of difficult full-scale trials.



Finally relations are derived for the local skin friction and the velocity profile shape
parameter for use in calculations of turbulent boundary layers in pressure gradients. A meth-
od of obtaining such information from towing tests of plates with arbitrary roughness is also

included.

BOUNDARY-LAYER CHARACTERISTICS FROM SIMILARITY LAWS
GENERAL

First, an important distinction should be emphasized between the similarity laws and
their historical association with turbulence hypotheses, like the mixing-length theory, which
have become somewhat untenable by reason of more detailed experimental investigations”: 8
into the nature of energy transfer in shear flow. As statements of general functional relation-
ships, the similarity laws can have their basis in purely dimensional arguments supported by
experimental data and thus be made independent of the mixing-length and like theories.

In the past it was mainly for the purpose of deriving specific functional relations that
hypotheses concerning the turbulence mechanism had been introduced into the analysis.

These were the mixing-length theory and assumptions about the laminar sublayer by Prandtl?!
in obtaining the logarithmic form of the inner law, and a similarity hypothesis of the turbulent
flow pattern by Von Karman3 in formulating his particular expression for the outer law. All
this can be avoided since the logarithmic form can be derived from the overlapping of the inner
and outer laws and the outer law elsewhere can be analytically treated as an unspecified func-

tion in arriving at the desired resistance formulas.

INNER LAW OR LAVW OF THE WALL

Close to the wall or solid boundary the distribution of the mean velocity u of the tur-
bulent flow parallel to the wall is considered to depend on the normal distance y away from
the wall, the shearing stress 7, at the wall, the density p and viscosity p of the fluid, and

various linear parameters defining the roughness of the wall %, kl, kyy oo yor

u = f(y, Twsr Py by k, kl’ k2’ . .) [1]
There is in addition the boundary condition at the wall, ¥ = 0 at y = 0, to be satisfied. By di-

mensional analysis the variables can be grouped significantly into the following nondimen-
sional ratios:

u k kl
-= fl (y*7 *y—,—, .. -) [2]
Uy ky k2
or
kE %
u y 1
—'=f2(—9 k‘?""—.’-") (3]
Uy k ky &,



Tw
where u, = \/ — is a factor having the dimensions of velocity and hence called the friction
P

M ULy u k
or shear velocity, v =~ is the kinematic viscosity of the fluid, y* = —, and k* = —,
P v v

Empirically, Equation [2] or [3] which is the statement of the inner law is uniquely defined for
fully developed turbulent flow in pipes regardless of the pipe diameter Reynolds number. A
similar but somewhat different numerical relationship holds uniquely for flat plates independ-
ent of plate length Reynolds number. In addition the inner law has been found to he independ-
ent of pressure gradients.®

CUTER LAW OR VELOCITY-DEFECT LAW
For the turbulent stream at some distance away from the wall the velocity-defect ratio

U-u
——, where U is the maximum velocity, is found experimentally to be directly independent of
Ur

viscosity and a function only of its relative position in the flow or

U-u Y
- F(a\) [4]

where 3 is the thickness of the shear flow. The boundary condition v = U at y = § is to be

also satisfied. The function ¥ has been found empirically to be independent of Reynolds
number and, most significantly, of the roughness of the wall.3

The function F is numerically different for boundary-layers on flat plates than for pipe
flow owing mainly to the presence of the free outer boundary of boundary-layer flow which has
been found to have undulating characteristics.® It is also markedly affected by longitudinal

pressure gradients.10

LOGARITHMIC VELOCITY LAW

Within the boundary layer there is a region where both the inner and outer laws are con-
sidered valid. This overlapping leads to a logarithmic relation which will now be derived by
a simplified version of Millikan’s!! original demonstration.

Equating the derivative of velocity u with respect to distance y of the inner and outer
laws, Equations [2] and [4], results in

LA [5]

or



of, y dF
y* S A D' | (6]
o \8/)dy/s)

Since the left-hand side of Equation [6] is only a function of y* and roughness parameters
k k
1 . . . .
k*, —,—, . .. and the right-hand side is only a function of %, the only quantity satisfying
kl 2
these conditions is a constant 4 independent of all these variables.

From the left-hand side there results after integration

u k ky
f1=——=A1ny*+Bl (k*,—,—,...) [7]
U, ki ky
k kg
where the constant of integration B1 is necessarily a function of k*,—,—, . . . from the in-
k., k
1 "2

tegration of a partial derivative. Equation [7]is the statement of the inner law in the region

of overlap. An alternate expression is

u y koky
—=Aln—+B, (g ——, ... (8]
Uy k kl k2
where
B,=B,+Alnk* (9]

Fromthe right-hand side of Equation [6] the outer law in the region of overlap is

U-
F’=——u =—Alng+83

Uy 5 [10]

This establishes the logarithmic form of both the inner and outer laws in the region of
overlap. A very important result is that the factor B, or B, is seen to be solely a function
k

of roughness Reynolds number k4* for a particular roughness configuration, —, —%, . . . ,
ky k
2
and that A is independent of roughness. Hence the frictional effects of any particular rough-
ness may be considered defined when B, or B, is experimentally determined as a function
of k*. This will be termed the resistance characterization of a roughness configuration.
Now equating the velocities from the inner and outer laws in the region of overlap

gives important relations for the local skin friction.



