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NOTATION

A Average of e- k over the foil span

A0  First (constant) term in the expansion of A in powers of (z + 8l )

a Amplitude of water waves

b Foil chord

C (K) Theodorsen function, of argument K, used in predicting unsteadiness
effects

c Velocity of water waves, with respect to a fixed observer

co  Lift coefficient of foil in steady flight in calm water

c" Lift-curve slope, assumed constant

D A function of frequency of encounter, used in predicting unsteadiness
effects

d Depth of apex of V-foil in steady flight below calm water surface

E Function of frequency of encounter and of speed of craft with respect
to velocity of waves, used in predicting unsteadiness effects

I Moment of inertia of the craft about its center of gravity

Jn (x) Bessel functions of the first kind, of order n and argument x

K n (ix) Modified Bessel functions of the second kind, of order n and imaginary
argument ix

k WYave propagation number = 2 7r/X

L Lift force on a foil

Lq8  Lift force on a foil, calculated on assumptions of quasi-steady motion

1 Horizontal distance from craft center of gravity to center of foil

m Mass of the craft

S Horizontal projection of the wetted area of foil

s Parameter replacing time in Laplace transforms

t Time

U Factor used in specifying the fluid velocity with respect to foil in
calculations of unsteadiness effects

uw  Horizontal component of wave orbital velocity

V Constant forward speed of craft

v Vertical velocity of foil

v w Vertical component of wave orbital velocity
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Oz I

Weight of craft

Iorizontal distance measured from center of gravity of craft

Horizontal distance measured from a fixed point

Amplitude of heave in linear calculations

Nondimensional steady heave in waves = zo/a

Heave amplification factor, that is, the nondimensional amplitude
of fundamental heave oscillation in waves = zl/a

Constant (real) coefficients of the terms in the heave transient
response solutions

Heave position, with respect to height during steady flight in
calm water, positive up

Steady component of heave for motion in waves

Amplitude of fundamental heave oscillation in waves

Instantaneous wave height

Instantaneous effective angle of attack, measured from calm water
trim condition

Change of depth of the apex of a V-foil from calm water trim
condition

Special symbol always followed by If or la; equals + 1 when
followed by l f, - 1 when followed by l a

Distance between the mean position of a water particle and the
undisturbed surface level

Nondimensional time = (2 V/b) t

Angle with respect to the x-axis in the conformal mapping of a
flat airfoil into a circle (see Figure 15)

Wave length of waves on water surface

Angle of dihedral of V-foil

Circular frequency of encounter

Horizontal distance from center of foil

Density of water

Roots of stability equations of craft

Wagner function, giving unsteady lift on a foil following a step
change in angle of attack

Phase lead of heave fundamental oscillation peak with respect to
wave peak at craft center of gravity-
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Notes

(a)

(b)

(c)

(d)

(e)

Phase lead of pitch fundamental oscillation peak with respect to
wave peak at center of gravity of craft

Amplitude of pitch in linear calculations

Nondimensional steady component of pitch in waves = 10o/a

Pitch-amplification factor, that is, the nondimensional amplitude
of fundamental pitch oscillation in waves = 10 ,/a

Constant (real) coefficients of the terms in the pitch transient
response solutions

Pitch angle, with respect to horizontal, positive for bow up

Steady component of pitch

Amplitude of fundambntal pitch oscillation in waves

Circular frequency of waves, as seen by a fixed observer

Subscripts f and a refer the associated quantity to either the
forward or aft foil, respectively

A bar over a letter indicates the Laplace transform of the quantity:
f-(s) =i f(])I

z = dz;/dt; z'= d/d 7; etc.

z(0), a (0), z'(0), etc., indicate initial values (at t = 7 = 0)

± or;: The upper sign always refers to head seas, the lower sign
to following seas
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ABSTRACT

The nonlinear theory of Weinblum for predicting the longitudinal response

of hydrofoil craft in waves is modified, and the results of analog computations

based on this theory are presented for comparison with available ex erimental

data. The complete nonlinear equations are used in the computations, and it is

shown that the nonlinearities affect the oscillatory amplitudes only slightly but

that they cause large steady components of heave and sometimes of pitch. The

steady heave is often as large as the amplitude of oscillation, and is always

downward, tending to cause the craft to crash. The effects of unsteadiness are

investigated, and it is shown that the forces are reduced as much as 40 percent

because of unsteadiness but that there is little net effect on the amplitudes of

heave and pitch. Transient responses are calculated, consideration being given

to nonlinearities and unsteadiness. From the experimental data, it is concluded

that the theory gives good predictions of the amplitudes of heave and probably

of pitch, and fair predictions of phase.

INTRODUCTION

As interest in hydrofoil-supported craft has grown, particularly in the last decade, there

has arisen a need to predict the characteristics of hydrofoils and of hydrofoil craft. One of

the problems which has been considered extensively but which still poses considerable diffi-

culty is the dynamic response of a hydrofoil craft in waves. Some theoretical work has been

done by several investigators, and one systematic experimental program has been reported.

However, until now the only direct comparison between theoretical and experimental results

has indicated wide discrepancies between the two. The present report shows 'how modifica-

tions to the available theory result in realistic predictions for the most important group of

experiments reported.

Only one particular configuration will be considered here. The craft to be studied has

two identical foils placed at equal distances fore and aft of the craft's center of gravity. The

foils are of the dihedral, or area-stabilized, type. The section profiles are assumed to be

constant across the span and the foils are assumed to have no twist. This configuration

closely approximates to several practical designs which have been built in the last two decades.

