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NOTATION

Cross-sectional area of flange

Cross-sectional area of web

Depth of web

Web stiffness, defined in Equation [81

See Equations [14a, d]

Young's modulus

Flange stiffness parameter, Equation [31a]

See Equation [14c]

Shell thickness

Areal moment of inertia of flange cross section,

Equation [27a]

Flange torsional rigidity (torsional moment
divided by rate of twist) divided by E

Constants defined by Formulas [24]

Circumferential thrust in web divided by c

Circumferential thrust in flange

Numerical value of radial force per unit length in web

Value of L at toe of web (a = 0)

Bending moment in flange

Bending moment in web on section perpendicular to
s, per radial unit length

Torsional moment in flange

Bending moment in web on section perpendicular to
z, per circumferential unit length

Twisting moment in web per unit length

Value of Mz at a = c

Value of M. at z = O

Value of Ms at z = c

Number of waves around circumference, variable
quantities varying as cos (ns/R) or sin (ns/R)
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p Pressure on shell

Q Axial force on flange cross section

Qs Axial force on web cross section perpendicular to 8,
per radial unit length

Qz Axial force on web cross section perpendicular to z,
per circumferential unit length

Q' Value of Qz at z = c

R Radius of cylinder at toe of web

Rf Radius of flange (without systematic differentiation
between centroidal circle and circle of attachment to
web)

8 Circumferential coordinate in web, which is treated
approximately as a straight strip

tf Thickness of flange

t ,  Thickness of web

u (z, s) Elastic displacement of web (in axial direction)

uo(Z, s) Initial axial displacement of web

u'(s) Value of u at a = c

uo(S) Value of uo at z = c

W = D/c 2 , web stiffness parameter

y = z/c

z Radial coordinate in web, measured away from surface
of cylinder (a = 0)

a Defined so that radial load per unit length on flange

is (1 -a)L o

,8 = c/R

/3f = c/Rf

e See Equations [14b, e]

0(s) Assumed initial slope of web

A = B3W/F

v Poisson's ratio

a Stress, defined as needed (as in Equations [35] and
[36a,b])

= Jr/If

S= au/a z ata = c

0 0 0



ABSTRACT

An approximate theory is developed for estimating the additional stresses

caused by an initial tilt of a T-shaped stiffening ring located either inside or out-

side of a cylinder under uniform pressure and the buckling load for an ideal ring,

without restriction to axisymmetric symmetry. In practical cases the results

appear not to differ markedly from those of the axisymmetric case, which was

treated in David Taylor Model Basin Report 1073.

INTRODUCTION

Although, in designing the stiffening rings for submarine hulls, major attention is

usually given to the strength of the ring in its own plane, there is also a possibility that a ring

may trip, that is, it may buckle or deform laterally. If such deformations become large, the

support furnished by the ring to the cylindrical hull may be seriously impaired. In present de-

sign, precautions against tripping are taken, in effect, by treating the rings as if they were

straight stiffeners on a panel loaded in compression and there is little evidence that this

method results in designs that are inadequate. Nevertheless, a specific analysis of the effect

of ring curvature was considered worthwhile.

The case of axisymmetric tripping, which is vastly simpler than the general case, was

treated in a separate report. 1 Axisymmetric tripping, however, can occur only in the case of

an inside ring. The present report records an approximate treatment of tripping with the forma-

tion of circumferential waves. The results obtained suggest that inside stiffening rings as now

designed are probably at least not much weaker toward lateral deflection in waves than they

are toward axisymmetric lateral deformation.

In the case of beams, the ideal case of the buckling of a perfectly uniform and straight
beam is of great practical interest. The critical load for lateral buckling of a stiffening ring

of current proportions, on the other hand, is so high as to have little practical significance.

Nevertheless, a certain interest may attach to the ideal case of the buckling of a perfect ring
because of the light thus thrown on the elastic phenomena in stiffening rings.

In the axisymmetric case, buckling results from column buckling of the web caused by
radial compressive force, which can occur only in an inside ring. When the buckling deforma-
tion is not symmetrical around the ring axis, the circumferential thrust also promotes buckling,
whether the ring is inside or outside of the cylinder. If the flange were absent, the web alone
would buckle in squarish waves under a radial load much smaller that that required for axi-

symmetric buckling. The flange by itself, on the other hand, is relatively weak and favors few
waves. The stiffener flange on an SS 212 submarine, for example, taken by itself as a flat
hoop, would buckle in four waves (n = 2) under a radial load of less than 6 lb/in.

1 References are listed on page 33.



In the combined system of web and flange there is thus a competition between the pre-

ference of the web for many waves and that of the flange for few. There occurs also an impor-

tant incompatibility of the buckling patterns as favored by the web and the flange, and this

tends to make the buckling load higher than it would be for either web or flange alone.

More important is the estimation of the stresses.evoked in a stiffening ring that is im-

perfectly shaped; this was the principal topic in Reference 1. The treatment is extended in

the present report to a simple tilt that varies around the ring.

The circle of attachment of the web of the ring to the shell will be assumed to remain

circular at all times, since analysis indicates that small deformations of this circle in its own

plane, although important in their own right, would have no first-order effect upon the phenom-

enon of tripping. Thus tripping of the ring can be treated independently without entering upon

the general subject of the buckling failure of stiffened cylinders.

THE LOAD ON THE RING

Shell The problem to be considered is that of

01 SeLo a stiffening ring on a long cylindrical shell sub-

c jected to external pressure. In developing the

R (l-a)Lo0  analysis, the ring will be assumed to be loca-

ted on the inside of the cylinder, since that is

R ff the most unstable location; the simple changes

required to adapt the formulas to outside rings

Axis will be indicated at appropriate points. Further-

more, the ring will be assumed to be a simple T

Figure 1 - Dimensions of Internal (Figure 1); if it has in reality a faying flange,
T-Stiffener this will be treated for present purposes as part

of the cylindrical shell.

The uniform external pressure p applied to the shell, by way of elastic reactions evoked

in the cylinder, loads the ring with a distributed force that will be denoted by Lo pounds per

circumferential inch. The magnitude of L o can be calculated in terms of p from the standard

"Equation [88]" based upon the theory of Von Sanden and Gunther 2,3 with appropriate cor-

rection for the faying flange if there is one. In the calculation as usually made, the subtended

part of the shell is included along with the ring proper; it will be assumed that a suitable

correction has been made so that Lo represents only the radial force per inch acting on the toe

of the web of the stiffener. Part of this force is transmitted through the web to the flange; let

this part be denoted by (1 -a)Lo pounds per inch. Thus the load carried by the web itself is

a Lo pounds per inch. Lo will be taken as a positive number whether the force is tensile or

compressive.