From Equations [7] and [10]

U %0
0=—=Aln —+ B, + B, [11]
u, v
or from Equations [8] and [10]
U é
o=—=Aln—+B, +B, [12]
Uy k

where o is a local resistance parameter. With local coefficient of resistance

2T Up\2 2
C.=—=2 (—) = — the preceding equations appear as

T pU2 U o2
2 —(Us
% = Aln [\/01, (—;—)]+ B, + B, (18]
T
or
V2 S
'\/?=Aln'];+ 83+B2 [14]
-

TYPES OF FLOW REGIMES ON ROUGH SURFACES

In Figure 1, which shows the resistance characterization for Nikuradse’s sand rough
pipes, it is seen that B, is constant for small values of £* and that B, is constant for large
values of k*. For intermediate values of k*, both B, and B, vary with k*. From this the fol-
lowing classification of turbulent flow past rough surfaces can be made which is significant
from the viewpoint of skin friction:

1. Quasi-smooth regime
For small values of k* starting from zero, B, is constant with respect to k* and has

the same value as for a smooth flow. According to Equation [9], B, then plots as a straight
line. Most iniportant of all as given by Equation [13] the local coefficient of resistance C.,

. . . U
is the same as for a smooth surface and is solely a function of Reynolds number -—8
v

2. General rough regime

Us
With B, and B, both varying with &*, C__ is a function of Reynolds number — and
v

k C, (U3 [k
relative roughness—, | k*=y— |—]{—]]-
) 2 \v )
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Figure 1 — Resistance Characterization for Roughness in Pipes

3. Fully rough regime

At large values of k*, B,

k
line according to Equation [9]. C, is solely a function of the relative roughness~8- and inde-

pendent of Reynolds number.

SUBLAYERS WITHIN TURBULENT SHEAR FLOWS

Various sublayers within the turbulent shear flow can be distinguished according to the
behavior of the velocity profiles as indicated schematically in Figure 2. From the wall out-

ward the sublayers are in succession:

is constant with respect to k* and B, plots as a straight



Outer Turbulent Sublayer

Outer Low ———————— ]

| —-—Logarithmic Law

) ) ) I

Inner Turbulent Sublayer

Laminar Tronsnhonol_Subl_oyer _____

Sublayer

Solid Wall

Figure 2 — Sublayers within Turbulent Shear Flows

1. Laminar sublayer

This is the very thin layer in contact with the wall where the flow is laminar and con-

sequently the shearing stress r is given by

T=p— [15]

The thickness of the laminar sublayer diminishes with increasing roughness, and finally van-

ishes in the case of the fully rough flow regime.
2. Transitional sublayer

In this layer the effect of turbulence appears so that the shearing stress is given by

du -
T=pu—-pu? {16]
ay
where - pu %’ is the Reynolds turbulent shearing stress.
3. Inner turbulent sublayer
The inner and outer laws overlap in this layer resulting in the logarithmic velocity law.

4. Outer turbulent sublayer

In this region the wall has no direct effect and the velocity law is the nonlogarithmic

part of the outer law.



VELOCITY LAW FOR THE LAMINAR SUBLAYER

Inasmuch as the inner law Equation [2] provides only the general statement that the

u -

velocity ratio — is a function of Reynolds number y* (laminar flow is independent of rough-
Yr

ness), other considerations must be applied in order to obtain a specific functional relation-

ship for the laminar sublayer. If the laminar motion within the sublayer is assumed essen-

tially a parallel flow, the shearing stress 7 is given as

d
T = uﬁ [17]

Within the thin sublayer the variation of T with y is negligible; hence

T=T, [18]
Consequently
du T
—Z [19]
dy n
and with u=0aty =0,
'rw
u=-—y [20]
u
or
u
—_— y* [21]
Yy

Empirical verification for this relation has been obtained by Laufer” by measurements

in a closed channel.

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER OF SMOOTH SURFACES

Expressions for the velocity law of the transitional sublayer for smooth surfaces have
been derived by various authors on the basis of assumptions concerning the variation of the
turbulent shearing stress with y. In general, since the shearing stress has both laminar and

turbulent contributions,

T=p—-puv’ [16]



where —p ©u %’ is the Reynolds stress formed by the average of the turbulent velocity fluctu-
ations ©”and »“in the z and y directions respectively. If the Boussinesq eddy viscosity e

is introduced where

uv’
== [22
€ au ]
dy
then
du
T=pvt+te)— [23]
dy

If it is assumed that the variation of = with y across the thin sublayer is negligible, then

T=T, and

du
u?=(v+e)— [24]
ay
Various investigators have assumed in effect different variations of e with y.
Squire® by dimensional reasoning and by considering the turbulence effect to start
just at the outer edge of the laminar sublayer uses a linear variation of € across the transi-

tional sublayer or

e=xu . (¥y-v;) [25]

where x is a constant of proportionality and y; is the thickness of the laminar sublayer.

Other authors use the mixing-length hypothesis wherein

=12 du [26]
dy
! being the mixing length. Rottal? and Hudimoto!3 independently assume
l=x(y-yr) [27]
or
e=x2(y-y.)? %‘ [28]

Hama!4 uses for both the laminar and transitional sublayers

10



l=xy? [29]

or
d
€ = x2yt = {301}
dy
whereas Van Driest!5 assumes a still more complicated relation
-2 )
l=xy \1-e ©°0st (31]
or
2
_ Y
€ =x2y? {1-¢ const | | du [32]
ay

The procedures of both Squire and Rotta lead to expressions in closed form, that of
Squire being much simpler. On the other hand Hama obtained a much more complicated expres-
sion involving elliptic integrals and Van Driest obtained a still more unwieldly expression re-
quiring numerical integration. In Figure 8 where the various formulations are compared with
Laufer’s16 pipe data, it is to be noted that the simple expression of Squire is an adequate
approximation. The method of Squire will be extended in this report to cover the case of
rough surfaces. However, full credit is due Rotta!2 for first analyzing the transitional sub-
layers of rough surfaces.

