
1 3 9(

V393
.R46



'- ) 'r

J.p

*'~~ ' ' W

L, 
t L

,% 

.1 

1,.4

*rir

tv

r 'L 1' 4

p~~. -1tA'

200 .- IJ ? ;F7

It '-41t '' 3

4W -T.

TuIL
-~~~~~~~~ i&4,r~ *y~ A" F' '



THE FRICTIONAL RESISTANCE AND TURBULENT BOUNDARY
LAYER OF ROUSH SURFACES

by

Paul S. Granville

Report 1024

-- INN

June 1958



TABLE OF CONTENTS

Page

A B ST R A C T ......................................................................................................................... 1

INTRODUCTION ..................................................................................................................... 1

BOUNDARY-LAYER CHARACTERISTICS FROM
SIM ILA R IT Y LA W S .......................................................................................................... 3

G eneral ........................................................................................................................... 3

Inner Law or Law of the Wall ....................................................................................... 3

Outer Law or Velocity-Defect Law ........................................................................ 4

Logarithm ic V elocity Law ................................................. .......................................... 4

Types of Flow Regimes on Rough Surfaces ........................................................... 6

Sublayers within Turbulent Shear Flows ..................................................................... 7

Velocity Law for the Laminar Sublayer ................................................................. 9

Velocity Law for the Transitional Sublayer of Smooth Surfaces ............................. 9

Velocity Law for the Transitional Sublayer of the General Rough Regime .......... 13

Velocity Law for the Transitional Sublayer of the Fully Rough Regime ............. 14

Boundary-Layer Parameters ........................................................................................ 17

FRICTIOYAL RESISTANCE OF FLAT PLATES .................................... .......... 20

G eneral ............................................................................................................................ 20

F ully Rough R egim e ............................................. .................................................. 24

Q uasi-Smooth R egim e ................................................................................................... 25

Engineering Roughness .................................................................. 26

APPLICATION OF THE GENERAL LOGARITHMIC RESISTANCE
FORMULA TO ARBITRARY ROUGHNESS ................................................................... 28

Preparation of Resistance Diagrams from Resistance Characterizations ............. 28

Resistance Characterizations from Plate Tests .................................... ......... 30

Prediction of Full-Scale Resistance from Plate Tests ......................................... 33

LOCAL SKIN FRICTION COEFFICIENTS AND SHAPE PARAMETERS ................ 35

G eneral ............................................................................................................................ 35

F ully R ough R egim e ..................................................................................................... 36

Quasi-Smooth R egim e ................................................................................................... 37

E ngineering R oughness ................................................................................................ 38

Preparation of Local Skin Friction Coefficient and Shape Parameter
Diagrams from Resistance Characterizations .................................... .......... 39

Preparation of Local Skin Friction Coefficient and Shape Parameter
Diagrams from Plate Tests ...................................... .................... ........ ....................... 40

i*tc"dy l 1 131 -- ill I II



Page

NUMER IC AL RESULT S .................................................................................................... 41

ACKNO WLE DGMENT ........................................................................................................ 44

R EF EREN CE S ............................. .............................................................................. 44

LIST OF ILLUSTRATIONS

Figure 1 - Resistance Characterization for Roughness in Pipes............................ 7

Figure 2 - Sublayers within Turbulent Shear Flows ....................... ......... ....... 8

Figure 3 - Comparison of Various Formulations for Transitional Sublayer of

Smooth Pipes ......................................................... ...................................... 12

Figure 4 - Variation of Transitional Sublayer Factors for Nikuradse Sand
R ough P ipes .................................................................................................... 14

Figure 5 - Plot of Inner Law for Nikuradse's Sand Rough Pipe Data ................. 16

Figure 6 - Plot of Inner Law for Nikuradse's Sand Rough Pipe Data ..................... 16

Figure 7 - Resistance Diagram for Rough Plates with Sand Roughness and

Engineering Roughness ............................................................................. 31

Figure 8 - Resistance Characterization of Roughness from Flat Plate
Resistance Data .......................... ..................................... 32

Figure 9 - Resistance Prediction Diagram for Pough Plates ...................................... 34

Figure 10- Values of B2 for Sand Roughness in Pipes and on Flat Plates ............ 42

Figure 11- Coefficients of Total Resistance for the Fully Rough Regime ............. 43

Figure 12 - Local Skih Friction and Shape Parameter for the Fully Rough

Regime of Flat Plates ................................................................................. 43

LIST OF TABLES

Table 1 - Summary of Factors for the Velocity Laws of Transitional
Subla yers .......................................................................................................... 1 7

Table 2 - Velocity Profile Integrals ............................................................................. 18

Table 3 - Numerical Values of Factors ......................................................................... 41

I 1.1



NOTATION
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k*

*k
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1

M1 , M2

m

Slope of logarithmic velocity law

Linearization constants

Intercepts of logarithmic velocity law; see Equations
[7], [8], and [10]

B1 for smooth surfaces

B2 for fully rough regime

Derivative of B2 with respect to In k*, Eouation [76]

Derivative of B2 with respect to In k*, Equation [77]

Coefficient of total resistance; see Equation [67]

Coefficient of local resistance; see Equation [13]

Linearization constants; see Equations [91] and [95]

Velocity profile constants; see Table 2

Base of natural logarithms

Outer law function, Equation [4]

Inner law functions, Equations [2] and [3]

Subscript for quantities at junction of inner and outer
turbulent sublayers; see Table 2

Shape parameter, Equation [631

Integrals of outer law velocity profiles; see Table 2

Transitional sublayer factors, Equations [42] and [441

Linear parameters defining rougnness

Roughness Reynolds number; see Equation [2]

Value of k* at start of fully rough regime, Equation [53]

Value of k* at end of quasi-smooth regime

Subscript for quantities at junction of laminar and tran-
sitional sublayers; see Table 2

Mixing length

Constants in logarithmic resistance formulas for flat
plates, Equations [93] and [98]

Constant in logarithmic resistance formula for flat plates
with engineering roughness, Equation [117]
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N1, N1, N2  Constants in logarithmic resistance formulas for flat
plates, Equations [94], [99] and [103]

01, 02 Constants in local resistance formulas, Equations [145]
and [150]

P, P', P2  Constants in local resistance formulas, Equations [1461,[156] and [151]

Rf Frictional resistance

Rx  Reynolds number based on length

R 0  Reynolds number based on momentum thickness, Equation
[61]

r Factor given in Equation [1721

s Subscript representing smooth conditions

T Subscript for quantities at junction of transitional and
inner turbulent sublayers; see Table 2

U Velocity at outer edge of boundary layer

u Tangential velocity in boundary layer

u' Fluctuation in u

uT Shear velocity

v' Fluctuation in normal velocity

x Distance along boundary layer

z* Nondimensional x, Equation [124]

y Normal distance from wall

y* Nondimensional y

al, a 2  Velocity profile constants; see Table 2

f 1, 02 Velocity profile constants; see Table 2

y Constant in logarithmic resistance formula for flat plates
with engineering roughness, Equation [1161