Considerations of equilibrium show that the radial load L o evokes a total compressive

thrust of RL o pounds on the whole cross section of the ring and that the part (1 -a )Rf Lo of

I II



this thrust is in the flange, R being the radius of the toe of the web and Rf the radius of the

circular junction of web and flange. If the simplifying assumption is made that the compres-

sive stress is uniform over the cross section of the ring, the ratio of the total ring thrust to

the flange thrust is (A w + Af)/Af, A w and Af being the cross-sectional areas of web and

flange, respectively; and, if the difference between R and Rf is also neglected, this ratio

equals 1/(1 -a). It follows that, approximately, for either inside or outside rings,

A w  A
a = - a = - [la, b]

A, + Af A, + Af

Here A, = ct, in terms of the radial depth c and the thickness t w of the web. More exact

analysis given in Appendix A replaces Aw and Af in Equations [la, b] by A , and A ,
respectively, where, for inside rings,

c 3 c
A -= Aw - ( 1 - v ) - A f  Af = (1 + 2 R )Af [1c, d]

where v denotes Poisson's ratio. For outside rings, the terms containing c/R have the

opposite sign. For practical purposes, however, Equations [la, b] should suffice.

The total thrust in the web itself is then RL o - (1 - a) R L o and division by c gives

K 1, the (mean) thrust per radial inch in the web. For an inside ring, Rf = R - c; for an outside

ring, R f=I R + c and R should denote the outer radius of the cylinder. Hence, if also KI
denotes the thrust in the flange,

R
K, =a--Lo + (1 -a)L o  Kf =(1 -a)RfL o  [2a, b]

except that for an outside ring the second term in K, becomes - (1 - a)L o. This latter term

may usually be omitted, however, since R/c is a large number; the difference between R and

Rf is also commonly ignored.

A certain complication arises from the fact that the local radial force in the web, de-

noted by L pounds per circumferential inch, decreases progressively from L o at the shell to

(1 -a )L 0 at the flange. Without serious error this variation may be assumed to be uniform

over the depth of the web; then we can write for rings either inside or outside,

L = L (1 - a -) [3]
C

where a denotes numerical distance from the shell (or the toe of the web).

The web will be treated as clamped at its junction with the shell. Actually, bending

of the web will bend the cylinder as well, but it can be shown that the effect of this bending

will be at least rather small provided the following inequalities hold:

c 1 h R
-<- -> 2 ->75
R 10 t, 4

I I I I I I I I I



Here h denotes the thickness of the shell and t, the thickness of the web; see Appendix 3.

A few formulas for the case of simple support of the web at the cylinder are given at the end

of Appendix C.

The stress forces thus defined are related to tripping in the following ways:

1. The radial force L in the web is tensile in an outside ring and so has a stabilizing in-

fluence, but in an inside ring this force tends to buckle the web in a radial direction.

2. The circumferential thrust K, in the web promotes buckling of the web (perpendicular

to the radius) in circumferential waves. If the flange is either absent or extremely heavy, the

critical thrust for such buckling of the web alone decreases as the number of waves increases

until the shape of the waves becomes nearly square.

3. The thrust Kf in the flange tends to buckle the flange in waves, the flange both bending

in crosswise directions and rotating. The critical radial load for such buckling of the flange

when unsupported by the web is least for buckling in two waves and is very small.

Azisymmetric buckling can result only from Action 1. In this type of buckling the flange

plays a rather passive role, resisting turning of the radial tangent of the web at its junction

with the flange. Buckling of the ring in waves on the other hand, results from a combination

of the actions that lead in extreme cases to action of Type 2 or Type 3. Since, however, the

web favors buckling in many waves whereas the flange prefers only two, the result for buckling

of the ring as a whole is a compromise, with an intermediate number of waves and a critical

load much higher than the minimum load for buckling of either web or flange alone.

There is also still another possibility, namely, that the flange alone might buckle by

radial curling of its cross sections without deformation of its circumferential axis. It will be

assumed that premature flange buckling of this sort is prevented by making the flange

sufficiently thick.

Analysis of the flange itself requires only the theory of circular rings. With high fixity

at the cylinder, however, bending of the web must necessarily occur, so that some degree of

analysis of the web as a compressed plate cannot be avoided. The web will be considered

first.

DEFORMATION OF WEB

An accurate analysis of the web as a thin plate requires the use of polar coordinates

and leads to very complicated formulas. In practical cases, however, the ratio c/R is very

small, and, for this reason, the curvature of the ring-shaped web has little effect beyond

giving rise both to the circumferential thrust K1 and to the variation with z of the radial force

L. As a plausible approximation, therefore, the web will be treated here as if it were a

straight strip of width c containing the perpendicular stress forces L and K 1. It may be im-

agined, if desired, that radial equilibrium of the web element is preserved by the application

of suitable fictitious distributed load forces, these replacing the net forces that arise in



Figure 2a - Inside Ring Figure 2b - Outside Ring

Figure 2 - Forces and Moments Acting in Web

reality from K 1 in combination with the curvature.

This assumption being made, the necessary analysis follows standard lines, as given,

for example, in Sections 21 and 22 of Reference 4. The details are lengthy and will be relega-

ted to Appendix C, only the skeleton of the argument being presented here.

Convenient coordinates are z, measured radially away from the shell, and a perpendicu-

lar rectangular coordinate 8, actually equal to circumferential distance along the shell at the

toe of the web; see Figure 2. Let the web have an initial small displacement uo = uo (z, 8)

and acquire an additional elastic displacement u (z, s), both measured parallel to the cylinder

axis from a transverse reference plane.

Consider a cross section of the web perpendicular to z. On the negative side of this

cross section there act, per unit length of a, the radial stress force L, called positive in its

actual direction under load, a shear force Qz, perpendicular to the reference plane and positive

in the same direction as u, a bending moment M., and a twisting moment M,,. Both moments

are taken to be positive when they tend to produce rotation from positive a toward positive u.

At the flange, however, or a = c, it is more convenient to replace Qz and Mrs together in the

usual way by a single shear force Q' of magnitude

per unit length. The strains are thereby modified within a narrow border near a = c, but this

local effect is unimportant.

Corresponding circumferential thrust, shear force, and moments, all per unit length, are

denoted by K 1, Qs, M,, and Ms,.

.............-



In Appendix C (page 24) is indicated the derivation of the following differential

equation for u and the following expressions for Q'and M'or Mr at z = c, for M o or :M at

a = 0, and for M s or M, at a = c, all for inside rings.

D +2 +- L -(U+ + +K, - (U + Uo) O 0 [41

az4  ags2 2  as 4  az as2

t- 9 3 U a
Q'=- D - + (2 - v) + (+ ) [51

L 3  as2 as

ZrC 
4M'= (Mz )  =D + v a2  

[6a]

M o =(M z) =D - [6b]
Z=o a z2

M = (M,) =D - + v [71
zc as2  /2

D is given by Et 3
D = [8]

12(1 - v 2 )

where E is Young's modulus, v is Poisson's ratio, and tw is web thickness. It is assumed

that L and K 1 always act parallel to the reference plane in which the web lies initially; thus

they are, in general, not quite perpendicular to the cross sections. In Q'and M', all deriva-

tives are to be given their values at z = c.

Equation [4], being of the fourth order, requires four boundary conditions. Two condi-

tions are provided at the shell or z = 0, where, according to the assumption previously stated,

u = 0 and au/as = 0. The other two conditions are furnished indirectly by the connection to

the flange at a = c.