Squire’s procedure for smooth surfaces will be now completed. Substituting Squire’s
€, Equation [25], into Equation [24] results in

du u.,?
——— [33]
dy v+xu(y-yp)
Integrating and utilizing the initial condition that
v %YL
R at y=yL [34]
Yy

11



yields

or

where

or

[ R L B B

- o »
| Nikuradse: =575 log v +55

® Laufer, Reference 16
—— — Squire, Reference 6
—— — Rotto, Reference 12
———— Homa, Reference 14

3, y*(Laminar Sublayer)

(0] N L 1 A
2 2

T W S N U
3 4 56789
| 10 10

Figure 3 — Comparison of Various Formulations for Transitional
Sublayer of Smooth Pipes

v 1 v (¥y~yL) 1 1 1 wyy
—=—Iln|—+— | -—ln—+ [35]
Uy K v K K K v
u . e
—=Aln(y -Bl+Aan + B, [361]
r
1
4=- (371
K
By=y,*-A4Aln4 [38]
yL*=Bl+AlnA [39]

12



For large y* the velocity law asymptotieally becomes

L:Alny*+81 [40]
Uy
which is the form for the logarithmic law. Hence the 4 and B, of Equation [40] and those of
the inner law Equation [7] are identical.
It is to be noted that Equation [39] gives the thickness of the laminar sublayer when

values for B, and 4 are substituted in the expression.

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER
OF THE GENERAL ROUGH REGIME

The velocity law for the smooth transitional sublayer, Equation [36], can be written as

u
—=Aln (y*-J,) + B, [41]
Uy
where
e
Jl:Bl_Aan=yL*_A [42]

Since B is a function of &* for a particular roughness, then J; and y; * are also functions
of k*. For the general rough regime J, will have a limiting value of -4 since y; * is zero
for the case of the fully rough regime.

The velocity law for the transitional sublayer of the general rough regime may be re-
stated as

u y
-;;:Aln (-];—J2> + B2 [43]
where
yL*-4 J1 Y A
J2=——=——=(—) -— [44]
k* k* k L k*
Also
y 32+AIHF

13
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Figure 4 — Variation of Transitional Sublayer Factors
for Nikuradse Sand Pough Pipes

Figure 4 shows a plot of yL* Jynand J, as a function of k£* calculated for Nikuradse’s sand
rough pipes.

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER OF THE
FULLY ROUGH REGIME

In this case the laminar sublayer has vanished, ¥ = 0, and the plane of reference for
¥, ¥ =0, is defined where the velocity u is zero on an average over the rough surface. There
is then an initial shearing stress due to turbulence represented by €, at the start of the tran-

sitional sublayer. Then

€=€, +KUY [46]
and
du u?
—_ (47]
dy v+eg+ruy

14



Integrating and utilizing the initial condition u = 0 at y = 0 results in

v 1 K, Y
—=—1In{1+ [48]
Uy K vt+e,
or
2 -4 (E-J:,) + B, [49)
Uy k
where
32
A
J,==e {501
and
k*
B2 =Aln —m8m8 — (511
o
A 1+—>
1 4

It is interesting to observe that when Equation [49] is rewritten as

B,

A
1=Aln(e %+1) [52]

Uy

it is identical to the velocity law of Prandtl and Schlichting# in which the unit constant had
been arbitrarily added to the argument of the logarithm to make u/u,.= 0 at y/k = 0. The re-
sults for the velocity laws of the transitional sublayer are summarized in Table 1. Represent-
ative velocity profiles of the inner law for sand rough pipes are shown in Figures 5 and 5.

Equating Equations [44] and [50] and setting y; * = 0 specifies the start of the fully
rough regime in terms of

B,

A
kR*-_—Ae [53]

The value of kp* determined from Equation [53] agrees well with the experimental point

where B, becomes constant as shown in Figure 1.
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TABLE 1

Summary of Factors for the Velocity Laws of Transitional Sublayers

Fact Quasi-Smooth Ceneral Fully
actor Regime Rough Regime Rough Regime
0<k*<k,* k *<k*< kp* k*>kp*

B, B,,s (const) f(k*) By g - Aln k*
B, By v Alnk f(&*) B, (const)

Bl +Alnd =

* B +A4ln4d A 0
k#
e
e B, - A4ln—= B
ek* - A
B,-Aln|— ~k*e
2 A4 )
By R
1 e 1 T a4

J2 -k—*'(Bl,s—Alnz‘) F(Bl—‘““—) - €

Aln (y*-J,)+ B, =
u Aln (y*—J B Vot Jam(2-g
—_— n(y - 1,3)+ 1’3 y nf{—- 2,R +32 R
U, Aln 7c-J2 + 82 \

The limit of quasi-smooth flow is specified by k¥ * which is the criterion for permissible
roughness. The value of k * may be empirically determined at the point where B, is sub-

In order to obtain relations for the boundary-layer parameters of displacement thickness

BOUNDARY-LAYER PARAMETERS

the flow separation induced by an individual roughness element.

Since the displacement thickness §* is defined as

], (-5)

0

17

stantially constant as shown in Figure 1. However, Goldstein!7 presents a method based on

5*, momentum thickness 6, and shape parameter H from the similarity laws, integrations of
the velocity u with respect to y are necessary over the boundary layer. This is accomplished
piecewise for each sublayer by using the appropriate velocity law as shown in Table 2.

(54]




TABLE 2

Velocity Profile Integrals

2 2
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then from the integrated quantities from the similarity laws in Table 2

5* 1 oy 1 @)
(o 2)-2 (o-2) -
5 e\ )T T
v k
Us* U0
14 14
and
5 1 )
775 (o) o
In a like manner for momentum thickness 6 defined as
5
6 = 5(1-"—)(1 (58]
o v)
0
0 1 oy 1 By
—=—<Dl+——>——(D2+—> [59]
v 14
0 1(p 2\ 1 (p P2 (60]
—_— 4 —_—] - — + —
5 o\ Te) e\
k k
Ue u_rS ( 02) Bl
Rg=—=—|D, - — -—
6 1 4 14 1 o +a1 o [61]
and
0 s/Di D, a B,
z=z == )= [62]
o o2 g o2
Also for shape parameter H defined as
8*
H=— 6
5 [63]
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[ B1—20ay ]
02 +
E
1 1 v
——1- (A4]
H o oy
D -
1725
T
N v J
or
R,~20a,
1)2 +
L 1 ! i (65]
H = o ay
17 5%
. u_ 3 ) . . . .
Since -I- and Zare given in terms of ¢ in Equations [11] and [12], &*, 6, and / are
v

functions of ¢ according to the preceding relationships.