SBoundary layer thickness

8* Displacement thickness

C Boussinesq eddy viscosity, Equation [221

0 Momentum thickness

K Slope of e with respect to y

x Constant for engineering roughness, Equation [1091

U II



CI Viscosity of fluid

v Kinematic viscosity, p/p

p Density of fluid

a Local resistance parameter, U/u.,

" Shearing stress

T" Shearing stress at wall

- - RI1 - gl l ill I go 11 -- Z



ABSTRACT

By means of the similarity laws of the turbulent flow in boundary

layers, a general relation is developed for the frictional resistance of

flat plates with arbitrary roughness from which logarithmic formulas are

obtained for the special cases of the fully rough regine, the quasi-

smooth regime, and engineering roughness. Among other uses, this

general relation permits for the first time a simple rational extrapolation

to full-scale conditions of the frictional resistance of model plates

covered uniformly with any irregular full-scale roughness encountered

in practice. Furthermore, for calculations of turbulent boundary layers

in pressure gradients on rough surfaces, relations are derived for the

local skin friction and velocity profile shape parameter in terms of mo-

mentum thickness Reynolds number. Simplified relations are also de-

rived for the velocity profile of the transitional sublayer in the vicinity

of a rough surface.

INTRODUCTION

The analysis and prediction of the frictional resistance or drag of rough surfaces pre-

sents in general a more complex problem than that of smooth surfaces owing to the geometric

diversity of roughness and the accompanying involved effect on turbulent flow.

Since research into the fundamentals of turbulence has yet to achieve a method for pre-

dicting frictional resistance, recourse as in the case of smooth surfaces is made to the sim-

ilarity characteristics of the mean-velocity profiles of shear flows for a general method of

analyzing the resistance of rough surfaces.

For turbulent shear flows, such as fully developed viscous flow in pipes or boundary-

layer flow on flat plates, the two laws which provide similarity in the mean-velocity profile

by linking it to the wall shearing stress are:

1. The inner law or law of the wall which applies to the flow immediately adjacent to the

solid boundary.

2. The outer Law or velocity-defect law which applies to the remaining outer region of the

shear flow.

The overlapping of the range of application of the two laws requires a logarithmic functional

form for both similarity laws within the common region of overlap.

The similarity laws of the velocity profile were originally developed for pipe flows by

Prandtl I and separately by Von Karman,2, 3 though with some significant differences. Prandtl

1References are listed on page 44.
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used the logarithmic form for the velocity profile of the whole flow which in effect assumed

the region of overlap of the two similarity laws to extend over the whole flow. Von Karman,
on the other hand in a more general presentation, used the logarithmic form for only a limited

region of overlap and wrote the outer law as an unspecified functional relation for the flow
outside the region of overlap. The difference between the Prandtl and Von Karman procedures
is not significant for pipe flows since a logarithmic form fits very closely most of the flow,
but it is significant for boundary-layer flows on flat plates since a logarithmic form fits ade-
quately only about 15 percent of the flow.

Inasmuch as the differences between pipe and flat-plate flows were not apparent at the
time, Prandtl and Schlichting 4 used the simpler Prandtl procedure of a logarithmic form for
the whole boundary-layer flow as well as numerical values from pipe tests in determining the
resistance of rough plates from Nikuradse's s tests on pipes coated with sand grains. Conse-
quently, one of the purposes of this report is to determine the resistance of sand-coated plates
by applying Von Karmn's procedure of a limited logarithmic region together with the some-
what different numerical values from flat-plate tests.

More importantly, the whole subject of the application of the similarity laws to the re-
sistance of rough plates is developed in detail. The logarithmic form of the similarity laws
in the region of overlap is derived in a simple fashion which emphasizes the nature of the re-
sulting constants. Detailed consideration is given to delineating the different sublayers
within the boundary layer. Expressions are derived for the velocity profile of transitional
sublayers of rough surfaces by an extension of a method of Squire 6 for smooth surfaces. The
boundary-layer factors of displacement thickness, momentum thickness, and shape parameter
are determined for rough surfaces by combining integrated quantities of the velocity profiles
of the separate sublayers.

The relation for momentum thickness is then used to determine the coefficient of total
resistance of flat plates as a function of Reynolds number and relative roughness in terms of
a local-resistance parameter for the general case of roughness. Then by eliminating the local-
resistance parameter and dropping terms which become negligible at larger boundary-layer
thicknesses, a simpler logarithmic formula is obtained for the total resistance coefficient of
flat plates with arbitrary roughness. From this, special logarithmic resistance formulas are
developed for the special cases of the fully rough regime, the quasi-smooth regime, and engi-
neering roughness.

The general logarithmic resistance formula is used to prepare resistance charts from
empirical roughness characterizations, to obtain roughness characterizations from total re-
sistance data, and to predict full-scale resistance from plate tests with arbitrary roughness.
The last procedure should be especially useful in studying the frictional resistance of ship
hulls in newly painted and in fouled conditions. Towing a representative sample of the hull
roughness would be required instead of difficult full-scale trials.

I ---~---~r I --rr ---~-- I II-



Finally relations are derived for the local skin friction and the velocity profile shape

parameter for use in calculations of turbulent boundary layers in pressure gradients. A meth-

od of obtaining such information from towing tests of plates with arbitrary roughness is also

included.

BOUNDARY-LAYER CHARACTERISTICS FROM SIMILARITY LAWS

GENERAL

First, an important distinction should be emphasized between the similarity laws and

their historical association with turbulence hypotheses, like the mixing-length theory, which

have become somewhat untenable by reason of more detailed experimental investigations 7 ' 8

into the nature of energy transfer in shear flow. As statements of general functional relation-

ships, the similarity laws can have their basis in purely dimensional arguments supported by

experimental data and thus be made independent of the mixing-length and like theories.

In the past it was mainly for the purpose of deriving specific functional relations that

hypotheses concerning the turbulence mechanism had been introduced into the analysis.

These were the mixing-length theory and assumptions about the laminar sublayer by Prandtl 1

in obtaining the logarithmic form of the inner law, and a similarity hypothesis of the turbulent

flow pattern by Von Karman 3 in formulating his particular expression for the outer law. All

this can be avoided since the logarithmic form can be derived from the overlapping of the inner

and outer laws and the outer law elsewhere can be analytically treated as an unspecified func-

tion in arriving at the desired resistance formulas.