Weinblum1 has published an approximate analysis of the heaving and pitching, in regu-

lar shallow waves, of craft supported on area-stabilized hydrofoils. The configuration consid-

ered in the present report is included in his analysis.

1References are listed on page 51.
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Leehey and Steele 2 performed a series of tests on several small hydrofoil configura-

tions, measuring the heaving and pitching motions in a variety of regular sea conditions. Using

the linearized version of Weinblum's equations, they also calculated the responses for their

experimental conditions.

This report is a direct extension of the work of Weinblum and of Leehey and Steele. In

the first section there is a brief derivation of Weinblum's equations, with slight modifications.

The procedures for the solution of these equations are discussed; in the following section the

results of actual analog computations are presented. Next the effects of unsteadiness are con-

sidered. Such effects were ignored in Weinblum's equations and in the analog solutions pre-

sented herein. It is shown that the net effect of unsteadiness on the amplitudes of heave and

pitch motions is generally quite small, although the forces on the foils are reduced by as much

as 40 percent in some head seas conditions. In the next section, the transient responses of

the craft are calculated. Linear and nonlinear, quasi-steady solutions are discussed - also

linear, unsteady solutions. It is found here that the most important components of the transient

solutions are only slightly affected by either nonlinearities or unsteadiness. Next, the effects

of the horizontal component of water orbital motion are discussed briefly, then the effects of

downwash are considered. It is shown that the unsteady vorticity shed by the forward foil has

negligible effect on the after foil.

The report concludes with a comparison of the present theoretical results and the exper-

imental data of Leehey and Steele, followed by a statement of the conclusions concerning the

validity of the theoretical considerations.

WEINBLUM'S EQUATIONS OF MOTION

Consider a hydrofoil-supported craft moving in the positive x- direction with a constant

forward velocity V. Let there be an infinite train of regular sinusoidal waves moving along the

x'-axis toward either decreasing or increasing x", according to whether the craft is traveling

in head or following seas, respectively.

The craft is as described in the Introduction and is shown in Figure 1. A perspective

view of the craft and the experimental apparatus for measuring heave and pitch (from Refer-

ence 2) is shown in Figure 2.

The wave profile observed at a fixed point x" can be represented by the expression:

ZW = a cos (ot + kx')

where a is the circular frequency of waves,

k is the propagation number = 2 7r/X, and

X is the wave length.

The upper sign (see Notation, page vi) in the expression for z specifies a wave traveling

in the negative x direction, which is a head sea, and the lower sign specifies a following sea.

II __ .~__ _ -
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Figure 1 - Geometry of Craft

The craft is shown in its equilibrium position in calm water. Positive x is measured toward

the right. The pitch angle t/ is measured with respect to the horizon, positive for bow up.

Movable Weight

Bracket for Attachment Towing
to Carriage

Potentiometer B

Towing Arm Balance Weight

Figure 2 - Perspective View of Craft and Experimental Apparatus

Whenever a double sign appears hereafter, it will be understood that the upper sign applies

to head seas and the lower to following seas.

The wave motion causes the water particles to have the following vertical velocities:

v w = - aje - k sin (ot ± kz')

where is the distance between the mean position of the water particle and the undisturbed

surface level.

It will be desirable to express zw and v. with respect to a reference frame advancing

with the craft. In particular, we select an origin located horizontally at the mean location of

of the center of gravity of the craft, with a horizontal x-axis and a vertical z-axis (positive

upward). Since the craft is assumed to be moving with a constant velocity V, we can trans-

form from the coordinate x' to x by the substitution:

I - ^-YIYY YIIIIIIIIYII IYYI ii Yil-



Then we have for z, and v-

w = a cos (vt + kx)

v w = Ta w e - ksin (vt+k k)

where v is the circular frequency of encounter.

We note that

v= kV + o = k (V ± c)

where c is the celerity of waves.

For hydrofoil craft it is generally true that V > c; therefore v is always to be considered as

positive.

The forward foil is located at x = + If and the after foil at x = - l a . Then the wave
height and the vertical water particle velocity at each foil are:

z f acos (vt+ kIf)

za =a cos (vt- kla)

t :aow e
a

-kf sin (vt + kf )

- ka sin (vt -kla)

We can simplify our equations here and later if we' adopt the following special notation:

+ 1 when followed by If

- 1 when followed by la

Then we can write one equation to apply to both forward and after foils. Instead of the
four equations above for z. and vw, we now have two:

z = a cos (vt + k 6 1)

vw = 7 ao e- kC sin (vt + k81)

0Y
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It is understood that the appropriate subscripts will be attached to Zw, v,, , and I whenever

these quantities are to be calculated for specific cases.

The heave z is measured from the steady flight level in calm water. During such steady

flight we shall let df represent the submergence of the apex of the forward foil and da the sub-

mergence of the apex of the after foil.

The pitch d is measured with respect to the horizon, positive for bow up.

The lift on each foil is now calculated under several assumptions. Some of these

assumptions are removed later.

1. The lift at any time is proportional to the instantaneous angle of attack times the

instantaneous horizontal projection of the submerged foil area. This implies that unsteady

effects as well as free surface effects are neglected. The effect of unsteadiness will be con-

sidered in detail later. The neglect of surface effects, which is maintained throughout this

report, must be considered as an assumption that is justified only by the resulting agreement

with experiments. It has often been assumed that the direct effect of the surface is negligible

when the foil is submerged more than one chord length, and Kaplan has shown this for the

rather complicated case of a two-dimensional foil moving in unsteady motion near a free sur-

face. 3 However, a dihedral foil always has part of its span immediately adjacent to the sur-

face and the condition is thus always violated. We can rationalize the assumption by assert-

ing that the part of the foil very close to the surface is always a small fraction of the entire

span and that the effect of the surface is therefore small.