For zero pressure gradient the factors D, and D, are constant for the three types of
roughness flow. However, B , @ , and B, are constant only for the cuasi-smooth regime while
B,, a,, and 3, are constant only for the fully rough regime. In the case of the general rough

regime By, B,, &, a,, B, and S, are all functions of k*.

FRICTIGNAL RESISTANCE OF FLAT PLATES
GENERAL

The frictional resistance or drag of a flat plate in two-dimensional flow without pres-
sure gradients which corresponds to a flat plate moving lengthwise in an infinite fluid is de-
termined by the momentum thickness of the houndary-layer flow leaving the trailing edge as
a wake. The Von harman momentum equation neglecting the small effect of the normal

Reynolds stress term gives?!

d0 Tw
—=— 661
x pU2
R
and since the resistance coefficient Cf = —— , where Rf is the total frictional resistance
—pU%zb
9 P

on one side and b the width of the plate, is obtained from the summation of the local resistance

20



or

0 pU?
then
2
Cf 0 Ry
2 _z—ﬁ’x—:_t_
k
where[i’xz

v

Since by definition

1
02 = —
Tw
pU?
then Equation [66] becomes
dr = 02d9
or
dR, = o*dR
or

/(- (2)

For a uniform roughness where k is constant with respect to

kx = jazdRe = UZRG -2 j‘ Roada + const

21
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[68]

[691

[70]

[71]

[72]

[73]



or

6 6 6
:—]:’—-J‘azd(;)=a2;—2j’;ada+const [74]

The general case of the frictional resistance of a rough plate is to be now considered
wherein B, or B, is an unspecified function of £*. All other cases like that of the fully rough
regime or the quasi-smooth regime are then special cases.

5 6
Inserting the relation; from Equation [12] into the relation for ; from Fquation [62]

and integrating by parts repeatedly results in

I2 4
0 5 82' A 82 AD2 A—Bz)
Y _2 2 __(BriBrr_ __“
jkoda P ADI[I <2+32 1 + ... > 1+ + 0.

o o g ,
B, [75]
+ azdo— — do + const
o
where
dB2
82’5 [76]
d(In k*)
and
B,
B2II= [77]
d(lnk*)?
Then from Equation [74]
I2 4
z_0 D D,-24D, | 1 %2 4 B+ B’ B2> 2AD2 1 (A_B2)
-_2Z -D - - AU DR + + e
k k 17772 1 o 42 2" 2 A o o
[78]

B
2
+ta,0 - 82 —QJ a2d0+ 2j —;—-da+ const

Also since by definition

[79]
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Equation [78] hecomes then

) 2 B, 4 B, (4-B,)
Rx=7 Dio*-D,0-24D0 1——;——2(82 +B, _X>+.'. +24D, | 1+ - +aus
o

[80]
+a,0% -8 0-2 Jaloda+ 2 j B,do + const

z,
ilence from Equation [68] it is seen that Cf is a function of I and/or — in terms of parameter
0. When o is eliminated, logarithmic resistance formulas result. To arrive at a relation be-
tween C[ and o, Equations [68] and [73] or [74] are combined to give after neglecting the con-

stant of integration

1 Cf 2 {ROodo
LA (5 — , [81]
02 2 0236
or
2fe d
-odo
Y «°
R R — [821]
o2 2 022
k

0 6
The expressions for [ n odo and; from Equations [75] and [62] are inserted into Equa-
tion [82] to give with a, and BZ neglected:

4 '2
1 G 24 24B] 247 B)” D,
——1-— +— (B’ +Bf ———+—|+...| [83]

o2 2 o o2 o3 2 A D1

Through reiteration o is replaced by Cf within the brackets so that

1 G O\ Cs
—=—11-24(— +24(A+B. Y (= )+... [84]
02 2[ (2) ( 2)(2) :\

and by the binomial expansion

C Cc\ "% C
1_ .1[1_A<_f> +A(i1+3'> <—f>+] (85]
o 2 2 2 2 2
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and by inversion
C A C
o= 2 |}+A<f) +A<———B')<—f>+...:| [se]
Cf 2 2 2 2

) . N .
Now, after substituting for; from Equation [12] and eliminating a,y, B,, end the constant

z
of integration, —k-in Equation [78] is written in logarithmic form as

B, B D

2 1 2\ 1

mZ-2 2 p -ln=4ln 1—(2A+—>—+... [87]
F 4 4 A . D,/ o

Substituting the appropriate expressions for o from Equations [85] and [8€] and expanding the

logarithm of terms close to unity into a series results in

— 83 BZ
ln—- V——————< —+B>\/Cf+1—71——7+ln\/591 [88]

€
wherein terms of higher order than \/Cf have been neglected. Inserting the expression for Z

1
from Equation [79] and — from Equation [85] into [88] produces
g

[89]

V2 4 1 /D, 4 , B, B,
—-—+2B5, Cf

D, 2

“quations [88] and [89] represent logarithmic resistance formulas for the general case of con-
stant k* since B and B, are functions of k*. Separate logarithmic formulas are obtained from

Equations [88] or [89] in the cases where B, or B, is analytically defined in terms of ln &*.