INNER LAW OR LAW OF THE WALL

Close to the wall or solid boundary the distribution of the mean velocity u of the tur-

bulent flow parallel to the wall is considered to depend on the normal distance y away from

the wall, the shearing stress 7 at the wall, the density p and viscosity /i of the fluid, and

various linear parameters defining the roughness of the wall k, k l , k2, . . . , or

u = f(y, r, , p, I, k, kl, k2,...) [1]

There is in addition the boundary condition at the wall, u = 0 at y = 0, to be satisfied. By di-

mensional analysis the variables can be grouped significantly into the following nondimen-

sional ratios:

U = f y*, k*, , , .. . [2]

or

U kk
Sf2 k*, -,- . . . [3]

U k k I, k 2

_I I



where u.= V--- is a factor having the dimensions of velocity and hence called the friction

UTY uk
or shear velocity, v - is the kinematic viscosity of the fluid, y* = -, and k* =

P v

Empirically, Equation [2] or [3] which is the statement of the inner law is uniquely defined for

fully developed turbulent flow in pipes regardless of the pipe diameter Reynolds number. A
similar but somewhat different numerical relationship holds uniquely for flat plates independ-

ent of plate length Reynolds number. In addition the inner law has been found to be independ-

ent of pressure gradients. 9

OUTER LAW OR VELOCITY-DEFECT LAW

For the turbulent stream at some distance away from the wall the velocity-defect ratio

U-u
-, where U is the maximum velocity, is found experimentally to be directly independent of
u 7

viscosity and a function only of its relative position in the flow or

U-u y- F [4]

where 8 is the thickness of the shear flow. The boundary condition u = U at y = 8 is to be
also satisfied. The function F has been found empirically to be independent of Reynolds

number and, most significantly, of the roughness of the wall. 3

The function F is numerically different for boundary-layers on flat plates than for pipe
flow owing mainly to the presence of the free outer boundary of boundary-layer flow which has
been found to have undulating characteristics. 9 It is also markedly affected by longitudinal

pressure gradients. 10

LOGARITHMIC VELOCITY LAW

Within the boundary layer there is a region where both the inner and outer laws are con-

sidered valid. This overlapping leads to a logarithmic relation which will now be derived by

a simplified version of Millikan's 1 1 original demonstration.

Equating the derivative of velocity u with respect to distance y of the inner and outer

laws, Equations [2] and [4], results in

du Ur af u, dF
=- - [5]

ay v ay* 8 d(y/8)

or

r~ IIIII 1 ~s I I I II I -- c IC I I -----



af /\ dF
y* - = - A [6]

ay* \ d(y/8)

Since the left-hand side of Equation [6] is only a function of y* and roughness parameters
k k

k*, --, . . . and the right-hand side is only a function of-, the only quantity satisfying

these conditions is a constant A independent of all these variables.

From the left-hand side there results after integration

f 1  A In y* + B 1  k*, , , ... [7]
U, k1 k2

k k
where the constant of integration B 1 is necessarily a function of k*, -,-, ... from the in-

kI k 2

tegration of a partial derivative. Equation [7] is the statement of the inner law in the region

of overlap. An alternate expression is

-Aln - + B 2  k*, -,n' [8]
u k 'k 1 k 2

where

B 2 = B 1 + Aln k* [9]

Fromthe right-hand side of Equation [6] the outer law in the region of overlap is

U-u y
F = - . In - + B3 [10]Ur a

This establishes the logarithmic form of both the inner and outer laws in the region of

overlap. A very important result is that the factor B 1 or B 2 is seen to be solely a function

k k
of roughness Reynolds number k* for a particular roughness configuration,-, -, . . . ,

k1 k2

and that A is independent of roughness. Hence the frictional effects of any particular rough-

ness may be considered defined when B 1 or B2 is experimentally determined as a function

of k*. This will be termed the resistance characterization of a roughness configuration.

Now equating the velocities from the inner and outer laws in the region of overlap

gives important relations for the local skin friction.

m mIY il 11N6Al I.I Wli=V



From Equations [7] and [101

U ut8
a -=Aln -+B + B 1  [11]

Ur v

or from Equations [81 and [10]

U 8
a -- = Aln - + B3 + B 2  [12]

UT  k

where a is a local resistance parameter. With local coefficient of resistance

27. UT 2 2
C - 2 - = - the preceding equations appear as

pU
2  U 2

- = A n + B, + B, [13]

or

Aln - + B3 + B2  [14]
=C k

TYPES OF FLOW REGIMES ON ROUGH SURFACES

In Figure 1, which shows the resistance characterization for Nikuradse's sand rough

pipes, it is seen that B 1 is constant for small values of k* and that B 2 is constant for large

values of k*. For intermediate values of k*, both B 1 and B 2 vary with k*. From this the fol-

lowing classification of turbulent flow past rough surfaces can be made which is significant

from the viewpoint of skin friction:

1. Quasi-smooth regime

For small values of k* starting from zero, B 1 is constant with respect to k* and has

the same value as for a smooth flow. According to Equation [91, B2 then plots as a straight

line. Most iniportant of all as given by Equation [13] the local coefficient of resistance C,.
US

is the same as for a smooth surface and is solely a function of Reynolds number -.

2. General rough regime
US

With B 1 and B 2 both varying with k*,,C . is a function of Reynolds number- and

relative roughness .

~~ 1 111 ---- I I __ Z 3 -- ~---



Quasi- /
II Smooth / General Rough Regime ---- Fully Rough

/10B2= 5.5 +5.75 ogo10 k 2,R

kR Ae A

I(Nikurodse Sond
8 Roughness)

7 B (Colebrook Engineering Roughness)

6

5 B1 (Nikurodse Sand Roughness)

2- Bi = 8.48-5.75 logo10 k*-

2

-3

-4
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 I2

log k* log
10 IlO 1

Figure 1 - Resistance Characterization for Roughness in Pipes

3. Fully rough regime

At large values of k*, B 2 is constant with respect to k* and B 1 plots as a straight

line according to Equation [9]. Cr is solely a function of the relative roughness- and inde-

pendent of Reynolds number.

SUBLAYERS WITHIN TURBULENT SHEAR FLOWS

Various sublayers within the turbulent shear flow can be distinguished according to the

behavior of the velocity profiles as indicated schematically in Figure 2. From the wall out-

ward the sublayers are in succession:



Outer Turbulent Sublayer 3_

Inner Turbulent Subloyer Wo

Laominor Trans tional Sublayer
Sublayer 7l--ll////l//l/ /i ,// / //

Solid Wall

Figure 2 - Sublayers within Turbulent Shear Flows

1. Laminar sublayer

This is the very thin layer in contact with the wall where the flow is laminar and con-

sequently the shearing stress 7 is given by

du
S= du [151

dy

The thickness of the laminar sublayer diminishes with increasing roughness, and finally van-

ishes in the case of the fully rough flow regime.

2. Transitional sublayer

In this layer the effect of turbulence appears so that the shearing stress is given by

du
7 = -y pu'v' [16,]

dy

where - p u'v' is the Reynolds turbulent shearing stress.

3. Inner turbulent sublayer

The inner and outer laws overlap in this layer resulting in the logarithmic velocity law.

4. Outer turbulent sublayer

In this region the wall has no direct effect and the velocity law is the nonlogarithmic

part of the outer law.