2. The foil chord is much smaller than the wave lengths encountered, so the relative

velocity between foil and water due to the wave motion may be considered uniform over the

chord length.

3. The lift-curve slope is a constant for all motions and conditions considered.

4. Downwash and waves from the forward foil have negligible effect on the after foil.

5. The forward velocity of the craft is constant and is large enough that the horizontal

water particle velocities caused by the waves will not affect the lift forces.

6. The foil chord is much smaller than the distance between craft center of gravity and

either foil. This condition is necessary for two reasons.

a. There are two forces on the foils due to pitching rate: the forcp resulting from the

vertical translational speed of the foils associated with pitching, and the force due to the

angular velocity of the foils. The first is proportional to (- 81 i ) and the second is

proportional to ( b/4 f). The latter is negligible compared with the former if this assumption

is realized.

b. There are certain moments acting directly on the foils if they are not supported at

their centers of pressure. If this assumption is valid, these moments are small compared with

the moments caused by the lift forces acting through the long lever arms of If and l a .



Under these assumptions the lift on each foil will be given by:

L = PV2 0 + c [4

where c0 is the lift coefficient for steady flight in calm water,

c' is the lift-curve slope,

a is the instantaneous effective angle of attack, measured from still water trim
condition, and

S is the instantaneous horizontal projection of the wetted area of the foil.

It is understood again that the appropriate subscript, f or a, will be applied to each quantity

which may vary from one foil to the other.

From Figure 1 it is evident that the projected area S is:

S = 2bcot [d - z- 8 + a cos (vt+k l8 1)]

Linear aerodynamic forces are assumed; therefore we may simply superpose the various

contributions to the angle of attack. We have labeled the upward vertical velocity of the water

particles v w . If we let v represent the vertical velocity of a foil (positive upward), then the

angle of attack is given by:

V w -vq

a= + V

1.

= -- 1 [ +/8 +ae-k~sin(vt+k8l)]
V

We note that this angle of attack varies across the span, since the exponential factor depends

on the depth of submergence and the depth varies across the dihedral foil. Before this expres-

sion can be introduced into the formula for lift, the explicit dependence on depth must be

removed.

To do this we define a quantity A which is simply the mean value of the exponential

factor over the depth of the foil: (d-z-1qf)
e-k 4 d e

Sfo 1 - e - k(d - z - 3l1)
A =_ (e-k d- z-8T k(d- z-8 )

We replace the exponential factor by this quantity in evaluating the angle of attack. If the

sectional life-curve slope is reasonably uniform across the span, this implies the use of a

I_ _L ___~ ___ ______ __ _
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"strip theory" for the aerodynamic forces on the wing and the assumption that surface

effects are neglected. In practice, it will be necessary to simplify this expression since it

would be quite difficult to produce such a factor with an analog computer. One can expand it

into a series and retain only as many terms as the computer can conveniently handle:

A=A 0 [1+p(z +81/) +...]

1 - e- k d

where A 0 = kd , and p = constant, etc.

In the computations presented in the next section, this function is generally reduced

to just the constant term. However, in those cases in which z has a large steady component,

this latter part of z is added to d so that A finally represents the average of the exponential

when the foil is at its mean position in waves.

The lift can now be written explicitly:

L = (pV 2 ) (b cot 1A) [d - - 1b + a cos(vt + k 81)] Ic0 + c'b -

[5]

- [z + 81 g +acA sin (vt+k8l)]I
V

The two equations of motion which give the forces and moments in the heaving and

pitching degrees of freedom are

mz =Lf+La-W

Ifr = lfLf - laLa

where m and I represent the mass and moment of inertia of the craft and W is the weight of the

craft. The moment of inertia is taken about the center of gravity. These equations imply two

new assumptions:

1. Both m and I should include the effects of the added mass of the water. However, the

assumptions previously stated included the neglect of unsteadiness effects and, if this is a

realistic assumption, then added mass forces and moments will also be negligible for motion

in waves. This will be demonstrated in the section on Unsteadiness Effects (page 21). For

transient responses in calm water, added mass is actually more important than the effect of

the wake (unsteadiness effect), and this will also be treated in detail (page 31). However,

for the immediate problem we assume that such added mass forces can be disregarded. This

limits the maximum accelerations that can be predicted with reasonable validity.

---- 111
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2. Horizontal forces, which would produce pitching moments, are neglected. This includes

drag and also thrust of the propelling system (or force of the towing rig on a model). That por-

tion of the drag which varies periodically with the motions and with the waves encountered is

generally quite small, as can be shown by simple qualitative calculations. A\lso actual calcu-

lations of the response when reasonable varying drag is assumed show that the effect on pre-

dicted motions is quite negligible. There is an appreciable steady drag, to be sure, but it is

assumed here that the steady angles of attack are adjusted slightly to offset the resulting

steady pitching moment. This change in the steady lift coefficients causes only second-order

effects on heaving and pitching amplitudes, since the time-dependent lift forces are not strongly

dependent on these coefficients.