FULLY ROUGH REGIME

In this case the roughness effects have become strong enough to eliminate the laminar
sublayer and make Dz constant, With B = B R and B = 0, Equation [88] reduces to

N3 D, B, B
x 1 1[4 3 P2,R
nromo 1 C In yZ D 90
Vo 4T, \/2<2 ) 1 +invZD, (0]
If the term involving \/C, is linearized with respect to 1
g f B P \/CT
or
\/C_'f— o +—— [91]
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then Eouation [90] becomes in common logarithms

x Ml
log. — Cf=— + N [92]
10 k
C
v,
where _
1 V2 4 Dy G
M, = — -3+ )—= [93]
2.3026 | 4 2 D1 \/2‘
and
DN C (B, + B, p)
1 A 2\ “1 3 2,R
N, = 1-[m+—]— - —— 1o 5D [94
1723026 [ (2 * pl) & 1 ] 810 V2 Dy ]
. . . 1
Furthermore, if log Cf is linearized with respect to ——
VG
or C
log o €= Cy + = [95]
10 3 *
Ve
then Equation [92] becomes
%107 == 2
k
VG
or
11422
Cr = 2 (97]
- z
(10310 }c"‘ Nz)
where
Cy
M2 = Ml - ? 98]
and
03

Q' ASI-SHOOTH REGIME

Quasi-smooth flow is effectively that of a smooth surface; B, being constant and equal

dB,

to Bl's and e =0
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Since, from Equation [9]

+4 [100]

Equation [89] reduces to

21 1[4 Dy B, B,
1nizxof=‘/_____(_ )\/@u-f- s+1n2D1 [101]

+ ——

If the term involving \/CTfis linearized with respect to as in Equation [91], Equa-

1
C
tion [101] becomes in common logarithms \/_f

Ml ,
log,y B, Cr=——+ N, [102]

v

where M1 is given by Equation [93].and

Bz,R - Bl,s

N, =N, *—30med T log o V2 [103]

Equation [102] is the well-known Karman-Schoenherr formula which is derived in Reference
20 by a somewhat different procedure.

1
If log, , Cf is linearized with respect to —as indicated in Equation [95], Equation

[102] becomes \/Cf
M,
log,, B, = +N; [104]
v
or 2
()
s = 5 [105]
(1°g10 B, - N, )
where
M, =M, -C, [106]
and
N, =N, -¢C, [107]

ENGINEERING ROUGHNESS

From extensive tests on commercial pipes the behavior of the irregular roughness of
the surfaces resulting from manufacturing processes, termed here engineering roughness, has

been found to be quite different from that of the artificial sand roughness of Nikuradse.
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Whereas B, has a maximum value for the Nikuradse roughness, B, has a gradual monotonic
variation for engineering roughness as shown in Figure 1. Colebrook!? with the aid of White
fitted this variation of B, with the following formula whicn in the notation of this paper can

be expressed as

A
where
1 .
A = exp _A—(BZ,R - B, ) [109]
It is seen that for k* » e, B, » Bz,R'
Furthermore, with Equation [9], [108] becomes
k*
B, =B ;- Al (1 +T [110]

Then for k* » 0, By » B1,s° Consequently the relation for engineering roughness is asymptotic
to both the quasi-smooth regime and the fully rough regime.

To obtain a logarithmic resistance formula for engineering roughness from Equation
[89], the procedure is as follows:
From Equation [108]

[111]

z /\2

LR R, [¢ 1 £ (1 Rx) [c; ) "
+T=1+_a: ry -4 ?+...)= +_x rul R Cf%+
A= A— 1+ — \—=
k k z/\2
L "%

[112]

Now from Equations [79] and [85] [ (A Rx)(Cf) W

Using Equations [110], [111], and [112] in [89] results in

4 D B, B,
~In (1210 r— )hZ (E+D_2)ch+1~j4§_%+ln2Dl
x f \/-g}‘%/Cf \/Cf \[2_ 1

[113]
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1
If the term containing \/(_,’;is linearized with respect to-——as in Equation [91], Equa-
tion [113] becomes in common logarithms @

M
- log,, (1210 + 1 ) LR [114]
T VBTG vG

where M, is given by Equation [93] and N; by Equation [103].
Equation [114] reduces to the case for smooth flow, Equation [102], when

1 -» 0.

1
———— -+ 0 and to the case for the fully rough regime, Equation [92], when 5
z
Ve x’:\/cf *
z
In a less rigorous fashion an explicit expression between C/ and R, andzmay be

written which agrees in the limits with Equation [104] for the quasi-smooth regime and with
Equation [96] for the fully rough regime or

11 wo o .
- log,, [R— + ] -2 ., [115]
z\m .
* (Yz) f

where Mz’ and N,; are given in Equations [106] and [107],

N, M,
log, oy =—— - N, [116]

and

m=— [117]

APPLICATION OF THE GENERAL LOGARITHMIC RESISTANCE
FORMULA TO ARBITRARY ROUGHNESS

PREPARATICN OF RESISTANCE DIAGRAMS FROM RESISTANCE
CHARACTERIZATIONS

If the resistance characterization is known for an arbitrary roughness, e.g., B, or B,
has been found empirically as a function of k*, the procedure for preparing a resistance dia-
gram for flat plates, 0!. as a function of B, and 2/%, is as follows:

The general logarithmic resistance formula, Equation [89], is restated in common log-
arithms and Equation [100] substituted for 32'
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v 1 \/C_f(ADz 1 dBl) 1 (13331)

log,., B C;= - —+— + + -——-—
,lo <

* 1 2.30264 VT 230264\ Dy 2.302¢ dlog, k*) 2.3026 A A

[118]
+log,, 2D,
aB,
Since B, and ————— are functions of k* and 4, B,, Dy, and D, are constants, Equation
dlog, k*

[118] represents the variation of Cf with E_ for constant k*. A rapid method of plotting Wqua-

tion [118] is to relate it to smooth resistance so that for the same value of Cf the difference

in B_is
Bl.s -8B,
loglo Rx - lOglO Rx,s =2—.3—0§'6—A [119]
aB;
where the effect due to Tor 7% is neglected and the subscript s refers to the smooth line.
%210

Consequently the resistance line of constant &* for the rough case is offset from the smooth
line by a constant amount in the direction of log,, £, .