- .- b- - I---- -- --_011 01 .01 111 110, IN--~C



VELOCITY LAW FOR THE LAMINAR SUBLAYER

Inasmuch as the inner law Equation [2] provides only the general statement that the
u

velocity ratio - is a function of Reynolds number y* (laminar flow is independent of rough-
U T

ness), other considerations must be applied in order to obtain a specific functional relation-

ship for the laminar sublayer. If the laminar motion within the sublayer is assumed essen-

tially a parallel flow, the shearing stress r is given as

du [17]

dy

Within the thin sublayer the variation of r with y is negligible; hence

T = TW

Consequently

and with u = 0 at y = 0,

or

[181

du -r

dy ji

,rw
U= - y

[19]

[201

[21]

Empirical verification for

in a closed channel.

this relation has been obtained by Laufer7 by measurements

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER OF SMOOTH SURFACES

Expressions for the velocity law of the transitional sublayer for smooth surfaces have

been derived by various authors on the basis of assumptions concerning the variation of the

turbulent shearing stress with y. In general, since the shearing stress has both laminar and

turbulent contributions,

du
T = I- - pu [i']

dy

---- -- ~ ~~~11111111N1

[16]



where -p u'v' is the Reynolds stress formed by the average of the turbulent velocity fluctu-

ations u'and v'in the x and y directions respectively. If the Boussinesq eddy viscosity E

is introduced where

u'v"
du

then

du
S= p (v+ )dy

dy
[23]

[22]

If it is assumed that the variation of r with y across

7 = and

du
u =( +)dy

the thin sublayer is negligible, then

[24]

Various investigators have assumed in effect different variations of e with y.

Squire 6 by dimensional reasoning and by considering the turbulence effect to

just at the outer edge of the laminar sublayer uses a linear variation of e across the

tional sublayer or

f= K u .,(y-yL)

start

transi-

[251

where x is a constant of proportionality and YL is the thickness of the laminar sublayer.

Other authors use the mixing-length hypothesis wherein

[26]12 du

I dy

1 being the mixing length. Rotta 12 and Hudimoto1 3 independently assume

S= K2 (y-YL)

I dy

[27]

[28]

Hama 1 4 uses for both the laminar and transitional sublayers
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I = Ky 2

or

e= K2y 4 y [301
dy

whereas Van Driest s5 assumes a still more complicated relation

=Ky l-e const

or

2
const d[

=K2y 2 1-e const [32]
/ dy I

The procedures of both Squire and Rotta lead to expressions in closed form, that of

Squire being much simpler. On the other hand Hama obtained a much more complicated expres-

sion involving elliptic integrals and Van Driest obtained a still more unwieldly expression re-

quiring numerical integration. In Figure 3 where the various formulations are compared with

Laufer's 16 pipe data, it is to be noted that the simple expression of Squire is an adequate

approximation. The method of Squire will be extended in this report to cover the case of

rough surfaces. However, full credit is due Rotta 1 2 for first analyzing the transitional sub-

layers of rough surfaces.

Squire's procedure for smooth surfaces will be now completed. Substituting Squire's

e, Equation [251, into Equation [241 results in

dy v + K1u(Y-YL)

Integrating and utilizing the initial condition that

U u-ryL
- -- at y = YL [34]

UT V

[29]



2 3 4 5 6 789 2 3 4 5678910

0Y

2 3 4 5 6789103

Comparison of Various Formulations for Transitional
Sublayer of Smooth Pipes

u 1 u(y- ) 1
-In + - - -In

U7 K V K K

urYL

v

u

UT

where

AAln(y*-Bi + Aln A) + B1

1
A=

K

B = YL* - Aln A

YL *= B + AlnA

24-

22

20

18

uu 12

Figure 3 -

yields

[35]

[361

[371

[38]

[391
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For large y* the velocity law asymptotically becomes

U
- A lny* + B 1  [40]

UT

which is the form for the logarithmic law. Hence the A and B 1 of Equation [40] and those of

the inner law Equation [7] are identical.

It is to be noted that Equation [39] gives the thickness of the laminar sublayer when

values for B 1 and A are substituted in the expression.

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER
OF THE GENERAL ROUGH REGIME

The velocity law for the smooth transitional sublayer, Equation [36], can be written as

U
- A In (y*-J) + B [41]

uT

where

e
J1 = B-Aln A= yL *-A [42]

A

Since B1 is a function of k* for a particular roughness, then J1 and YL* are also functions

of k*. For the general rough regime J1 will have a limiting value of -A since YL * is zero

for the case of the fully rough regime.

The velocity law for the transitional sublayer of the general rough regime may be re-

stated as

-u =A -J + B2 [43]

where

y, *-A J (y)L A
J 2 = = [44]

k* k* k*

Also

A
B +Aln-

S[45]
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Figure 4 - Variation of Transitional Sublayer Factors
for Nikuradse Sand Pough Pipes

Figure 4 shows a plot of YL*, J1,, a n d J 2 as a function of k* calculated for Nikuradse's sand
rough pipes.

VELOCITY LAW FOR THE TRANSITIONAL SUBLAYER OF THE
FULLY ROUGH REGIME

In this case the laminar sublayer has vanished, YL = 0, and the plane of reference for
y, y = 0, is defined where the velocity u is zero on an average over the rough surface. There
is then an initial shearing stress due to turbulence represented by to at the start of the tran-
sitional sublayer. Then

f = 0 + K UY [46]

and

du u2

[47]dy v+eo +K u r y

~D~n*p.~~4~mCI ~ C --



Integrating and utilizing the initial condition u = 0 at y = 0 results in

U 1 K UTy

U K V+

= An -J 2 + B2
UT

where

B 2

J2 -e A

and

k*
B 2 = A In

A2

It is interesting to observe that when Equation [491 is rewritten as

B
2

U A y
u~r

[52]

it is identical to the velocity law of Prandtl and Schlichting4 in which the unit constant had

been arbitrarily added to the argument of the logarithm to make u/u,= 0 at y/k = 0. The re-

sults for the velocity laws of the transitional sublayer are summarized in Table 1. Represent-

ative velocity profiles of the inner law for sand rough pipes are shown in Figures 6 and 6.

Equating Equations [44] and [50] and setting L * = 0 specifies the start of the fully

rough regime in terms of

kR* = Ae [531

The value of kR* determined from Equation [53] agrees well with the experimental point

where B 2 becomes constant as shown in Figure 1.

[481

[49]

[501

[51]

WIN111
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TABLE 1

Summary of Factors for the Velocity Laws of Transitional Sublayers

The limit of quasi-smooth flow is specified by ks * which is the criterion for permissible

roughness. The value of k,* may be empirically determined at the point where B i is sub-

stantially constant as shown in Figure 1. However, Goldstein' 7 presents a method based on

the flow separation induced by an individual roughness element.

BOUNDARY-LAYER PARAMETERS

In order to obtain relations for the boundary-layer parameters of displacement thickness

8*, momentum thickness 0, and shape parameter H from the similarity laws, integrations of

the velocity u with respect to y are necessary over the boundary layer. This is accomplished

piecewise for each sublayer by using the appropriate velocity law as shown in Table 2.