It now turns out that, as is usual in such problems, if all quantities are expanded in

Fourier series, the various terms satisfy all equations separately; it suffices, therefore, to

study a single typical term. Proportionality to cos (ns/R) will be assumed, n being an integer

or zero. Then the equations become, for inside rings:

6

IIII I I I



a4 u n2 82U n4 2 (u + ) 2 ( -
D - 2- - +- +- L -(+ -K ( )O

( a4 R2 a 2  R4  d C1 zR 2

Q D - (2 - v) +L (u + o)
1= L 3 2 a z =

M'= (M z)

N= (A

Mo = C

M = (Ms) Ca = e

a2U n2

=D -- -v '-
IZ 2  R 2  / = -

z) = 2 z =

( n 2  
a2U)

R2 2

For outside rings, L is to be replaced by -L in Equations [4] through [12], L itself standing

always for a positive number.

If L did not vary with z and if u0 were of polynomial form in a, Equation [9] would be

soluble in terms of trigonometric or hyperbolic functions. Even so, however, complicated

formulas would be obtained. In any given case, a solution could easily be obtained by numer-

ical integration. It was thought worthwhile, however, to look for approximate formulas that

might be useful at least for survey purposes if not in practical application.

For this purpose, it is convenient to eliminate certain dimensions by writinig, for

inside rings:

C

c2 Lo
e = ~- 2n282

D

D2 Lo
D

A =-> 0
R

20L
g = n2r 2 .- n2p 3)

D

[13a, b]

[14a, b, c]

For outside rings, it is convenient to keep

formula for g, but by definition

C2 Lo

D

) positive; then y is the same, as is also the

c 2 Lo
e- -c- -

D
[ld, e]

Furthermore, for practical use it will probably be sufficient to consider only the case of
a simple tilt of the web at an angle 0 which, like u, is proportional to cos (na/R). In this case

[9]

[10]

[1a]

[lb]

[12]

Isll II wmae nn

Z = c



Uo - 0 z = 0o z cos (ns/R) [15]

00 being a constant. (The case, u o = (0 az + yO z 2) cos (ns/R) is only moderately more

complicated.) Then

0 2
u 0

-=0

ay 2

With these substitutions and the introduction of L = Lo(1 - ay) from [3] and the

approximate value K 1 = aRLo/c from [2a], Equations [9] through [12] can be written as

follows, for inside rings:

a4 u a2u
- + e- - gu-
ay4 ay2

a - y )-a (1 + n y) =
ay\ y 

(I

S-1

D / a2u\
Mo = -

c2  a 2 y = 0

D n2  a2 u\
s02 R 2 a1 2 y=

A series solution of Equation [16] may now be sought. The series must begin with y2

to make u = au/ay = 0 at y - 1. The following series may be sufficiently extensive for

practical purposes:

u= A 2 4 y5 + 712 30 360 420

+ B e + 6 + g + e2 ee
20 40 840 840

[201

+-0 4 e y6 + 7 2+ n - Y 7 + 8
24 D 30 105 5 210 336-

a3 u 2 2 aUQ' --. + (e - + vnP)-
C3 Lay y Y 1

M' . (a2u 2P2

- (1 - a)0 L o

[16]

[17]

[18a]

[18b]

[19]

I

duo auo
uo = 0 c y  - =c - iOC

ay az



Here the constants A and B represent the remaining two integration constants. By substitution

it can be verified that the differential Equation [16] is satisfied through Ay 3 , By4 , and Loy3,

and also that the terms shown would not be altered if the series were extended to higher powers

of y.

The relation between web and flange is more easily represented, however, if A and B

are replaced as unknown quantities by the values of u and du/dy at y = 1. This is easily done

by differentiating Equation [20] three times and eliminating A and B from the four equations

thus obtained; the result is two equations expressing a2 u/0y 2 and 03 u/ay3 in terms of U and

du/ay, all at z = c. Further explanation is given in Appendix C, pages 24-28.

The final formulas obtained by substitution for d2u/dy2 and a3u/dy3 in Equations [17],

[18], and [19] may conveniently be written in the following form (for inside rings):

Q' -- (k11 u'- k12 C) + (ak 1 - 1) OLo  [21]
C

3

M = -- (- k 2 ' .+ k2 2 CW) + a k 2 OcL 0  [22a]
c
2

o - 2 (k 1 u'- k 3 2 Coj) + ak 3 OcL o  [22b]

M' = D 2 + (1- v2)n2P2] u + vk 2 2  0 + vak2 OcL 0 [23]

For outside rings, the L0 terms have the opposite sign in these equations. Here u'denotes
the value of u at a = c, whereas w stands for the value of du/as or (1/c) au/y at a = c. The
k's are numerical coefficients whose values are

6 3 13
kll = 12-- e +- -- g

5 5 35

e 11
k12 = 6 + v 20 2

10 210

2 E gk22 = 4 -- e +- - [24]
15 10 105

e f 18
k 3 = 6 - - + - + --

10 10 420

eq g
k32 -- 2 e +

30 60 140



k =( - -- + 0.013 g + 0.015 e2 - 0.025 et .- -- n2)
2 420 10

k2  1 +e -- 9 - 0.008e 2 + 0.013 ee
2 2 60 105 140

3 19e 25#
+ 8 1+- +-
5 1260 336

1 e 2
k = 1 + - - 40 +- n2 (1 + 0.019 e - 0.009

These formulas are valid for either inside or outside rings, but different formulas for

e and e must be used, namely, [14a, b] for inside and [14d, e] for outside rings. (The absence

of an e term in k1 2 is correct! Corresponding formulas for the case of simple support are

given, in part, at the end of Appendix C.)

In practical cases, however, the quantities e, e, and g are likely to be small enough so

that many terms containing them can be omitted, especially from kl, k2 , and k3 or perhaps even

from all k's except k 11. The principal reason for computing and retaining some of these terms in

k l , k 2 , and k3 was to show how small they are. If e= E= g=0, the first six k's take on the simple

values that are obtained for a cantilever loaded at the end by a force Q' and a moment M':

kll = 12 k1 2 = 6 k 2 2 
= 4 k 3 1

= 6 k 3 2 - 2

The factors kll D/c 3 , etc, that occur in [211, [22a, b], and [23] constitute stiffness

coefficients for the force and moment that must be applied to the edge of the web at a = c to

produce assigned values of u and o at the edge, when the toe is fixed. More accurate values

of these constants could be obtained by numerical integration. If, however, an electronic

computer were to be used for this purpose, it would probably be preferable to correct the

differential equation and other relations slightly by using polar coordinates. In any case,

tabulation or plotting would be complicated by the fact that the k's are functions of four

dimensionless parameters, which may be listed as c 2 L o /D, n, 0, and a.

Study of a few simple and easily integrable cases indicates that the expressions given

here for kll, k1 2 , and k2 2 should be correct within at most a few percent for jej<5, I ej<5,

Ig1<10, and, of course, less in error for smaller values.

NOTE ON OUTSIDE RINGS

When the ring is outside of the cylinder, it is convenient to draw a away from the

cylinder as before and therefore now outward instead of inward. Figures shown in this report

may be adapted in thought to this case by assuming the cylinder axis to lie above the figure

instead of below it and imagining all circumferential curvatures to be drawn upward instead

II



of downward; see Figure 2b. All curvature effects are reversed in sign. Furthermore, the

radial force in the web is now tensile instead of compressive. A careful check shows that all

web equations written in this report for inside rings remain true for outside rings provided R,

Rf L, Lo, and 3 are replaced in them by -R, -Rf , -L, -Lo0 and -p, respectively, the sym-

bqls themselves continuing to stand for positive numbers. Certain cases of this change have

already been noted.