To determine the resistance lines of constant z/k from the lines of constant £* the
following procedure is used:

Since by definition

R =k*o- [120]

the insertion of the relation for ¢ from Equation [86] produces

T
B, - k*% % (1 + A\/-2i+ .. ) [121]
f

Taking the common logarithm of Equation [121] and expanding the logarithm of the series in

parentheses results in

. A Cf z
log,, B, =log,ok* +log,, Ff *53006V 2 + logm; [122]

wherein terms of higher order than \/37 have been neglected. Hence for a given k* and «/k
the intersection of Equation [122] and [119] at a specified k* gives a point on the line of
constant z/k. A rapid way of plotting other lines of Equation [122] is to relate them to any
plotted line of Equation [122] at constant Of or
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. z z
log o &, , —log,y B, | =log, ok, — log, k} + log,, (;)2 - log,, (7‘-)1 (123]
where subscript 2 refers to the new line and subscript 1 to the line already plotted. Hence
the various plots of Fquation [122] are offset by constant amounts in the direction of log, oR, -

This procedure was utilized in preparing the resistance diagram for sand roughness in

Figure 7 from a graphical representation of B, and k*.

RESISTANCE CHARACTERIZATIONS FROM PLATE TESTS

To characterize the resistance qualities of an arbitrary roughness requires the deter-
mination of B, or B, as a function of k*, Measurements of total resistance of flat plates with
an arbitrarily rough surface can only give values of Cf against B for different lengths z, the
roughness parameter % having only meaning for a particular roughness configuration. Hence
to compare the resistance characterizations of different roughnesses from measurements of
total resistance of flat plates, it is necessary to use the following procedure:

A new parameter z* is introduced where

z
z* Ei [124]
v
so that by definition
z*
k* = [125]
z/k
or
z
log,ok* = log, 2* - log,, P [126]

Then the single parameter variation of B; with k* is replaced by a two-parameter variation of
B, with z* and 2/k. Consequently when B, is plotted against log, 2 *, a family of curves re-
sult for different values of #/k which are offset by constant amounts of the differences in
loglow/lc.

B, is determined from the general logarithmic resistance formula [118] and from the

fact that for constant 2/k

dB dB

1 1
dlog, k* - dlog, z*

[127]

or

2 4 D, dB _ 2D,
B, =v:__ (_“_1 Lz 1 ) ) VT + A - By +2.30264 log, ( [128]
C Vo \2 "D, " 2.3026 dlog jov &G
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or relative to the smooth line for the same Cf

B, =B 4 5 “/ ! 930264 (log,o B, - B, _) [1291
= - —-2. o -
17 "1s 753026 dlog,e*V 2 10 % ™ s
aB,
The small effect due to ~—————— can be evaluated by iteration.
dloglow*

Since by definition

Rx

r*=— {1301
g

then substituting for 1/¢ from Equation [85] and manipulating the logarithm of the series gives

log, ,z* =log, R, +log,, 3 “53006 Vo [131]

flence B, and z* can be obtained from test data of Cf against B _.

For the same roughness % and different lengths of plate z, plots of B, against log, ,z*
will be represented by curves offset by a constant amount given by the logarithm of the ratio
of the lengths of the plates. Hence, if the similarity laws hold, the curves can be collapsed
to a single line by parallel shifts of the curves in the z* direction.

A resistance characterization was obtained from the data of 21-foot friction planes
coated with Mare Island hot plastic paint as shown in Figure 8. For comparison the curve of
engineering roughness, Equation [110], is plotted for 2 /k = 1 x 10°. The difference in curva-

ture between the two graphs is evident.

4 - Smooth a,ls —

. “\\(Engineermg Roughness % = 1x10°

Mare Isiand Hot Plastic Paint .',
| — 21-ft Friction Plane o

1 { 1 1 1 1 { 1 1 [
Ol 02 03 04 05 06 07 08 09 0l 02 03 04
6

Ua X
Lo x*= Lo o
% % ¥

Figure 8 — Resistance Characterization of Roughness from
Flat Plate Resistance Data
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PREDICTION OF FULL-SCALE RESISTANCE FROM PLATE TESTS

The general logarithmic resistance law provides a means of extrapolating data from
test planks with arbitrary rough surfaces to full-scale lengths. The test data are in the form
of Cf against log R_ at constant 2/k, k being unknown. A representative plot for Mare Island
hot plastic paint2! is shown in Figure 9. The problem is to obtain a plot of C; against log E,
for different lengths of flat plates with the same roughness in order to predict the full-scale
resistance of ships having that roughness.

According to the similarity laws there is a unique relationship between B, and k*
characteristic of the roughness configuration. Hence each point of the test data or faired
test curve represents a value of B or k*. This is illustrated by point P, in Figure 9 where
a line of constant B, or k* is drawn through it by means of Equation [119] which simply re-
quires that a constant distance from the smooth curve be maintained in the log, R, direction.
The next step is to locate a point on this line which corresponds to the desired length of
plate.

First from Equation [131] a line of Cf against B, at constant z*is drawn using any
convenient value of z*. From Eaquation [181] again it is seen that at constant Cf the differ-

ence in lines at different z* is given by

logyg By, 5~ 10810 B,y = 10840 25 ~ logyo 27 [132]
Since by definition
z
z* = k*; [133]

Equation [132] becomes for constant £* and &
)
log,q By, —logyg By 1 = 1og10-m— [134]
1
Consequently point P, for the new length z, is located by a line which is at a distance of

z
2 . . .
loglo——— from P1 and drawn a constant distance from the reference line for constant z*. This
z
1
process is repeated for enough points from the test data to draw the predicted line for the

desired length as illustrated in Figure 9.
If a representative sample of the rough surface can be obtained on a test plate, it is
then possible to make full-scale predictions for any arbitrary roughness configuration with-

out regard to geometrical characterization.
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LOCAL SKIN FRICTION COEFFICIENTS AND SHAPE PARAMETERS
GENERAL

In the calculation of turbulent boundary layers in pressure gradients to obtain the vis-
cous resistance or separation point of foils and bodies of revolution, 22 23 relations are re-
quired for the local skin friction and shape parameter as functions of momentum thickness.