Since the displacement thickness 8* is defined as

1-U dyU (54]



TABLE 2

Velocity Profile Integrals

R!egion Limits Volocity Law tIdy* or f( / ,* or f(J (

U IIu Y1 1
0y* Y * y= 7* 2 2 *3

Laminar O YL 2

Sublayer Y ) k* T k*2 2 ()3

k Lu k 2 L k ,

YL* y *Y 
*  
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Whole 0 y*< (o-D) + D 2a) +a2 l
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kk k

1 12
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then from the integrated quantities from the similarity laws in Table 2

= (D Us ) a

V

- D -a 1V V

k a (D 1

: 2
k- a 2

In a like manner for momentum thickness 0 defined as

1

ci D + -a

1 02

a 8

0

k

R 0 - - D

0 8 D,

k k a I

Also for shape parameter H defined as

H
0

02

6
[551

and

[561

[57]

o u (
- - dy [581

I
+ -

V

k

(D,

[591

[60]

[61]

and

D2

D2 2
+ -2

-2 or

+1
+ a ci

B2
[621

[631

- --I ~ ~ ~ 1 M.''1

1 (D

a2



01 -2a 1l
D2 +

11

or

8 2 - 2aa2

1 2 +81k [65]-= 1 - - [651
II a a2

Since and -are given in terms of a in Equations [11] and [12], 6*, 0, and I1 are

functions of a according to the preceding relationships.

For zero pressure gradient the factors D1 and D2 are constant for the three types of
roughness flow. However, B, al, and 31 are constant only for the ouasi-smooth regime while

B2, a 2 , and ,2 are constant only for the fully rough regime. In the case of the general rough

regime B1 , B2, al, a 2, 9'1, and /32 are all functions of k*.

FRICTIONAL RESISTANCE OF FLAT PLATES

GENERAL

The frictional resistance or drag of a flat plate in two-dimensional flow without pres-

sure gradients which corresponds to a flat plate moving lengthwise in an infinite fluid is de-

termined by the momentum thickness of the boundary-layer flow leaving the trailing edge as

a wake. The Von Karman momentum equation neglecting the small effect of the normal

Reynolds stress term gives 1

dO Tw

2on one side anden where R iswidth of the plate, is obtained from the summation of the local resistance
on one side and b re ont of the wldth ofough rm the summation of the local resistance

141" . I MW I --- ~. 1 3 I~I



or

then

where Rx =
Ux

V

Since by definition

then Equation [66] becomes

or

dRx = a 2 dR

d

For a uniform roughness where k is constant with respect to a

Rx = f2dRo = 021? - 2 R oada + const

- x d
2 x o P02

[171

Cf

2

RO k

RX
[68]

1
2 -

pw

pU
2

[69]

dx = a2dO [701

[71]

[72]

11fll"',u

= o2d

[731



x =$-( ) O2d+ const
-= a 2 d - 2 - f- ado + const

k k k k

The general case of the frictional resistance of a rough plate is to be now considered

wherein B1 or B2 is an unspecified function of k*. All other cases like that of the fully rough
regime or the quasi-smooth regime are then special cases.

Inserting the relation - from Equation [12] into the relation for - from Equation [62]
k k

and integrating by parts repeatedly results in

ado AD=

A

a
2

1-

where

(B 2 B2 B2) 2AD 2 [ 14AB)+ .B2" + B2 - - + . . .] _ +L--
A a a

+ a 2 d- -do + const

dB
2

d (In k*)

d2B2
B22 d (In k*) 2

and

[76]

[77]

Then from Equation [741

x 8 D

k{ D

B2 A + B 
2  +

a _ a - 2 A la \ 1

2AD 2 [ 1 (A B2 )
S. 1 + - - + ...

or a

[781

Jf,3 2
+a2a-3 2 2 d+2f do + const

tr

Also since by definition

R x-
SRx Rx k

k aok* u 3
I-

av

[79]

~auMaa~l I II I - -a~IL111 Is I-----

[74]



[80]

+a 2 - 1 a-2 faoada + 2 J da + const

x
Hience from Equation [68] it is seen that Cf is a function of Rx and/or k in terms of parameter

a. When a is eliminated, logarithmic resistance formulas result. To arrive at a relation be-

tween Cf and a, Equations [68] and [73] or [74] are combined to give after neglecting the con-

stant of integration

C 2 JROada
1 Cf 1a - [811

a2 2 \ 2 )

,f a da
1 Cf k

a2 2 a2
k

[82]

0 0
The expressions for f a da and k- from Equations

tion [82] to give with a 2 and p2 neglected:

[75] and [62] are inserted into Equa-

SC 2A 2AB 2 2A2 82  D2_
1 1-- + +2 B'+B --2 "

a2 2 a 2 3 2 A

Through reiteration a is replaced by Cf within the brackets so that

S 1 -2A 2+ 2A A+B -+ . ..
a2  2 2

and by the binomial expansion

1= 2 (AA +l f) +. . .C-f[1 A( -f)"+ + B" -r
a 2 ) (2/-

+...] [831

[841

[851

Equation

R -
Rx=

" ""~"'

[78] becomes then

SDB2' A B ) ( 'A -
Da 22 a-2ADa 1 12 B;+B.- +. + 2AD2 1+ - +..

I a o2 A o

~""II - "'



and by inversion

a= I +A +A A ) ()+... [Se]

8

Now, after substituting for k from Equation [12] and eliminating a2, 132' and the constant
X k

of integration, -in Equation [78] is written in logarithmic form as
k

a a B3 B2 1 2
In + In D - In 1- - A+- -+In... [87]

k A A A D a

Substituting the appropriate expressions for a from Equations [85] and [8,] and expanding the

logarithm of terms close to unity into a, series results in

- 1 1 A 92 B 3 B2
In- ±, = _ +- + B /-+ 1 - - +ln [88]k A /Cf (/ 2 D, 2 A A

wherein terms of higher order than /'have been neglected. Inserting the expression for -
1 f k

from Equation [79] and - from Equation [85] into [88] produces
a

V2 1 1 2  A B3  B1
ln R, C = -- - - + B 2 ) \ +1- + In 2D1  [89]

,quations [88] and [89] represent logarithmic resistance formulas for the general case of con-
stant k* since B1 and B2 are functions of k*. Separate logarithmic formulas are obtained from
Equations [88] or [89] in the cases where B1 or B 2 is analytically defined in terms of In k*.

FULLY ROUGH REGIME

In this case the roughness effects have become strong enough to eliminate the laminar

sublayer and make .?2 constant. With B2 = B2 ,R and B2 = 0, Equation [88] reduces to

- 1 1 (A D2  B3  B2,R
In - - + - + 1 + In V2 D 1  [90]

k A VC, - 2 2 D, A A

If the term involving fis linearized with respect to

or

/= C1 +C [91]
N/Cf

i nr)~n*r~ I II ~I1P~ll~e~llill~llll-- ~h II- ^~IICI



then Eauation [90] becomes in common logarithms

x 1
loglo k v= + N1

where

1
1 2.3026

and

1

2.302
(_ D2 C1

Di ) N/2 -

A(B + o

A lo°

Furthermore, if loglo Cf

or

then Equation [92] becomes

1
is linearized with respect to -

C 4
lo10 C = C3 +

"U;

0 2.
log - 2 +1

k

M2

lgf o 2 2

2

M2 =M1  2

C3
N2 = 1 2

[96]1

[97]

[98]

[99]

QUASI-SMIOOTH REGIME

Quasi-smooth flow is effectively that of a smooth surface; B1 being constant and equal

dB 1
to B1 , and dink*- 0.