DEFORMATION OF FLANGE

An initial deformation of the ring usually

includes an initial deformation of the flange Lo

as well. Let the center of cross section of the (1-) Lo .Q

flange have an initial small displacement uso  -" t

from the reference circle, uO" being a function

of distance 8 along the centroidal circle of the U,; Q

flange. (It will be noted that a has

slightly different meanings for the flange b n,

and web, but this difference will cause no

confusion and is considered negligible.) The Figure 3 - Free-Body Diagram for a
cross section may also be rotated slightly, but Section of Flange

such an initial rotation, like small defects in The diagram is for an inside ring; for an out-

shape, has little effect and may be neglected. side ring; the curvature is upward and the
direction of LO is reversed.

Under load, the flange cross section may ac-

quire both an additional elastic deflection

u'(a) parallel to the cylinder axis and an elastic rotation o (8) about a circumferential axis,
these deflections being equal to those denoted by the same symbols in the web theory; see

Figure 3.

The flange is a circular ring loaded, per unit of its length, by the radial force (1 - a)L

and also by reactions to the other forces acting on the web, that is, by a force -Q' positive

in the same direction as u'and a moment M'positive when tending to increase o. (In Figure

3 positive directions for -Q'and -M'are indicated.)

On any flange cross. section perpendicular to a there act, besides the circumferential

thrust Kf evoked by the radial load, a shear force Q, taken positive in the same direction as

u', a bending moment Mb tending when positive to increase the slope du'/da, and a twisting

moment Mt tending when positive to increase o. Appropriate equations of equilibrium are de-

veloped on page 34 of Appendix D. It is found that the displacements u'+ uo and o cause no

tendency toward radial displacement, so that the tripping motion of the flange, like that of the

web, is independent of deformations in a plane perpendicular to the axis of the cylinder.

For the case that all variables are proportional to cos (na/Rf), where n is an integer

and Rf is the radius of the centroidal circle of the flange (or, nearly enough, the same as Rf
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previously defined), it is found that (for inside rings)

Elf EJr Kf
-'Q- n2 (n 2u'+Rf ) +- n2( +R ) - 2(u+ u [25

R4 Rf Rf 2

Elf EJ f
_M =- (n2u + Rfo) + -- n(U f) [26]

t f f

where If is the areal moment of inertia of the flange cross section about a radial axis through

its centroid and Jf is the torsionalrigidity of the flange divided by E. For a narrow rectangular

cross section of width bf and thickness tf

1 1
lI= - b t f  Jf= 6(1 + v) 6 t [27a, b]

it will be noted that necessarily Q'= 0 when n = 0.

The formulas found in Appendix D for Mb and for (Mt)max in the sinusoidal case may

also be of use:

Elf

Mb --- (n 2 U + Rfo) [28a]

R f
2

nEJf
(Mt)ma =- (U'+ R )ma x  [28b]

R f2

The unusual form of the latter equation is occasioned by the fact that Q' M', Mb, u

and o may all be assumed to vary in the same phase as cos (na/Rf) but M, must then vary as

sin (ns/Rf); however, Equation [28b] must hold for the maximum values as indicated.

As a check, it may be noted that Equations [25] through [28a, b] are all satisfied if

Kf= Q'= M'= Mb = M= 0O n= 1 '= - Rfo

This is simply a free rigid rotation about an axis lying in the plane of the ring.

For outside rings, the only change required in Equations [25] through [28a, b] is to

replace Rf by -Rf (Rf 2 being thus unaffected).

DEFORMATION OF ENTIRE RING

Equations for the entire T-ring in the case considered in this report can now be ob-

tained by setting u0 = uo and equating the web expressions for Q' and M'to the flange ex-

pressions for the same quantities. For a simple initial tilt in n waves as defined by

Equation [151

I



uo0 = 0 c
[29]

Yith this assumption, addition of [21] to [25] and of [22a] to [26] gives the two equations, (for

.inside rings)

F, 2 E D 2 K lf E(l +J )

( k 1  - + - 3 2 12,
Lf f f

- n- O + (ak - 1)OL o =0 [3Oa
R f2

E D E Dn2 ( + Jf) - k 12  U'+ I-( + l2Jf) + -k 2  (

+ ak 2 OcL o = 0 [30b]

Here, according to [2b], Kf = (1 - a) R f L 0

A shortened notation, however, is more convenient in using these equations. Write

Elf D W if

R c2 F I Rf

Here F, W, p, , 8f are all to be taken positive. The quantities F and W may be regarded as

stiffness parameters of flange and web, respectively, each depending on the dimensions only

of the relevant element; # is their effective ratio. Similarly, 7 is the ratio of twisting to bend-

ing stiffness of the flange. Then Equations [30a, b] can be written, after substituting for K1

from [2b] and returning to u' as in [29]:

[n2(n 2+ t)8 1F+k lW -2 ( -)L] UP+[2 (1+rt)F-k12W1 Co

= [n2 8(1 -) + 1 - ak] OcLo [32al

[2(1 +r)F - k 2 W] u'+ [(1 + n2 7) (F/P) + k2 2W c = -ak 2ocL 0  [32b]

For outside rings, Lo, Rf, F, and f are to be replaced by -Lo, -Rf, -F, and - f,
respectively, in Equations [30a, b] and [32a, b]. Also, in calculating the k's from Formulas

[24], Equations [14d, e] are to be used for e and e.

Equations [32a, b] can be used to find the deformation of the ring when L o and an

initial slope 0 proportional to cos (*&/R) are given. Then the moments in the web, M0o at the
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toe and M'and M' at the flange, can be found by solving Equations [32a, b] for u' and cw and

substituting these values in Equations [22a, b] and [23]. The bending moment in the flange

can be found by substituting in Equation [28]. If Oc is assigned its maximum value (when cos

(ns./R) = 1), the maximum values or amplitudes of the moments are obtained. Algebraic formulas

could be written out, but for the case n>0 it seems better to convert Equations [32a, b] to

numerical form and then proceed numerically.

Azisymmetric case. If n = 0 and if L o is no larger than it usually is in practice, say

L o <W, simple approximate formulas can be obtained. The contributions of L o to the k's, which

represents nonlinear effects, is then so small that it can be neglected except perhaps in the e

and i terms in k 11. Then k 12 = 6, k2 2 = 4, k31 = 6, k3 2 = 2, k 1 = 1/2, k2 = k = 1/12. Write

k= 12 1 -

4+-

where

n 1(4 1 ) 1(e- t1 1( a Lo
0 ku 2 10 L 2 W

Then it is found by solving Equations [32a, b] that

S )1 + 41 ( 2 , L
u'= -- + Oc

2(1 + A - n) 3 12 W

S (1 2 Lo

C = 2(1 + p - ,) 3 Wc

after dropping a small term an/[6(1 + 4t)] that occurs added to 1 - 2a/3 in both u" and <o;

and, approximately,

S2(1 + (1 -- )OcLo [331

M0 2(1 + = - () ( ) + 6 o

Here p is commonly not far from unity; IL = 0 corresponds to a rigid flange, and p = O

corresponds to no flange at all.