For rough surfaces in general the local skin friction is expressed as

1 G
e T Tw (g, 6/) [135]
o2 2 pU2
and the shape parameter H as
H=f(Rg, 6/k) [136]

From Equations [11] and [61] the local skin friction is expressed implicitly as

b, 1
Re = Dl 1—a; exp Z(U—Bs—BI) [137]
or from Equation [12] and [62]
D D,
6 1 2 1
IS | —(o-B, -B 138
k o ( Dla) oxp [ A (o-B 2)] [138]

where a.,, 8,, a,, and 8, have been neglected. Logarithmically Equation [137] becomes

STy U %s B In D P [ [139]
n 6=V — "5 ~ & + in —_— _—
AV W A 4 17D, V02

and Equation [138] becomes

6 1,[pU2 B3 B Tw Dy [T
1n_=_\/f___.———+lnDl+ln S, | e [140]
k AYr, A A o2 Di¥,u2

D,
. . . 2 .
wherein one term has been retained in the series expansion of In (1- —\) . Equations
10’

[139] and [140] represent the general case with B, and B, as functions of &*.
In the case of shape parameter H, Equation [64] is simplified to

D 2

1 U

o= —Vf—— (141]
02 Tw
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by dropping a; and 8,.

FULLY ROUGH REGIME

Since in the case of the fully rough regime B, is constant, B, = B, p, Equation [140]

U2 1 UZ B B,R D. T,
ln(f’. ___)ﬂ/p____s_ BE b -2y [142)
k Tw A Tw A 4 Dl pU2

pU?

is then

— Oor
Tw

02
Tw pU2
— =a; +a,\[— [143]
pU2 Tw

then Equation [142] becomes in common logarithms

6, JpU? pU?
loglo(z\/:—) = 01‘ /— + P, [144]
w ‘rw

Tw
If the term involving\ﬁ is linearized with respect to
p

where
1 2,0,
0, = - [145
1 2.30264 2.3026D, :
and
B S e T [146]
= - +lo
17530264  2.3026D, o101
Tw pU?
Furthermore, if log, o \/— is linearized with respect to {/— or
pUz Tw
T, U2
log,, = - a; +a, e [147])
2 T
eU w

Equation [144] becomes approximately

6 \ /ptﬂ
lo, —-=0,\/— +P 148
€0z = “2 my +5 [148]
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or

Tw 07
S - 5 5 [149]
a (mgw_"‘tz)
where
02 =0, +a, [150]
and
P2 =P, +a, [151]
In the case of H, the substitution of Equation [148]) into [141] produces
H (Dx\)l o D P, (1591
—_— = —_— og 10 — e —— o
H-1 D, 0, k D, 02

QUASI-SMOCTH REGIME

In the case of the quasi-smooth regime B, is constant, B, = B, s and Equation [139]
1, pv2 Bs By, D, [~
In R(,:-V"— 2o b, -\ — [153]
AY~r, A A D, pU2

T, U2
If the term containing — is linearized with respect to ® e asin Equation [143],
v 2 » T
pU w

Equation [158] is then in common logarithms

becomes

buz .
log,, By = 0,}/— + P, [154]
Tw
or Tw 012
pU?  (log Ry—P,)> (1551
where 0, is given by Equation [145] and
B, p-B
’ 2.R 1’
P - [156]

=P -
1~ "1 %9 30064
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An equation of the form of [155] was first derived by Squire and Young24 for smooth surfaces.
The shape parameter H for quasi-smooth regime becomes after substituting Equation
* [154] into [141]

H D, Dl Pl
—_— log, ,Rg - (157]
1 D

ENGINEERING ROUGHNESS

In the case of engineering roughness, B, is analytically defined as a function of k*
by Equation {110] which, since k* is by definition

R T
]
E* s —\/— [158]
0/k pU2

RO T,
B, =B, - Al V—-— !
1 1.8 n (1 + N o7k puz) [159]

For B, given by Equation [159], Equation [139] becomes

Tw
;1 You?

1 ( ) 1. hu2 B3 By, D D, [v, (1601
~ln|{—+ ==\/—~-—~—4+1InD, -—\/—
Ry Aokl AV 7+, ~ A4 17D, Vpuz

is written

T, U2
If the term containing —2_ is linearized with respect to vp as in Equation [1438],
pvz Tw
Equation [160] is then in common logarithms
Tw
1 pUz) pU? .
B0\, "Xk /T WY, T L161]

where O, is given by Equation [145] and Pl' by [156].
Since no simple expression for H can be obtained from Equations [141] and [161], it

Tw
is necessary to retain —— as the intermediate parameter for calculating H.
2
pU
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PREPARATION OF LOCAL SKIN FRICTION COEFFICIENT AND SHAPE PARAMETER
DIAGRAMS FRCM RESISTANCE CHARACTERIZATIONS

Where B, is empirically stated as a function of %* for any roughness configuration, a

r
convenient method of preparing a diagram of Y andH plotted against By and 6/k is by com-
2
elU
T

parison with —*_ and H for the smooth case.
(/2
P T,
From Equation [139] for the same value of — and in common logarithms
pU?
B1 s B1

= 162
2.30264 [162]

log o Fig —log,o By,
Consequently, the resistance line of constant £* or constant B, for the rough case is
offset from the smooth line by a constant amount in the direction of log,, Fg.
To determine the resistance line of constant /% from the lines of constant k* the pro-

cedure is as follows:

Since by definition 5
6, jpU
g = ) [P [163]
kY T,
or
Tw
log,, By = log,o 0/k - log,4 — +log o k* [164]
pU

Hence for a given k* and 6/k the intersection of Equations [162] and [164] gives the
desired point. A rapid way of plotting other lines of Equation [164] is to relate them to any
Tw

plotted line of [164] at constant —— or
pU?

log,o By, — 10810, = log,, (6/k), - logyq (6/k), + log, k3 - log, o k¢
[165]

The various plots of Equation [164] are then offset by constant amounts in the direction
of lOg 10 Re. Ty
The procedure is the same for H since H is solely a function of — from Equation

2
(141l el
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PREPARATION OF LOCAL SKIN FRICTION COEFFICIENT AND SHAPE
PARAMETER DIAGRAMS FROM PLATE TESTS

T,
To prepare diagrams of — and H from total resistance results for an arbitrary rough-
2
pU

ness configuration, the following method may be employed:
From total resistance tests of a representative sample of a particular roughness the re-

sults are given in the form of Cf = f (R,, ). The objective of the analysis is to obtain

r
—w, H = f(Rg, 6). From Equation [84] approximately
pU?