[92]

V2 A D2 )C2
-- -2- - [93]

-v D1 [94]

[95]

where

and



Since, from Equation [9]

, d B2  d B
[100]

2 dlnk* dlnk*

Equation [89] reduces to

+ 1 A D2 B3  Bl,s
In Rx C f + 1 D + In 2 D1  [101]A D ,2 0 A A

If the term involving VC is linearized with respect to-- as in Equation [91], Equa-

tion [101] becomes in common logarithms

M1

logo Rx C =- + N, [1021

where M1 is given by Equation [93] and

S B2 ,R - B 1,s
N = N + 2.3026A + oglo [1031

Equation [102] is the well-known Karman-Schoenherr formula which is derived in Reference

20 by a somewhat different procedure.

If loglo Cf is linearized with respect to-as indicated in Equation [95], Equation

[102] becomes f

logto Rx - + N' [1041

or

Cf = [105]

(log1 0 RX - 2

where

M2= M1 C4  [106]

and

N2 = N1 - 3  [1071

ENGINEERING ROUGHNESS

From extensive tests on commercial pipes the behavior of the irregular roughness of
the surfaces resulting from manufacturing processes, termed here engineering roughness, has
been found to be quite different from that of the artificial sand roughness of Nikuradse.
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Whereas B2 has a maximum value for the Nikuradse roughness, B2 has a gradual monotonic

variation for engineering roughness as shown in Figure 1. Colebrook"1 with the aid of White

fitted this variation of B2 with the following formula whicn in the notation of this paper can

be expressed as

B2 = B2,R - Aln 1 + [1081

where

X = exp (B2, R - B1,s [109]

It is seen that for k* -~ -, 8 2 - B2,R'

Furthermore, with Equation [9], [108] becomes

B = Bis - A In 1 + - [110]

Then for k* -+ 0, B1 - B1, s . Consequently the relation for engineering roughness is asymptotic

to both the quasi-smooth regime and the fully rough regime.

To obtain a logarithmic resistance formula for engineering roughness from Equation

[891, the procedure is as follows:

From Equation [108]

[11111k*
1+-

Now from Equations [79] and [85]

1 + =1+ 1-A +... = 1+

_-

x)2k Iv2X-
k

ARx) 
Cf

A-
k

_

k

[1121

Using Equations [110], [1111, and [112] in [89] results in

1 1 1r2 1 /A D2 ) B3  B1

SR X A K 2Xf D,[ A1

[113]
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1
If the term containing V7 is linearized with respect to--as in Equation [91], Equa-

tion [113] becomes in common logarithms VZ7

- logo + - + Ni [1141

where M1 is given by Equation [93] and N1 by Equation [1031.

Equation [114-] reduces to the case for smooth flow, Equation [102], when

1 1
-, 0 and to the case for the fully rough regime, Equation [92], when - -+ 0.

In a less rigorous fashion an explicit expression between Cl and Rx and k may be

written which agrees in the limits with Equation [104] for the quasi-smooth regime and with

Equation [96] for the fully rough regime or

log - +----- = - + N2 [115]

where M2 and N2 are given in Equations [106] and [107],

log,0 0 y - N2 [1161

and

2
m = [117]

APPLICATION OF THE GENERAL LOGARITHMIC RESISTANCE
FORMULA TO ARBITRARY ROUGHNESS

PREPARATION OF RESISTANCE DIAGRAMS FROM RESISTANCE
CHARACTERIZATIONS

If the resistance characterization is known for an arbitrary roughness, e.g., B1 or B2
has been found empirically as a function of k*, the procedure for preparing a resistance dia-
gram for flat plates, Cf as a function of Rx and z/k, is as follows:

The general logarithmic resistance formula, Equation [89], is restated in common log-
arithms and Equation [100] substituted for B2

*N~ I 11 I"M1,11-ill , , W FNWW4.0 11 No"---^- -- - -_



S 1 (A 92 1 _B _1 B B1
g10 X Cf 2302 A 21

oglo R I - 2.3026A - 2.3026 -2 D, 2.302 dloglok *  2.3026 A A

[1181

+ log 0o 2 D,

d B1

Since B1 and d are functions of k* and A, B3, D1, and D2 are constants, Equation
dloglok*

[118] represents the variation of Cf with Rx for constant k*. A rapid method of plotting Fqua-

tion [118] is to relate it to smooth resistance so that for the same value of C the difference

in Rx is

B1 , -B 1

logl 0 Rx - l oglo Rxs 2.3026 A [119

dB

where the effect due to is neglected and the subscript s refers to the smooth line.
dloglok*

Consequently the resistance line of constant k* for the rough case is offset from the smooth

line by a constant amount in the direction of log 10 Rx .

To determine the resistance lines of constant x/k from the lines of constant k* the

following procedure is used:

Since by definition
x

R k* a- [1201
x k

the insertion of the relation for a from Equation [86] produces

Rx = k* - 1C + A +[211

Taking the common logarithm of Equation [1211 and expanding the logarithm of the series in

parentheses results in

loglo Rx = logok* + loglo + .3 + loglo [122]

wherein terms of higher order than /f have been neglected. Hence for a given k* and x/k

the intersection of Eauation [122] and [119] at a specified k* gives a point on the line of

constant x/k. A rapid way of plotting other lines of Equation [122] is to relate them to any

plotted line of Equation [122] at constant Cf or

- --Ii



log 10 Rx, 2 - log 1 0 R 1 = loglok - loglok' + logl - log123

where subscript 2 refers to the new line and subscript 1 to the line already plotted. Hence
the various plots of Fquation [122] are offset by constant amounts in the direction of loglo0 R.

This procedure was utilized in preparing the resistance diagram for sand roughness in
Figure 7 from a graphical representation of B1 and k*.

RESISTANCE CHARACTERIZATIONS FROM PLATE TESTS

To characterize the resistance qualities of an arbitrary roughness requires the deter-
mination of B1 or B2 as a function of k*. Measurements of total resistance of flat plates with
an arbitrarily rough surface can only give values of C. against Rx for different lengths x, the
roughness parameter k having only meaning for a particular roughness configuration. Hence
to compare the resistance characterizations of different roughnesses from measurements of
total resistance of flat plates, it is necessary to use the following procedure:

A new parameter x* is introduced where

*1U
x* - [1241

so that by definition

k* /k [125]
x/k

or

logok* = loglox* - loglo k [126]

Then the single parameter variation of B1 with k* is replaced by a two-parameter variation of
B1 with x* and a/k. Consequently when B1 is plotted against loglo x*, a family of curves re-
sult for different values of x/k which are offset by constant amounts of the differences in
logo1 0 x/k.

B1 is determined from the general logarithmic resistance formula [118] and from the
fact that for constant z/k

d B1  d B1

dloglo0 k* dloglo* [127]

2 AoA D2 dB 20,

Of 2\ D1 2.3026 dlogloa* to x C
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or relative to the smooth line for the same Cf

A dB1  fB =Bs dlo - 2.3026A (loglo Rx - Rx,s)1,s 2.3026 dloglx,*V2f

dB1
The small effect due to can be evaluated by iteration.

dloglox*

Since by definition
* =

x*

[129]

[1301

then substituting for 1/a from Equation [85] and manipulating the logarithm of the series gives

logloz* = loglo Rx + log - 2.3026 [131]C 2

Hence B1 and x* can be obtained from test data of C against Rx .