Maximum stresses in web and flange can be estimated in the usual way from the

moments. The compressive membrane stress in the web in the circumferential direction is

ac = K 1/t w = aRLo/(ct.), to sufficient accuracy. In comparison with this, circumferential

bending stresses in the web due to wave formation by bending may be neglected. The

---



corresponding component of radial stress in the web a, decreases from Lo/t w at the shell to

(1 - a)Lo/t, at the flange, being compressive in an inside ring but tensile in an outside ring.

The maximum radial bending stress ob will presumably occur at one edge of the web and can

be estimated as

ab = Mmax [35]
tw 2

where IMma.x is the larger of IM'jor IM01 as given by [22a, b].

The most critical side of the web is that on which the radial bending stress is tensile

and thus opposite in sign to the compressive stress a c. On this side of the web of an inside

ring, the principal stresses, defined with tension positive, are

l= o b -r 2 =-c a3 = 0

Here ob, or, and o c all have positive values. Substitution in the Hencky-Von Mises yield

criterion of (a1 - a 2 )2 + (02 - o3)2 + (a 3 - 1)2 = 2o 2 , Oy being the ordinary yield stress,

then gives as the criterion of incipient yielding in an inside ring

(ab - ')2 + o (ab - o) + = O2  [36a]

or, if o r is dropped because of its relatively small magnitude,

2 + 2 = 2 [36b]
Ob + ac y

If ab = oa, it is necessary only that ob = 0.58 ao for yielding to occur.

In an outside ring, -o r is replaced by + aor in these equations; there is no other change.

The maximum stress in the flange in simply

R fLo 6
( - )- + -f 2 IMbl [37]

where bf is the (axial) width of the flange, Af its cross-sectional area, and Mb can be calcu-

lated from [28].

LATERAL BUCKLING OF PERFECT RING

The critical load for lateral buckling of an ideal T-ring can be estimated as the value

of L o that is obtained by setting 0 = 0 in Equations [32a, b], whereupon the equations become

homogeneous in u' and co, and then equating the determinant of the coefficients to zero. The

general relationships are best exhibited if the resulting equation for L o is written as follows:
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(kk 2 2  k 1 22)W 2  n 2  1 (1+)k)k 2 2

+ (n - 1)2 . 2  2 f 22W + (1 + n2) F] (l-a)L = 0 [381

'here ± occurs in this equation, the upper sign is to be taken for inside rings and the lower

sign for outside rings, other terms being the same for both except for differences in the values

of the k's. All letters stand for positive quantities (except possibly k,,, k12 , or k22).

The W2 term in Equation [38] represents direct resistance to buckling of the web itself;

and the F2 term, direct resistance of the flange. The FWI term represents additional buckling

resistance due to incompatibility between the preference of the web for many waves and the

preference of the flange for very few waves. The Lo term, finally, represents the contribu-

tion to buckling by the flange thrust K f. The corresponding effect of the web thrust K'1 is

included in the k's.

Since the load L o occurs implicitly in the k's as well as explicitly in the last term of

Equation [38], this equation can be solved for Lo only by successive approximation. Fortun-

ately this procedure is facilitated by the facts that k, varies much more rapidly with L o than

do k12 and k22 , and the k's become relatively less important when n is large. For purposes

of computation, it appears to be convenient to write Equation [38] in the form (dividing through

by n2 WF):

2,)L1 2) + 1 +
(1 - a) (1 + itk 2 2 + = (kllk 2 2 - k12 + k

+ 2(1 +) k12 + (n 2 + r)8f k22 + (n 2 - 1)2 -. f [39]

Here ji = BfW/F and is always positive.

Three special cases deserve comment.

1. Axisymmetric Buckling. For n = 0, Equation [381 reduces to

(kl k22 - k122) I + kll = 0 [40a]

Thus in this case buckling results solely from variation of the k's with increasing load.

Insertion of Formulas [24] for the k's and use of [14a, b] for e and e give the following

equation, which is easily solved for Lo, representing the critical radial load for axisymmetric

buckling of an inner ring:



1 - 2
5.2-3.6a+-(1.2- 0.6 -- 12+

IL D
[40b]

+ (0.15 - 0.2 a + 0.06a ( )( 2) 2

D

Values of L o obtained from this formula agree well with those obtained from the formulas

given in Reference 1.

2. Web with No Flange. If the flange is ommitted, then a= 1 and F = 0 and

Equation [38] becomes simply

k, k 2 2 - k 12 2= 0 [411

The web is now comparable with the damped-free plate under longitudinal

that is treated on page 341 of Reference 5. If in the differential Equation [161 0

to 0 (for the buckling case) and a equal to 1, and if the L o terms in the formulas

are dropped (to be justified later), the equation becomes

compression

is set equal

for e and E

04 u 2 2  ( e2
--n 2 /32  n4 4 - n2 = 0

ay4  ay2

This is of the same form as Equation [c] on page 338 of Reference 5. Since, however, the free

boundary in this case occurs at y = 1, b must be set equal to 1 in Reference 5. Then the solu-

tion for buckling under minimum load, as inferred from Figure 178 and Equation [j] of Refer-

ence 5, becomes, in our notation,

n2p 2 = 3.69
S 2Lo "Nx m 2 n 2 14

n2, 48.4
D D a2

On the other hand, if Equation [41] is solved for L o using

e = -2n 2 32 g = n2 (2L o/D) - t4 4

and then n2 32 is chosen so as to make L o a minimum, the result is

tn2f 2 = 3.90
c2 Lo

n2 - = 61.6
D

The rough agreement between these values of n2 p 2 and of the L o term with the exact values

as inferred from Reference 5 may be regarded as encouraging, since here e = -7.8,

g = 61.6 - 15.2 = 46.4, whereas lei <5 and Ijg <10 have been proposed as reasonable limits
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for the use of our approximate formulas for the k's.

The values of n2 ! 2 and of n2pG2Lo/ as inferred from Reference 5 give (c 2 Lo /)
= 13.18. Since usually 3 <0.1, this makes the term that was dropped in e less than 1.3 and

so fairly small relative to -n 2(3 2 or -7.8. The web thus approximates in buckling fairly well

to a straight strip under longitudinal compression (as is intuitively obvious). A rough estimate

of the minimum buckling load Lo on the web without flange and of the associated value of n

may thus be made from the equations

D 1.92
L 0 = 13.1 f- a = - [42a, b]

c2 8

3. Flange Alone (under Uniform Radial Load). When the web is absent, so that

a = 0, then W = 0 and Equation [381 gives, for n> 1,

L (n2 - 1)27 Elf [431
L = [43]

1 + n2 R 3

Lon represents here the radial load per unit length that is required for lateral buckling

(without radial displacement) on the assumption that the applied load remains exactly paral-

lel to the initial plane during buckling. Lon increases rapidly with increasing n.

The minimum value of Lon , for n = 2, is relatively low. For the stiffener flange without

web on an SS 212-Class submarine Lon is only 5.7 lb/in. By contrast, as estimated from

Equation [42a], something like 3000 lb/in. of radial load would be required to buckle the web

without the flange. Thus, in this case, the flange badly needs the web, but the web could

dispense with the flange entirely. (For the SS 212 stiffener, R = 96 in., Rf = 101 in.,

c = 5.0 in., t w = 0.343 in., S = 0.052, D = 1.11 x 10 5 , b = 3.44 in., tf = 3/8 in., I = 1.273, and

7 = 0.0182.)