When the lift forces are substituted into the equations of motion, we have the following

equations governing the longitudinal responses of the craft:

ma'=(pV ) 1 [(b cot 4)[d- z- 1 +acos (vt +k l)]

1co+c' -V [z+l +a±aAsin(vt+k8)]1 -W [6]

I= (pV 2 )  I 8(b cot g) [d - z - + a cos (vt+k3l)]
a fa

o + c' -- [z+ 1 +aoA sin (vt+ k8/)]l [7]
V

These are essentially Weinblum's equations, although his report does not give the
second equation explicitly. The factors Af and Aa are new here. The symbol E indicates

f, a
that the terms corresponding to the forward and after foils, respectively, are to be added. Of

course, it is also implied that a subscript, f or a, is to be added to each quantity which may

vary from one foil to the other.

(In the above form the equations can be extended to include more than two foils, pro-

vided each foil separately satisfies the conditions previously set forth in the calculation of

lift. Also, the case of a flat foil can be handled easily. The following factors:

(b cot p) [d- z - 10 + a cos (vt + k31)]

represent the instantaneous half-span. These factors can simply be replaced by the value of

one-half the span. Such terms then become linear, so that this case is a simplification of the

general problem.)

1- 11- ~
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It can be shown that, generally, the effects of the wave motion are felt most strongly

through the varying angle of attack resulting from the orbital motion. The effects of the

varying span are almost insignificant unless the craft motions are extremely large. Therefore,

the exact amplitude of the terms containing sin (vt + k 8 1) is very important. Omission of the

A-factors (that is, setting A = 1.00) increases these terms by a factor of about 2.0 in typical

cases, and the resulting amplitudes of heave and pitch are increased in this same ratio.

Weinblum, in his original report, indicated that a linearization of these equations of

motion was, at best, an expeditious procedure. Brief calculations can demonstrate that many

of the discarded terms are comparable in size with the retained terms. This is particularly

true for hydrofoil craft traveling in following seas, in which case the motions are often very

large and nonlinear effects may be expected to become prominent. The results of such non-

linearities generally are the production of harmonics and of steady (d.c.) components of

heave and pitch.

The experiments of Reference 2 showed no evidence of harmonic responses, and the

analog computations of the next section, based on the complete nonlinear equations, also

indicate that harmonics occur under only the most extreme conditions. Therefore the first

consequence of dropping the higher degree terms is not realized: there are generally no

harmonics to be lost.

However, there are often quite significant average values of heave and sometimes of

pitch. Consider, for example, the special case in which the wave length of the seaway is

equal to the distance between the foils. The craft which is considered in detail throughout

this report has two identical foils, and in the assumed absence of drag, both foils will always

encounter exactly the same conditions. Therefore there will be no pitch response at all and

we can study the heave equation by itself.

The heave equation becomes, under these conditions:

m= 2 pV) (2b coti)(d-z-acos vt) -(z ;aoA sin vt) -W

where b b = ba; If = Ia d d = da A - A = Aa

co c= ca; c'= cJ.

If we assume a solution consisting of a steady component and a fundamental oscillation

(remembering that the harmonics are generally negligible):

Z = zo + Z1 cos (vt + 1 )

and if we substitute this solution into the simplified equation of motion above, we find the

following relation between the steady component and the oscillatory solution:

_._ _._ _ ^____I IIVI
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z o - 2 V c o (v ToA)azi sin z

In general, if the amplitude of motion is not very great, the oscillatory amplitude z1 will be

proportional to the wave amplitude a, and the phase %1 will be essentially independent of a.

Therefore, z0 will be proportional to the square of the wave amplitude. In the next section

it will be shown that z0 is generally large enough that it must be considered to be at least

as important as the amplitude z I in estimating the seaworthiness of hydrofoil craft.

Since the principal effect of the nonlinearities is to change the mean flying position,

it also changes the amplitude of orbital velocities encountered. This change is accounted

for when Af and A a are allowed to be functions of zo and 00. It reduces the expected

oscillatory amplitudes slightly.

ANALOG COMPUTATIONS OF RESPONSES
BASED ON NONLINEAR EQUATIONS

Hydrofoil craft usually experience very large motions when flying in following seas,

and it has long been\ecognized that this is the condition which most severely limits their

range of application. Since the amplitudes of motion are so large, it is also in this condition

that one would expect the effects of nonlinearities to be most pronounced. Therefore it was

undertaken to solve the complete equations of motion, in order that the solutions might be

compared with the experimentallymeasured responses of Leehey and Steele 2 . No attempt was

made to cover a large range of possible physical conditions; rather, attention was focused on

the conditions for which corresponding data existed, and other conditions were studied only

when slight extra effort sufficed to produce the solutions. Although following seas supply

the most critical conditions, both head and following seas were studied since considerable

data were available for both. Only the "tandem V-foil" configuration of Leehey and Steele

was considered in these calculations.

A block diagram of the computer setup is included as an appendix to this report. The

problem was initially set up on two different computers, one a Mid-Century computer (MIAC)

the other a Reeves computer (REAC). Certain solutions from the two computers were super-

posed and they agreed within about 3 percent. The MIAC was used for most of the subsequent

solutions. All of the results were recorded on a Reeves plotting board.

The computer setup was so arranged that one could obtain a trace of any of the

following variables:

1. cos v t, the wave height at the center of gravity;

2. z, the heave;

3. ¢, the pitch;

I II III II I _ d I 1 11- 11~-- 1111 ---



4. 2, the heave velocity;

5. , the pitch angular velocity;

6. af = - 1/V [2 + I ± a A fsin (vt + kif)]

the effective angle of attack of the forward foil;

7. aa = - 1/V [z - la +±a Aa sin (vt -kla)]

the effective angle of attack of the after foil;

8. Ofr=- z- lf +acos(vt+klf)

the change of depth of the apex of the forward foil from calm water trim conditions;

9. fa = - a + la + a cos (vt - kla)
the change of depth of the apex of the after foil from calm water trim conditions.