For the same roughness k and different lengths of plate x, plots of B1 against loglox*
will be represented by curves offset by a constant amount given by the logarithm of the ratio
of the lengths of the plates. Hence, if the similarity laws hold, the curves can be collapsed

to a single line by parallel shifts of the curves in the z* direction.

A resistance characterization was obtained from the data of 21-foot friction planes
coated with Mare Island hot plastic paint as shown in Figure 8. For comparison the curve of
engineering roughness, Equation [110], is plotted for x/k = 1 x 10s . The difference in curva-
ture between the two graphs is evident.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
6

Log x*= Logu
10 0 

i

Figure 8 - Resistance Characterization of Roughness from
Flat Plate Resistance Data
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PREDICTION OF FULL-SCALE RESISTANCE FROM PLATE TESTS

The general logarithmic resistance law provides a means of extrapolating data from

test planks with arbitrary rough surfaces to full-scale lengths. The test data are in the form

of Cf against log Rx at constant z/k, k being unknown. A representative plot for Mare Island

hot plastic paint 2 1 is shown in Figure 9. The problem is to obtain a plot of Cf against log Rx

for different lengths of flat plates with the same roughness in order to predict the full-scale

resistance of ships having that roughness.

According to the similarity laws there is a unique relationship between B1 and k*

characteristic of the roughness configuration. Hence each point of the test data or faired

test curve represents a value of B1 or k*. This is illustrated by point P1 in Figure 9 where

a line of constant B1 or k* is drawn through it by means of Equation [119] which simply re-

quires that a constant distance from the smooth curve be maintained in the logloRx direction.

The next step is to locate a point on this line which corresponds to the desired length of

plate.

First from Equation [131] a line of C against Rx at constant x* is drawn using any

convenient value of x*. From Equation [131] again it is seen that at constant Cf the differ-

ence in lines at different x* is given by

logl 0 Rx, 2 - logl 0 Rx,1 = logl 0 X - logl 0 X [132]

Since by definition

X* k*- [133]
k

Equation [132] becomes for constant k* and k

@2
log 10 Rx, 2 - log1 0 R,1 = log 1 0  

134

Consequently point P2 for the new length x2 is located by a line which is at a distance of

log 10 2 from P1 and drawn a constant distance from the reference line for constant x*. This

1

process is repeated for enough points from the test data to draw the predicted line for the

desired length as illustrated in Figure 9.

If a representative sample of the rough surface can be obtained on a test plate, it is

then possible to make full-scale predictions for any arbitrary roughness configuration with-

out regard to geometrical characterization.

11
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LOCAL SKIN FRICTION COEFFICIENTS AND SHAPE PARAMETERS

GENERAL

In the calculation of turbulent boundary layers in pressure gradients to obtain the vis-

cous resistance or separation point of foils and bodies of revolution, 2 2 ' 23 relations are re-

quired for the local skin friction and shape parameter as functions of momentum thickness.

For rough surfaces in general the local skin friction is expressed as

= = - f (Ro, O/k) [135]
02  2 PU 2

and the shape parameter H as

H = f(Ro, 0/k) [136]

From Equations [11] and [61] the local skin friction is expressed implicitly as

R0 = D, 1- exP A (a-B 3 -B) [137]

or from Equation [12] and [62]

0 O D2- 1 -- exp B-B) [1381
k a Da)l a

where a.1 , 01, a2, and 02 have been neglected. Logarithmically Equation [137] becomes

1 2 83 1 D2 w
In Ro = + In D - [1391

A , A AP 101U2

and Equation [1381 becomes

0 1 U2 3 2  w D2 rw
In -= + In D + In [1401 -

- -~j~nD, la - ---y~---- [140]
k A -W  A A p U2 1 p 2

wherein one term has been retained in the series expansion of In 1- . Equations

[139] and [140] represent the general case with B1 and B2 as functions of k*.

In the case of shape parameter H, Equation [64] is simplified to

H Di D1 U2
H - a I =- [1411H-1 D2 D2 Vrw



by dropping a 1 and 1 1.

FULLY ROUGH REGIME

Since in the case of the fully rough regime B2 is constant, B2 = B2,R Equation [1401

is then

i n U 2
B3  2, R

A A
+ In D, --

Di CPU 2

If the term involving - is linearized with respect

= + a 2

then Equation [142] becomes in common logarithms

[142]

to or

[143]

= O~/-" + P
r w

1 a2 2

1 2.3026A 2.302AD1

al D2
+ loglo D12.3026D1 1

Furthermore, if loglo0  is linearized with respect
PC72'

log 10 = a3

to or

+aAFy

w [147

Equation [144] becomes approximately

log 1lo 0 =2V + P2Sw
[1481

where

[144]

and

[1451

SB3 -0 2 , R

2.3026A
[1461

1IL*~n*l I I - - I-l-C-- II Irl -, I ------------LI ---- ~-

A1U

loglo ( 
-2

k ~f61V rw



[1491

where

and

w 02

PU 2  oglo 

02 = 01 + a4

P2 =1 + a3

In the case of H, the substitution of Equation [148] into [141] produces

H-1( D2)
0 D1 P2

log
10 k D2 O

[150]

[1511

[1521

QUASI-SMOOTH REGIME

In the case of the quasi-smooth regime B1 is constant, B1 = B1 ,s , and Equation [1391

becomes

+ In D - --
rCPU 2

If the term containing is linearized with respect to

w 02

[1531

as in Equation [143],

[1541

[1551

where 01 is given by Equation [145] and

1 / B3  B1, s

0 A 'rw A A

pU 2 (log R 0 -P )2

B2 ,R -Bl,s
S= + 2.3026A

[156]1

-



An equation of the form of [155] was first derived by Squire and Young 2 4 for smooth surfaces.

The shape parameter H for quasi-smooth regime becomes after substituting Equation

[154] into [1411

H Di D, P,
DO )logO 0 RO

H- 1 , 2 D 21

[157]

ENGINEERING ROUGHNESS

In the case of engineering roughness, B1 is analytically defined as a function of k*

by Equation [110] which, since k* is by definition

R8 w
k* =

O/k U2
[1581

is written

Bi = Bl's - Al I +xf!k ,212 [159]

For B1 given by Equation [159], Equation [139] becomes

7w
P_ Y 2 1 12 B3 B1.

1-_+ - + In
RO X O/k A + A A

2 7
DD1 - 21 rpU

2

If the term containing - is linearized with respect to - as in
SpU"w

(1601

Equation [143],

Equation [160] is then in common logarithms

- log1  + -

0 RO X O/k
= O1V- + P,

where 01 is given by Equation [145] and P1 by [156].