AN EXAMPLE

To illustrate the use of the formulas, calculations were made for the inside ring that

is described on page 17 of Reference 1. The value of Lo, the load per inch on the toe of the

web, is represented there by 8F. The relevant parameters for this case are, in the present

notation and in terms of pounds and inches,

a = 0.414 c = 2.19 in.,

R = 41.7 in. Rf = 39.4 in.

P = c/R = 0.0525 B =c/R = 0.0556

D = 5500 jf 0.1405

7 = 0.0125* Jj = 0.001757

W = D/c 2 = 1149 F =68.9

u = 0.927

*Inadvertently, the value 7 = 0.0124 was used in calculating.
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(a) Bending Moments Due to an Initial Load. In Reference 1, calculations were made

for radial load L o on the ring of 363 lb/in. and with the web tilted uniformly by 3 dog. The

same conditions were assumed for the present calculations, the maximum tilt being 3 dog

when n> 0. Thus, for maximum conditions, 0 =-0.0524 radians and OcL o = 41.6. For n = 0,

Equations [33] and [34] where used; for n>0, Equations [32a, b] were simplified by dropping

7 where it is simply added to 1 or n 2 and then solving these equations for u' and co and

substituting in [22a, b] or [23] to find the moments M' (denoted by Md in Reference 1), Mo,

and perhaps M'. The highly variable constant k u1 was calculated in detail; for the other k's

the following formulas were used:

k1 2 = 6 + 0.00083 n2 ; k2 2 = 4

k31 = 6; k 3 2 = 2; k1 = 0.5 -0.0184n 2

1 1
k2 =-(1 + 0.0315n 2 ); k -= (1 + 0.021n 2)

12 ' 12

The calculated values obtained for the moments in the web were as follows, certain values

obtained in Reference 1 from the "second approximation" being added in parentheses:

n 0 10 16 24

M' -8.3(-9.07) -21.4 -15.7 3.8

Mo  26.7(25.6) 29.7 30.2 23.8

M' -7.1 6.1

The nonlinear effect on Mo , when n = 0, is about + 6 percent.

These results invite the tentative conclusion that, for engineering purposes, it will

probably suffice to calculate moments in the web by the simple formulas that hold when n = 0,

using either Equations [331 and [341 of the present report or the formulas in Reference 1. The

associated stresses are discussed in Reference 1 for the case n = 0. Their maximum values

will differ so little for the other values of n that it was not thought worthwhile to compute them.

It may be of interest to note that, if the flange is removed, Mo decreases from 26.7 to

21.7 when n = 0 but increases from 30 to 223 when n = 16. Thus, regarded as a means of

minimizing the magnitude of Mo due to initial tilt, the flange is worse than useless when

n = 0 but is very helpful, as would be expected, when n is so large that the circumferential

thrust becomes important.

(b) Buckling. In a perfect ring of the usual proportions, failure by yield occurs long

before there is any semblance of an approach to lateral elastic buckling. Nevertheless the

theoretical interest of the buckling phenomenon in a T-ring was considered sufficient to

justify a few calculations, in spite of their more tedious nature. The appropriate buckling
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equation was solved by trial, Equations [40a] for n = 0, and Equation [39] for n> 0. To

illustrate the difference between an inside and an outside ring, calculations were made also

for a ring of the same cross-sectional characteristics placed outside of a cylinder of the same

radius (Rf then changing from 39.4 in. to 44 in.).

The buckling loads thus found were as follows:

Inside ring: = 0 2 5 7 10

Lo
- 5.8 5.6 5.8 6.3 8.9

W

Outside ring: n= 6 8 10 12

L 0
- 10.3 6.4 6.3 8.6

Here W = 1.15 x 103 lb/in. Evidently the inside ring prefers to buckle with n = 2 or 3, the

outside one with n equal to about 9, but the minimum buckling loads are not much different.

For the inside ring, the minimum buckling load is about the same as that calculated for n = 0,

a case that is more readily treated by the method of Reference 1.

M M M M M 0



APPENDIX A

STRESSES IN A PERFECT T-fPZING

Equations [Ic, d] can be deduced from certain equations in Reference 6. For the radial

stress or and the radial displacement tw (inward) in the web, Equation [44] on page 59 and

Equation [53] on page 67 of Reference 6 give, after substituting B = H = = K = 0 and u = w,

A A
r - +2C Ec=-(1+v)-+2(1-v) Cr

r2 r

Denote by aro, arf the values of or at r = R and r = Rf, respectively. At r = Rp w is also the

inward displacement of the flange and evokes in it a circumferential compressive strain w/Rf

and an associated thrust Kf = EAf /Rf Thus we have the three equations

A A
ao -+ 2C arf = + 2 C

R2 R 2

RfKf A
= E = - (1 + v)- + 2(1 -v) CR

Af f

From these three equations, A and C can be eliminated. Introduce also, for an inside

ring, R = R - c, and, from [2b] Kf = (1 - a) R Lo = (1 -a) Rftw , t being the web thick-

ness, and, from the definition of a, tw orf = (1 - a)Lo = (1 - a)twaro, also ct w = Aw, the

cross-sectional area of the web. Then it is found that

(R - c) (2R - c) A - (1 - v) (2R - c)cAf

(R - C) (2R - c) A w + [2R2 - (1 - v) (2R - c)c]A

After dividing out the coefficient of A,, expanding in powers of c/R in numerator and denom-

inator separately, and keeping only the first power of c/R, it is found that approximately

A 2 c A

This can be written in the form expressed by Equations [Ic, 3] in the present report. For an

outside ring, it is only necessary to change the sign of c throughout.
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APPENDIX B

RELATIVE STIFFNESS OF SHELL

In tripping, a stiffening ring will usually exert a moment on the shell tending to bend

it around a transverse circumference. To judge whether such yielding of the shell makes it

unreasonable to assume, as an approximation, fixity of the web at the shell, as has been done

in this report, the stiffness of the shell against such bending should be compared with the

stiffness of the ring for similar bending. Since, however, this comparison would require a

considerable investigation, similar comparisons will be made here, first with the stiffness of

the web alone for bending relative to the flange by distributed moments applied to its toe and

then with the stiffness of the flange for similar bending by moments applied along its length.

the axisymmetric case of bending of a long cylinder by a moment Mo per unit length

applied along an interior transverse circumference can be inferred from Equations [236] on page

393 of Reference 4. Here z denotes longitudinal distance along the cylinder. Put X = 0, and

also w = 0 in the first of these equations, and then eliminate Q0 between the first two

equations; also substitute Mo/2 for "Mo" in the equations, since our cylinder is equivalent

to two half cylinders connected together. The stiffness of the cylindrical shell Ssh defined

as moment per unit of circumferential length over slope of generator produced is thus found to

be, when n = 0,

Eh3  1
Ssh MO/(dw/d) = 4 = "4 [3(44

[3(1 - v2)]'A

The general case n>0 is rather complicated. For our purpose it may be adequate to

note that, for large n, the cylinder will bend nearly like a flat plate, for which the differential

equation for normal deflection w may be written

a4dw d4 w a4 w
-+2-+- =0
a(W4  a2as2  8as4

or, for variation of wc as cos (ns/R),

a 4 W n2 a2,w ,n4

- 2- +- = 0 [45]
oa4  R2 ax2  R 4

A solution of this equation that may represent bending by distributed couples Mo cos (na/R)

applied along a line at z = 0, is, if C is written temporarily for cos (ns/R),
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for z < O:

C aX

1 a2W

C ox 2

S- nx/R- Aze
C

= Ae - n x/R (1
-=am

' = Axenx / R

C

= Aen x /R 1 +-

= Aenx/R (2

Since the bending moment per unit of a-length is

Eh3 2w
12(M - 1- 2 ) # 2

2(1 - v2) ae2

+ v-

4as
2

Eh3  ( a2w

12(1 - v2) \ X2

there is a discontinuity in M at z = 0 of the magnitude

nA EAl3
4- C

R 12(1 - v2)

This must equal Mo C. Also AC = (aw/a)o . Hence when n>0, approximately

8sh = Mo C/(aw/ax)
EA3

8(1 - v2)

for > 0:

1 2  /R
C = Ae
C , 2

2
+-2

R 2

I?2n2
-v-

R2

[461
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The actual value of Ssh will be greater than that calculated from either [44] or [46].

For a minimum estimate of Sh, therefore, the smaller of the two values of Ssh given

by [44] and [46] may be used in any given case.

For comparison between the shell and the web of the stiffener, it may be noted that the

stiffness of the web, treated as if it were a straight strip, when it is clamped at the flange and

bent by couples Mo per unit length distributed uniformly around the toe, is found by elementary

reasoning to be (when n = 0)

D Et, 3

S, = Mo/(dw/dz)o = - E= [47]
c 12(1 - v 2 )c

c being the radial depth of the web and t, its thickness. If, on the other hand, the applied

couples vary as cos (na/R), S, increases with n but slowly at first; if the waves become of

length 2c(n = r R/2c), Sw is increased in the ratio 1.87. This number was obtained by studying

the following solution of Equation [45] with n/R replaced by q:

u = C1 qz sinh(qz) + C2(qz cosh qz - sinh qz)

To obtain a corresponding formula for the flange, we may assume u = 0 in the flange

formulas, as was assumed for the shell. Then Equation [261 gives for the rotational stiffness

of the flange

E
Sf = (-Ml)/ = - Uf +n J) [48]

Rf

Comparison of these formulas leads, after slight simplification, to the conclusion that

Ssh c/\h 3  Ssh Rf
- > B -- ) -- > B 2  [49a, b]

8w  f If+n2Jf

where B 1 is the greater of 5 .. I or 2n and B 2 the greater of 0.5 f7 or n/3. In general,

the ratio Ssh/Sw should be satisfactorily large to justify the assumption of fixity at the shell.

However, if 8sh/Sf>SSh/Sw, a smaller value of S/Sh w as given by [49a] is acceptable, since

then the flexibility of the ring as a whole is considerably reduced by flexibility of the flange.



APPENDIX C

APPROXIMATE ANALYSIS OF WEB AS STRAIGHT PLATE

Further details of the treatment of the web will be given here. The reader will be

assumed to have read the discussion of the web preceding Equation [4]; the notation is illus-

trated again, for an inside ring, in Figure 4a.

The usual formulas for the three moments previously defined are

(2 -/ 28U a2u a2u
Mz=D -+v =D -+

az2  9 2 2 s 2  aZ2

a2u 
Etw3

Mz = Msz = D(1 -v)- D =
saz a12(1- v 2)

Here t w is the thickness of the web.

Since the shear forces Qz and Qs are assumed always to be perpendicualr to the

reference plane and L and K1 always parallel to it, radial translational equilibrium of the

elements requires no consideration. Translational equilibrium of a d ds element of the web

in the u-direction, and its rotational equilibrium about axes parallel to 8 and z, respectively,

require that

aas -ms / ) + d(Q ds)+(L ds)d (+a
dda de +- + dad = 0

i (8 )a (d - + d a d - + ds (Qds) + (Lds) ds - (u + uo) = 0as as as

Os da a s

Here the (Lds) term arises from the fact that the opposing L and L + dL forces on the ds sides

of the element act along lines spaced d - (u + u0o) apart and so exert a turning moment; see
Os

Figure 4b. The K 1 term arises in a similar way. Hence, dividing by dzdsa, we have as the

three equations of equilibrium for an element of the web:

aQz  aQ
-+-= 0
a as

ZO as OZ
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Os Figure 4b
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Figure 4a

Figure 4 - Forces and Moments Acting in Web

ams aMzs a
-+ - + Q + K ( + ) = 0

From these three equations, a single equation free of Qz and Qs is easily obtained;

and substitution in this equation of the expressions previously quoted for the M's then gives

the differential equation written in the text as Equation [4].

Substitution for Qz and Msz in the defining equation for Q'also gives Equation [5]; and

the expressions for Mz at a = c and at z = 0 (where u = 0) were copied as Equations [6] and

[71.
(The main text should now be read from Equation [4] through the paragraph containing

Equation [20].)

The series written in Equation [20] was obtained by substituting a series for u in

Equation [16] and balancing coefficients of each power of y in the usual way. It turns out

that the coefficients of y2 and y3 remain arbitrary, so that the series can be written in the

form shown in Equation [201. The coefficients of the power of y as far as they are shown are

easily seen to be uniquely determined.

By differentiating this series three times and then setting y = 1, the following expres-

sions are obtained for u and its derivatives at y = 1:

e d g+ ( e g+ e2 - ef= A 1--+- + -- +B 1--+-+
12 30 360 420/ 20 40 840

1 e 2e 1 P e e+--L' -- +- + - 1-
24 30 105 5 42 67.2

ill



du e e g+ e e e 3 g+ 2
-=A 2--+-+ B 3--+ -+
4y 3 6 60 4 20 120 105

1 e 1 n2e
+-L' - + + + --n -- +
6 20 30 4 30

a2 2 g+ e 3 g+ e 2  ee
2 e - +- +- --- + B 6 e +- +

Iy2 3 12 10 4 20 50

1F e 1 2( e e
+-L 1--+- +- n

2 12 15 3 20 24

-a3 g +e e e B 6 3  g + e2= A - 2e + 2+ . +B 6 - 3e + 3 + -- e

ay 3  3 4 5

+L' -- +-+-n2 e e
6 6 2 12 12

c3 Lo
where L'= Oa - . It is also useful to note that

D

I---

2U 2 2 = 2A
y2 y =0 2  z 2  z=0

A and B were then eliminated from the four equations containing them, and all fractions

thereby introduced were expanded in powers and products of e, e, and g. Only e, E, g, e2 ,

and ee were retained, however, since higher powers or products would be furnished also by

the omitted higher powers of y in the series for u, whose coefficients remain unknown. Fur-

thermore, in the final expressions for a2 u/dy2 and a3u/0y3 , certain terms in e2 , et, or g had

coefficients less than 1/400 as large as the leading numeric to which they were added, or, in

terms containing Lo less than 1/100 as large, and most of such terms were dropped.