Of course, a and 0 specify completely the longitudinal rigid body motions of the craft,

and the other variables can be obtained from them. But the quantities designated 3f and f3Pa

are particularly valuable in such convenient form, since they indicate directly how close

either foil is to broaching or crashing.

On the actual craft it was necessary to adjust the steady angles of attack somewhat to

compensate for the diving moment caused by drag. Since the equations do not allow for drag,

this physical compensation had to be removed in the calculations. Specifically, it was

assumed that co and coa satisfied the following two equations:
f

(-pV2 [c (2 bfdf cot Pf)+ co a (2 bad a cot a)] -W = 0 [8]

(PV2) [f Co (2 bfdfcot f)-ac o a (2 badacotla)]=0 [9]

These come directly from Equations [6] and [7] in the most degenerate case:

z =a =0 = = = = a=0

They specify the conditions for longitudinal equilibrium of the craft flying level in calm water,

without drag.

The values of the constant parameters in Equations [6] and [7] were taken from Refer-

ence 2 as follows:

m = (4.05 lb)/(32.2 ft/sec 2 ) = 0.126 slug

I = 0.151 slug-ft 2

d= da = 0.550 ft

l = la = 1.50 ft

- --- -- - 11I1N



p = 1.94 slugs/ft
3

= 45 deg

b = 2 in. = 0.167 ft.

The lift coefficient of each foil for the conditions of Equations [8] and [9] was taken as 0.456,

and the corresponding lift-curve slopes were 4.41. The only forward velocity V used was

5.00 ft/sec.

Wave lengths from 2 to 5 ft were considered for head seas conditions, and from 2 to 4

ft for following seas conditions.

The following table indicates the values of the derived parameters used in the calcula-

tions:
V

S k Head Seas Following Seas 40

2.0 ft 3.14 ft -1 10.05 sec - 1  25.76 sec - 1  5.66 sec - 1  0.476

2.5 2.51 8.99 21.56 3.58 0.542

3.0 2.09 8.21 18.68 2.27 0.594

3.5 1.80 7.60 16.57 1.38 0.636

4.0 1.57 7.11 14.96 0.75 0.670

4.5 1.40 6.70 13.68 - 0.698

5.0 1.26 6.36 12.64 - 0.722

The amplitude of the waves was varied over a large range, as shown in the following

paragraphs.

RESULTS FOR HEAD SEAS

Calculations were made for seven wave lengths from 2.0 to 5.0 ft; the amplitude of the

waves was varied from 0.05 to 0.50 ft. A typical set of solutions is shown in Figure 3, as

produced directly by the analog computer. The heave response is shown for wave amplitudes

of 0.05 to 0.50 ft; the wave length used in these calculations was 4.5 ft (head seas). The

heave and pitch and their time-derivatives all had zero initial conditions, and the instanta-

neous wave height at the center of gravity at zero time was a.

It is apparent from these curves that the heave and pitch responses each consist essen-

tially of two principal components, a zero shift and an oscillation at the fundamental frequency.

Only when the amplitude of motion is extremely large does a higher harmonic response ever

appear, and for the calculations shown it is never important over the range of amplitudes con-

sidered. Therefore we assume that the solutions are exactly of the following form:

0 = 0 + Z1 cos (vt + Z )

0= 0 + 1 cos (vt + 1)

111 i
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0.05'

a = 0 20'
o

a = 0.30'

a = 0.40'

a = 0.50'

Figure 3 - Typical Set of Analog Solutions

The head-seas heave response is shown for waves of 4.5-ft wave length,

amplitudes from 0.05 ft to 0.50 ft. The double zero trace shows the com-

puter d.c. drift.

and we can describe the results by presenting the six real quantities: zo, zl, 0, Ol, z 19
and 1 Actually it is convenient to make the amplitudes nondimensional, as follows:

Zo = zo /a = nondimensional steady heave component,

Z 1 = z /a = heave amplification factor,

o = 1 o/a= nondimensional steady pitch component,

1 = 1 1/a= pitch amplification factor.

In these calculations I is taken as the distance between the center of gravity and either foil.
(These two distances happen to be the same for the craft being considered.) Thus To and T,
represent vertical foil displacements in the same units as Z0 and Z 1 .

Zero phase leads are defined by the equation for the wave height at the center of
gravity:

z2 /c.g. = a cos vt.

This method of tabulating the computation results will lose some significance when
appreciable harmonic responses exist. In such cases, Z 1 and ' 1 will simply represent one-
half the peak-to-peak amplitude, regardless of harmonic content. Zo and To will represent the
median of the peaks and troughs of the periodic oscillation.

---- ow 11011.1



For all of the head seas conditions for which calculations were made, the amplification

factors Z 1 and V1 were practically independent of wave amplitude. This indicates that the

linearized equations should be satisfactory for computing the fundamental oscillatory response.

And, in fact, a direct comparison of the nonlinear analog-computed amplitudes with digital

linear computations shows the difference in the response to be of the order of magnitude of the

computer accuracy.

However, it is obvious from Figure 3 that the zero shift, or change of mean heave

position in waves, cannot be ignored. In some cases it is larger than the amplitude of oscilla-

tion. This steady component of the motion results directly from the nonlinearity of the equa-

tions of motion and there is, of course, no way in which it could be predicted from a set of

linear equations.