Since no simple expression for H can be obtained from Equations [141] and [161], it

is necessary to retain - as the intermediate parameter for calculating H.
pU

2

[1611
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PREPARATION OF LOCAL SKIN FRICTION COEFFICIENT AND SHAPE PARAMETER
DIAGRAMS FROM RESISTANCE CHARACTERIZATIONS

Where B1 is empirically stated as a function of k* for any roughness configuration, a

convenient method of preparing a diagram of and H plotted against R and O/k is by com-

pU 2

parison with - and H for the smooth case.
pU 2  

w

From Equation [139] for the same value of - and in common logarithms

pU
2

B1, s - B1
log 10 R - lglo0 RO, ,s 2.3026A [162

Consequently, the resistance line of constant k* or constant B1 for the rough case is

offset from the smooth line by a constant amount in the direction of loglo RO.

To determine the resistance line of constant O/k from the lines of constant k* the pro-

cedure is as follows:

Since by definition 0 r2
R k 0  k* [1631

Of
or

loglo R0 = logo10 O/k - loglo0 - + log 10 k* [1641

Hence for a given k* and O/k the intersection of Equations [162] and [164] gives the

desired point. A rapid way of plotting other lines of Equation [164] is to relate them to any

Irw
plotted line of [164] at constant - or

pU
2

log 1 0 R0,2 - log 0o R0 1= log10 (0/k)2 - log1 0 (0/k)1 + loglo k - log 10 k

[1651

The various plots of Equation [164] are then offset by constant amounts in the direction

of log 10 Ro. ilw

The procedure is the same for H since H is solely a function of - from Equation

[1411. PU2
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PREPARATION OF LOCAL SKIN FRICTION COEFFICIENT AND SHAPE
PARAMETER DIAGRAMS FROM PLATE TESTS

-w
To prepare diagrams of - and H from total resistance results for an arbitrary rough-

pU 2

ness configuration, the following method may be employed:

From total resistance tests of a representative sample of a particular roughness the re-
sults are given in the form of Cf = f (Rx, x). The objective of the analysis is to obtain

Tw
-, H = f(RO, 0). From Equation [84] approximately
pU 2

U2 2(1-2A [166]

and from Equation [68]

1

and

0 2 X Cf [168]

To obtain lines of constant 0, a line is first drawn at a fixed distance in the logR0
direction from the smooth curve for each data point which corresponds to a lind of constant
k* in accordance with Equation [1621. Then to locate the point corresponding to the desired

.w
value of 0 use is made of Equation [165] wherein for the same - , k*, and k

pU2

log1 0 RO,2 - Ogl1 0 R8,1 = log 1 0 92 - log 10 01 [169]

The reference line for using the above is from Equation [164]

loglo RO = - loglo, + constant [170]

the constant is any value convenient for plotting.

The values of H of the arbitrary roughness are calculated from Equation [141] wherein

H = 1 [1711
D2  7w

1-- -

I1 pU 2

The remainder of the procedure for determining H=f(Ro, 0) is the same as that for -.
pU 2
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NUMERICAL RESULTS

The experimental difficulties in boundary-layer measurements have resulted in consid-

erable discrepancies in numerical values of constants among investigators in the field. 25

Although future tests will thus in all probability lead to somewhat different values, the numer-

ical results gathered and calculated by Landweber"1 have been judged to be as reliable as

any and have been used to evaluate the factors derived in this report. For convenience of

reference, the numerical values are listed in Table 3.

TABLE 3

Numerical Values of Factors

Since the sand roughness values of Nikuradse t were obtained from pipe flow, some

adjustment is needed for application to flat plates. The values of B2 of Nikuradse were ob-

tained by using a value of 5.75 for 2.3026A which differs from the value of 6 used by

Landweber for flat plates. Consequently the velocity profiles of Nikuradse were replotted

and new B2 values for pipes were obtained using the slope of 6 as shown in Figure 10.

The B2 values are converted to those for flat plates by assuming that the difference in such

tHere k refers to the size of the sand grains.

Factor Value Source Factor Value Source

a1  0.0625 Calc. m 1.076 Eq. [117]

a2  -7.57 x10- 4  Calc. M1  0.242 Eq. [93]

a3  -1.082 Calc. M2  0.262 Eq. [981

a4  -1.306x10 2  Calc. M 0.282 Eq. [1061

2.3026 A 6 Ref. 18 N1  -0.661 Eq. [94]

A 2.6 Ref. 18 N; 0.023 Eq. [1031

B,, s  4 Ref. 18 N2  0,215 Eq. [99]

B2,R 7.2 Fig. 10 N 1.729 Eq. [107]

B3  2 Ref. 18 01 0.1689 Eq. [145]

C, 0.105 Calc. 02  0.1558 Eq. [150]

C2  -2.5x10 - 3  Calc. P1  - 1.169 Eq. [146]

0 3  -1.752 Calc. P,' -0.636 Eq. [156]

C4  -0.04 Calc. P2  -2.251 Eq. [1511

Dz  3.499 Ref. 18 v 24.66 Eq. [1161

D2 23.23 Ref. 18 X 3.42 Eq. [109]

RWIA N 1 1
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Smooth Pipe k = 564

98 S=4.8+6.OLog k* x

7 -8 8- -

k -41.3
6-R

B2 5 , B2 .+60 Log 10k Sand Roughness Pipe Data

- I Pipe Radius
4 Grain Size

* 507
3 0 252

x 126
o 60

2 . 30.6
V 15

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16 1.8 2.0
Logl0 k*

Figure 10 - Values of B2 for Sand Roughness in Pipes and on Flat Plates

values is equal to the difference in the B 1 ,. values between pipes and flat plates (here 4.8 -

4.0 = 0.8). For the fully rough regime, the B2,R value of 8.0 for pipes becomes 7.2 for flat

plates. In order to accomodate the new k R values of 41.3 for flat plates, the k* values are

also adjusted for flat plates in the general rough regime. The procedure is to assume that the

ratio of laminar sublayer thickness of flat plates to that of pipes for the quasi-smooth regime

is the same for the general rough regime. From Equation [39]

YL'* B + AInA
r = [1721

YL* Bs + AlnA

where the primed quantities refer to flat-plate values and the unprimed quantities to pipe values.

In terms of B 2 values

B2 + AInA - Alnk'*
r = [173]

B2 + AlnA - Alnk*

or

* = (k*) exp 2 +(1-r) InA exp A) B[1741
A A

The results which are given in Figure 10 were used to prepare the resistance diagram for sand

roughness of Figure 7. Compared to the original Prandtl-Schlichting diagram, 4 the Cf values

are somewhat lower for the same Reynolds number; this is to be expected considering that

the Prandtl-Schlichting diagram is based on pipe results. Figure 11 gives a clearer indication

of this where a comparison is made for the fully rough regime.
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Figure 11 - Coefficients of Total Resistance for the Fully Rough Regime
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Figure 12 - Local Skin Friction and Shape Parameter
Rough Regime of Flat Plates

for the Fully

For the total resistance of smooth plates, the new M1 value of 0.242 is identical to that

of the Schoenherr formula and the new N1 value of 0.023 is close to that of zero for the

Schoenherr formula.

Finally, for the fully rough regime Figure 12 shows a comparison of local resistance

coefficients and H values from Equations [144] and [141] to those of Scholz 2 6 obtained by a

simple power-law analysis of the Prandtl-Schlichting formula. The local resistance coefficients

compare well but the H values show a large difference which is due to the improper power-law

analysis of Scholz.
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