The result was the following approximate equations, in which a subscript 1 distinguishes

values at y = 1 and a subscript 0 values at y = 0:

a e 11 2 u
= - 6 (u)+ 4 -e+

Y2/1 10 210 15 10 105 y

1 c3L O e 9 g+- Oa- + - 0.008e2

12 D 60 105 140

3 19e 25e 2)]
+ 0.013e +- n 1 + - + -0.014e

5 1260 336
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( 10 210

1 EL E 17 71
+- 1Oa- 1+ --- g - 0.015e + 0.025et +- n 21

2 D 420 1260 10

e (ee 13 e Eg Ou
S2A i + 10 + 420 30 60 14

0

1 c3 Lo e  2

+- O - + - +-~.n 2 p (1+ 0.019e -O.009)
12 D 60 140 5

Substitution of the first two of these equations for 02U/y 2 and d3 u/y 3 in Equations [17] and

(18a] gives Equations [211 and [22a] for the relations at y = 1. (In these equations, u' and W

effectively replace A and B as the remaining unknown constants.) Finally, substitution of the

series found for ( 2 U/dy 2 )0 in Equation [18b] gives Equation [22b] and Equation [191 becomes

Equation [231. (Reading of the text below Equation [23] may now be resumed.)

FORMULAS FOR SIMPLE SUPPORT AT z = 0

If simple support is assumed to occur where the web joins the shell, so that

a2 u
u=- = 0 atz=0

Za2

then the series for u is found to be, through y7:

u=A Y+- !4+i- Ys5 +B 3 e + Y6 +--Y7)
24 120 20 40 840

c 3 Lo 1 7 2/ ey

+ Ga - - y Y + - + -
D 24 720 1260 120 5040

In this case the series was terminated after terms linear in e, e, and g. It was then found that

the constants in Equations [21] and [22] are as follows:

6
k = 3 -- e
rl- 5

1
k =3 3- eS 5

3 17
+---g

8 35

3
g+ vnr2

35

1 1k =3 -- e+-'
S5 8

2
05

ay3
1 IY

I C'1 3 13
=- 2-- e+--- S 5 35



3 e r 16 n59e)

-8 90 280 15 72

1 e 8 e
k - 1+---+-n 2 311---

2 30 70 15 14

Here, however, errors may rise to 5 or 10 percent if either Iel or jte exceeds 2, or if Ig>10.
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APPENDIX D

ANALYSIS OF FLANGE

The analysis required for the flange is a slight modification of that given for a circular

strip in Section 54 of Reference 5. Positive directions for the quantities defined ahead of

Equation [25] in the present report are shown again at the top of Figure 5. As usual, an inside

ring will be under consideration except as stated.

The bending moment Mb in the flange arises in part from its curvature in a direction

perpendicular to its plane, of magnitude d2u'/ds2 , u not contributing. There is also, however,

a contribution from a variable rotation e. This rotation occurs about a circumferential axis but,

at cross sections A and B separated by a distance ds, the circumferential axes are inclined to

each other at the angle da/Rf; see Figure 5. Since small rotations can be treated as vectors,

the rotation w + do at B can be resolved into a major component about an axis parallel to the

axis drawn for e at A, and a minor component about a perpendicular axis (aa' in Figure 5) of

magnitude (co + de) ds/R. The major component, in combination with the rotation at A, does

not bend the ring. The perpendicular component, however, not being matched by a similar

du' A'
+d-;dde da 4

de b
Rf

8.-

Radial View

Q+dQ

Figure 5 - Force Actions or Displacements for Section of Flange

These diagrams are drawn for an inside ring.
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rotation at A, gives to the ring a component of curvature in the u'direction of magnitude

- (O + dO)/Rr Thus, dropping do,

Mb = El ([) 50]
fds2 R

where If denotes the areal moment of inertia of the flange cross section about a radial axis

(perpendicular to the cylinder axis).

Similarly, the cross section at A undergoes a rotation du'/ds about a radial axis through

its centroid, but the corresponding rotation at B has, besides a major component about an axis

parallel to the radius at A which can produce only bending, a minor component about an axis

bb' parallel to the circumferential axis at A. This component, being unbalanced by a similar

rotation at A, twists the flange. Thus the total rate of twist is

do 1 du'

ds R f ds

Hence

(do 1 du'
M = EJf  w + 1 d [511

d8 Rf ds

where Jf is the torsional rigidity of the flange (or torsional moment divided by the rate of

twist) divided by E.

The laws of static equilibrium may now be brought forward. Translational equilibrium

perpendicular to the initial plane of the ring requires that

dQd Q'= 0 [52]1
ds

There is a turning moment on the da section about a radial axis of magnitude dMb. Another

turning component arises from the twisting moment M,. Couples, like rotations, can be treated

as vectors; hence they are represented in a right-handed manner by arrows in the lower part of

Figure 5. It is clear that the difference in direction of M, at the two ends of the section re-

sults in a net turning moment of magnitude (to the first order)

ds
-M-

Rf

Another turning moment about the radius is Qda due to Q, and still another arises from the

circumferential thrust Kf of magnitude

K da (u' + Uo

O~-r~-, laanyr*sra.a~sRX~nr~p- -- Br --



see Figure 5 at bottom. Equating the sum of all these radial turning, moments to zero and

dividing by ds gives

d .1 d
- Mb M + Q + K ('+ u) = 0 53]

f

In a similar way the bending moment gives rise to a twisting component Mb ds/Rf;
adding to this both dM, and the external twisting moment -M' da, equating the sum to 0, and

dividing by ds:

d 1
Mt +-fMb -M'=0 [54]

d Rf

These equations can now be made to yield relations between Q' and M'on the one hand

and u' uo , o on the other. To eliminate Q, differentiate Equation [53] with respect to a and

then substitute Q for dQ/ds according to [52]; then substitute from Equations [50] and [51]

for Mb and Mt . The results are the useful formulas:

(_'_ 1 d2 (a EJ d2  1 d2 d2
'=El ds --E- -- - +-- +K (u'+ u') [55]

ds4 Rf ds2  fd 2  Rf ds 2  ds2

Elf d2 ' - EJ d 2 L 1 d 2 u'
-M'= - +- - [561
Rf d92 R ds2 Rf das

For the sinusoidal case in which

d2 n2

ds 2  I2

these equations become Equations [25] and [26] in the text. Equation [50] also becomes

Equation [28a]. The equations require that Q, M', and Mb be in phase with u' and o around

the ring; if, however, these quantities are all proportional to cos ns/R, Equation [51] makes

Mt proportional to sin ns/R. All the equations of this report hold whether the sinusoidal

symbols including derivatives are assumed to represent values at some given s or maximum

values occurring around the flange. For practical use, it is convenient to replace Equation

[51] in the sinusoidal case by the following relation between maximum values cited in the

text as Equation [28b]:

neJf
(Mt) (U'+ Rf)

max R 2 max

For an outside ring, retention of the assumption that the web lies above the flange in



all figures requires that the curvature be shown as upward instead of downward. The angle

ds/Rf is thereby replaced by -ds/Rf; no other change is required. Hence the equations that

have been obtained for the flange all remain valid provided Rf is replaced throughout by

- ( p f2 being thus unchanged).
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