Generally there may also be a steady component of pitch. For head seas conditions, it

is usually much less than the amplitude of pitch oscillation, so it is not considered further

here.

The value of z o affects the values of the functions A and Aa . However, for the cases

reported here, the effect is not noticeable in any of the amplitudes of motion, within the

computer accuracy.

The heave-amplification factor Z and the heave-phase lead zare plotted in Fig-
1 YZ 1

ures 4 and 5, respectively, with wave length as abscissa. Figures 6 and 7 present the pitch-

amplification factor T 1 and the pitch-phase lead 4) in the same kind of graphs. The points

on the graphs are experimental results, which will be discussed presently.

In each of these four figures, the results could be shown by a single curve, because the

calculated quantities were only slightly affected by the nonlinearities of the problem. How-

ever in Figure 8, where the nondimensional steady-heave component is shown for all of the

calculated head-seas conditions, a separate curve must be presented for each wave amplitude,

since this quantity depends on the nonlinearities for its existence. The curve of Figure 4,

the heave-amplification factor, is repeated in Figure 8, so that the amplitude of oscillation

can be compared directly with the steady-heave component for any amplitude of waves. Even

for the smallest waves considered, the steady component is not trivial, and for the larger

amplitudes it is much greater than the oscillatory amplitude.

It should be noted that the steady-heave displacement is always downward, tending to

cause the craft to crash.

RESULTS FOR FOLLOWING SEAS

Calculations were made for five wave lengths from 2.0 to 4.0 ft, with amplitudes from

0.01 to 0.30 ft. The results are presented, as before, in Figures 9 through 14. The heave-

amplification factors and phase leads are shown in Figures 9 and 10. The pitch-amplification

factors and phase leads are shown in Figures 11 and 12. The steady-heave component is

(Text continued on page 18.)
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Figure 5 - Head-Seas Heave-Phase Lead
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Figure 8 - Head-Seas Steady-Heave Component

Broken line shows head-seas heave-amplification factor from Figure 4. The steady heave

component is always downward, tending to cause the craft to crash.
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Figure 9 - Following-Seas Heave-Amplification Factor
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Figure 10 - Following-Seas Heave-Phase Lead
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Figure 11- Following-Seas Pitch-Amplification Factor

plotted in Figure 13a with wave length as abscissa and in Figure 13b with wave amplitude

as abscissa. The steady pitch component is plotted in Figure 14, against wave length.

The steady-heave components were generally so large that it was no longer appropriate

to use the a priori values of Af and Aa, that is, A0 . The procedure used to find the solutions

was an iterative one - a method particularly well adapted to the analog computer. In each
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Figure 12 - Following-Seas Pitch-Phase Lead

case being considered, the heave response was first plotted with the function A approximated

by the constant A0 . The steady heave response zo was measured and A was recalculated:

1 - k(d - zo)1 -e

k(d - zo)

The computer was adjusted for this value and the heave response recomputed. This iteration

was continued until successive solutions became identical (to within a few percent). Usually

only two iterations were actually necessary.

In some cases the steady pitch level was such that an appreciable correction might

have been made for it also. This would have necessitated using different values for Af and

Aa . This would not have been very difficult. In fact, the variables of. and fa, which were

immediately available quantities, could have been used directly to supply such iterative

corrections. Since this phenomenon appeared only for conditions under which flight would be

impossible because of the severity of the oscillation, this refinement was not carried through.

The large magnitude of the steady-heave component means that the craft rides lower in

the water where the orbital velocities are smaller than at the normal level of the craft. Thus

a secondary result of the nonlinearities is that the amplitude of oscillation is somewhat

smaller than predicted by a linear theory. This, of course, is associated with the variation

of the quantity A, discussed previously. In Figures 9 and tl the amplitudes of responses to

o0
Quasi-Steady Linear
Calculation

- Quasi-Steady Nonlinear
Calculation

- - Unsteady Linear Calculation

-- - --- YWIN
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Figure 13a - Plotted versus Wave Length

The broken line shows the following-seas heave-amplification factor (linear calculation) from

Figure 9. The steady-heave component is always downward, tending to cause the craft to crash.
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Figure 13b - Plotted versus Wave Amplitude

Figure 13 - Following-Seas Steady-Heave Component

infinitesimal wave amplitudes (the linear solutions) and to waves of 0.10-ft amplitude are

shown. The dependence of heave and pitch amplification factors on wave height thus appears

in the existence of separate curves for these two cases. In Figures 4 and 6, which presented

the comparable results for head seas, no such distinction appeared.

The results of linear calculations for the amplification factors shown in Figures 9 and

11 were obtained with the functions Af and A a approximated by A0 . It is interesting to note

I
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Figure 14 - Following-Seas Steady-Pitch Component

The broken line shows the following-seas pitch-amplification factor (linear calculation), from

Figure 11. The steady-pitch is always bow down.

that if the actual values of Af and A a could be estimated, as by an extension of the approach

in the previous section for the simple case of no pitching motion, and if these values were

used in a linear calculation of the oscillatory amplitudes, the resulting amplification factors

would generally be quite indistinguishable from the nonlinear results. Thus it appears that

the only effect of the nonlinearities on the oscillatory amplitudes is through the change of

mean level and trim condition.

It should be noted that the vertical scales in the graphs of following seas responses

are quite different from the scales in the graphs of head seas responses.