T C

_w=_f(1_2A _f> [166]

pU2 2 2
and from Equation [68]

1
By =2 R, G [167]
and
6-zcC i

To obtain lines of constant 6, a line is first drawn at a fixed distance in the logky
direction from the smooth curve for each data point which corresponds to a liné of constant
k* in accordance with Equation [162]. Then to locate the point corresponding to the desired

-

value of 6 use is made of Equation [165] wherein for the same -12 , k* and &
oU
logy Bg,, - 10g, o Bg,y = log,, 6, - log,, 6, [169]

The reference line for using the above is from Equation [164]

=
log,, Bg=-1log,, V? + constant [170]
p

the constant is any value convenient for plotting.

The values of H of the arbitrary roughness are calculated from Kquation [141] wherein

1
H=—— — [171]
D, [,
1-—\/—

Dl PUZ

Tw
The remainder of the procedure for determining H=f(Ry,0) is the same as that for — .

pU?
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NUMERICAL RESULTS

The experimental difficulties in boundary-layer measurements have resulted in consid-
erable discrepancies in numerical values of constants among investigators in the field.?5
Although future tests will thus in all probability lead to somewhat different values, the numer-
ical results gathered and calculated by Landweber!® have been judged to be as reliable as
any and have been used to evaluate the factors derived in this report. For convenience of

reference, the numerical values are listed in Table 3.

TABLE 3

Numerical Values of Factors

Factor Value Source {[Factor | Value Source
a 0.0625 Calc. | m 1.076 | Ea. [117]
a, -1.57x107* | Cale. | M, 0.242 | Ea.[93]
a, -1.082 Cale. | M, 0.262 | Eq. [98]
a, -1.306x1072 | Calc. || M 0.282 | Eq. [106]
23026 4 6 Ref. 18 | N, | -0.661 | Eq.[94]
A 2.6 Ref. 18 || Ny 0.023 | Eq. [103]
By, 4 Ref. 18 || N, 0.215 | Eq.[99]
Byg | 1.2 Fig. 10 | Nj 1.729 | Eq. [107]
B, 2 Ref. 18 | O, 0.1689 | Eq. [145]
c, 0.105 Cale. | 0, 0.1558 | Eq. [150]
¢, |-25x107% |cCalc. | P |-1169 | Eq.[146]
C, -1752 Cale. | B’ | -0.636 | Eq.[156]
c, [-0.04 Cale. | P, |-2.251 | Eq.[151)
D, 3.499 Ref. 18| v 24.66 | Eq.[116]
D, 23.23 Ref. 18 | A 3.42 | Eq.[109]

Since the sand roughness values of Nikuradse! were obtained from pipe flow, some
adjustment is needed for application to flat plates. The values of B, of Nikuradse were ob-
tained by using a value of 5.75 for 2.30264 which differs from the value of 6 used by
Landweber for flat plates. Conseauently the velocity profiles of Nikuradse were replotted
and new B, values for pipes were obtained using the slope of 6 as shown in Figure 10.

The B, values are converted to those for flat plates by assuming that the difference in such

THere k refers to the size of the sand grains.
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Figure 10 — Values of B, for Sand Roughness in Pipes and on Flat Plates

values is equal to the difference in the B, s values between pipes and flat plates (here 4.8 -
4.0 = 0.8). For the fully rough regime, the Bz.R value of 8.0 for pipes becomes 7.2 for flat
plates. In order to accomodate the new k; values of 41.3 for flat plates, the £* values are
also adjusted for flat plates in the general rough regime. The procedure is to assume that the
ratio of laminar sublayer thickness of flat plates to that of pipes for the quasi-smooth regime
is the same for the general rough regime. From Equation [39]

y* By,+Alnd

F = e e e——— [172]
u* Bl's +A4ln 4

where the primed quantities refer to flat-plate values and the unprimed quantities to pipe values.
In terms of B, values

B+ AlnA - Alnk’*
""B,+Alnd - Alnk

[173]

or

B, -B
2 2

[174]

(1~r) B{l

+(1-7) lnA:l exp[ 1

k™ = (k%) exp [
The results which are given in Figure 10 were used to prepare the resistance diagram for sand
roughness of Figure 7. Compared to the original Prandtl-Schlichting diagram,? the Cfvalues
are somewhat lower for the same Reynolds number; this is to be expected considering that
the Prandtl-Schlichting diagram is based on pipe results. Figure 11 gives a clearer indication

of this where a comparison is made for the fully rough regime.
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Figure 11 — Coefficients of Total Resistance for the Fully Rough Regime
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Figure 12 — Local Skin Friction and Shape Parameter for the Fully
Rough Regime of Flat Plates

For the total resistance of smooth plates, the new M, value of 0.242 is identical to that
of the Schoenherr formula and the new N/ value of 0.023 is close to that of zero for the
Schoenherr formula.

Finally, for the fully rough regime Figure 12 shows a comparison of local resistance
coefficients and H values from Equations [144] and [141] to those of Scholz26 obtained by a
simple power-law analysis of the Prandtl-Schlichting formula. The local resistance coefficients
compare well but the H values show a large difference which is due to the improper power-law

analysis of Scholz.
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