The large magnitude of the steady responses in following seas can prohibit flight even in

cases in which the oscillatory amplitudes are not too large. An explanation is thus provided

for a qualitative experimental observation of Leehey and Steele. Whenever they attempted to

fly their craft in following seas of 3.5-ft wave length, the craft pitched bow down and remained

in that attitude until it crashed into the water. There seemed to be a large increase in drag.

Actually, as shown in this section, the mean position which the craft tended to take was much

lower than one would normally expect (and trimmed bow down), and as the craft moved toward

that position it would appear to be experiencing a large drag moment. It is thus seen that

this diving phenomenon is entirely attributable to the nonlinear lift forces.

UNSTEADINESS EFFECTS

Weinblum's analysis of the hydrofoil response problem was intended only as a first

approximate solution. Several important factors are lacking, perhaps the most important being

a consideration of effects of unsteadiness. In view of the conclusion of the last section, that

oscillatory amplitudes are not greatly affected by nonlinearities, the effects of unsteadiness

are studied here only with respect to linearized systems.
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The linearized, quasi-steady expression for lift on a foil is obtained from Equation [5]

c c '*d•

Lqs -(pV 2)(bcotp) (od+ V [V -a- 81 TaoA sin(vt+k8l)]

- co [z + 8 1 - a cos (vt + k8 1)] [10]

(Several linear terms with time-dependent coefficients have also been dropped. These terms

involve products such as (az), (a 0), etc., which are generally of the same order of magnitude

as the nonlinear terms. This treatment of the equations has been followed by the previous

investigators who "linearized" them. Since all of the ignored terms, are of the same order of

magnitude, it is consistent to drop both types together.)

We consider the terms of Equation [10] in four groups:

(pV 2 ) (b cot A) (c o d) [11]

(p V2) (b cot f) [- (V f- - a 1 4) [121

(pV 2) (bcot p) (_d [TaA sin(vt+k8l)]} [13]
cV

(pV 2) (b cot i)- co [z + - a cos (vt + k 8 1)1 [14]

The first, Expression [11], is the steady part, which will be ignored for the rest of

this section. In the heave equation, it is canceled by the weight; in the pitch equation, the

fore and aft steady lifts cancel. In any case there is no unsteadiness associated with it.

Expression [12] results from the variation of angle of attack associated with trim and

motion of the foils vertically. For purposes of supplying an unsteadiness correction, we note

that these terms have the same kind of quasi-steady velocity and vorticity distributions over

the chord length, and flow unsteadiness will affect all three in an identical manner.

Expression [13] also represents the effect of a change of angle of attack, but due to the orbital

motions of the water particles. It is convenient now to relax the restriction that the chord

length should be small compared with wave length, so that this term in the lift formula repre-

sents a fundamentally different distribution of velocity (and thus of vorticity) over the chord,

as will be shown presently.

The unsteady aerodynamic forces associated with Expressions [12] and [13] will be

computed on the assumption that the finite wing forces are modified by the same function of

frequency that would be used to correct quasi-steady forces on a two-dimensional wing under
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similar conditions. The unsteady forces on the hypothetical two-dimensional wing are figured

by the method of Von Karm~in and Sears. 4 ',5

Expression [14] results from the variation in area of the lifting surface. This is a

problem without precedent in the aeronautical field: the unsteady flow due to a rapid varia-

tion in wing span. The picture is further complicated by the fact that this variation actually

occurs at the free surface. It seems very unlikely that an accurate analysis of this problem

is possible with available analytical techniques. Kaplan 3 has shown that even for the com-

paratively simple case of a two-dimensional airfoil in unsteady flow near the surface, the lift

is a very complicated quantity to calculate. There is no justification for combining these

lift terms with those due to varying angle of attack and for modifying them according to the

plan outlined above. These terms are generally fairly small (although appreciable for

following seas calculations), so we avoid the problem by keeping them in their quasi-steady

form.

To obtain explicit expressions for the unsteady lift on a foil, we use a result developed

by Sears. s Suppose a two-dimensional airfoil is moving toward negative with velocity V.

As shown in Figure 15a, we can represent each point on the foil in terms of a new variable 0:

= b/2 cos 0, - b/2 .< 5.<+ b/2.

(Thin wing theory is assumed throughout this section, so that it does not matter if the wing

has camber and thickness. Each point of the wing section is associated with its projection

on the e-axis.) Now if the wing is oscillating, either in vertical translation or in pitch about

its midpoint, the fluid has a vertical velocity with respect to the foil at each point of

5 for - b/2 < < + b/2, which can be given as a function v. (4). Of course, it can be given

just as well as a function of 0. Now Sears states that if this velocity of the fluid with respect

to the foil can be expressed in the following way:

v w = (B o + 2 2 cos n 0) U e iv t  [15]
n=1

then the lift per unit span of the two-dimensional wing is:

L' = rrpbVUeiv t  Bo + B1) C ( + iv -B

(vbwhere C is the Theodorsen function:
2 V )

1  ( ig- -

C(vb K 2V

2V K i vb iKvb

2V 2V
I ~ ~ ~ 1 vb 1 &b
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Figure 15a Figure 15b

As taken in Reference 6. As taken in this report.

Figure 15 - Geometry for Calculation of Unsteadiness Effects

and Ko and K1 are modified Bessel functions of the second kind, of order zero and one,
respectively, and of argument (i v b/2V). This is the result we wish to use.

Throughout this report we have assumed that the hydrofoil was moving toward positive x.
It is convenient to continue this convention, and so we modify the above statements for the
case that the foil is headed toward positive 6. It is still necessary that the angle 0 be meas-
ured upward from the trailing edge, since obviously the lift is unchanged if both the direction
of motion and the fluid velocity distributions are reversed from right to left. From Figure 15b,
it is evident that now:

= - b/2 cos 0.

So if the distribution v, (6) is transformed to v. (0) by this formula, Sears' expressions above
will be directly applicable. The only problem then will be to extract from Expressions [12]

and [13] the appropriate vertical water velocities and to write them in the form of Equation [15].
It is now convenient to rewrite the quasi-steady lift in complex exponential form. Since

we have linearized the system, it is permissible to do this. For physical quantities it is
understood that the real part of any expression will be used. Thus the time-dependent part of
the quasi-steady lift is:
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Lqs (pV (b cot ) [V - z - 8 1 ±iajAei(vt + k l)]

- c o [z + 81 - aei(vt+ kl)]}

We shall assume sinusoidal solutions:

z = Zeiv 
t

0 =eiv t

where generally Z and T are now complex quantities. Then the quasi-steady lift becomes:

Lq -(pV 2 )(b cot I) [! (V -ivZ -iv81I ± iacoAeik3 1)

- c0 (Z + 81 T - aeik81) eiv t [17]

The part of the lift given previously byExpression [12] is now:

(pV 2 )(b cot p) - (VT -ivZ _iva e [181

This represents a quasi-steady lift on a wing of span (2d cot u). The vertical velocity of the

fluid (with respect to the foil) which corresponds to Sears' "gust" velocity is:

(VT - ivZ - iva IT) e i v t

We want to write this in the form of Equation [15] above. If we let U equal the quantity in

parentheses here it is obvious that all of the constants Bn in Equation [15] are zero except

Bo, which equals unity. Then the two-dimensional lift per unit span is, following Equation [16]:

[ (vb) ivb1
fpbVeivt(V - ivZ - iv8Y) [C b ivb

V 4V

The corresponding two-dimensional lift calculated on the quasi-steady basis would be:

rp bV e i v t (VT -ivZ -iv8 T)
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So the effect of unsteadiness on this part of the lift is to require that the quasi-steady two-

dimensional lift be multiplied by the factor:

2D= + 4V]

In accordance with our assumption that finite wing forces would be corrected for

unsteadiness in the same way as the infinite (two-dimensional) wing forces, we multiply

Expression [18] by the factor D, so that this contribution to the unsteady lift of the finite

wing is taken to be:

[c "d v b i vb [9

(pV 2 )(bcot) i (VT-ivZ-iv'8 ) eiVt - + b [19]
V 2v T]eV +4V

In Figure 16, the quantities C and D are plotted in their own complex plane. The

dimensionless parameter v b/2V varies along each curve, as required by the above expressions

for C and D. These plots can be interpreted as follows. If L' is the lift of a two-dimensional

wing calculated on quasi-steady assumptions and expressed in complex form then L'C is the

lift of the wing when the wake vorticity is considered, and L'D is the lift when both wake

vorticity and added mass are included. At frequencies of encounter approaching zero, both

C and D approach real values of unity, indicating no effect of either wake or added mass. At

larger values of the frequency of encounter, the effect of the wake is seen immediately as the

difference between a vector drawn from the origin to the point (1,0) and a vector drawn from

the origin to the appropriate point of the C-curve. The combined effect of wake vorticity and

added mass is also seen qualitatively by a similar comparison of vectors drawn from the origin

to (1,0) and to the appropriate point on the D-curve. At high frequencies of encounter the

C-curve approaches the point (1/2,0) while the added mass effect causes the D-curve to ex-

tend upward without limit. Thus at extremely high frequencies of encounter, the wake vorticity

ceases to cause any further change in lift, while the added mass effect continues to cause

higher and higher forces. On the other hand, at small frequencies the added mass effect is

small if the wake effect is small.

It is worth noting at this point that both of the quantities C and D depend only on the

dimensionless frequency of encounter v b/2V. Whether the sea is from the bow or the stern

does not matter. This is not the case with that portion of the lift considered next.

Expression [13], when written in the complex notation, becomes:

(p V 2) (b cot) {y [± ia A ei(vt+ kl)]} [20]

~I I I I I



20 deg

0.2 -100.5
01 E for

Following Seas -15

Figure 16 - Effect of Unsteadiness on Forces 1.0-20 deg

See pages 26 and 29 for explanation of figure.

Again, this represents a uniform velocity over the chord. However, it is not difficult at this

point to eliminate the requirement that chord length be small compared with the wave length,

and an increase in generality of the result is thereby obtained. But when this is done, the

vertical water velocity will not be constant over the chord.

For the geometry of Figure 1, the vertical orbital velocity at midchord of each foil

(averaged spanwise at any instant) is given by:

v = TaoA sin (vt + k81)

or, in complex notation:

v =+iawAei(vt+ k81)

If we again lIt represent a coordinate parallel to x, with its origin at the center of either

foil, then the vertical orbital velocity at any point of either foil can obviously be written:

v w = + iaw A ei(vt+ kl+ k) =+iac wAeik8lei(vt+ k)
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We define U (see Equation [151 in this case as follows:

U =± ia&Aeik8l

Then the water particle velocity is simply:

v = Ueivt eike

To obtain v w in the desired form of Equation [15], we transform from e to 0:

vw = U e i te
-i ( ) cos 0

(b2

From the following two identities for Bessel functions:

eizcos= Jo(z) + 2 , (i) n J () cos nO

n= 1

Jn(z) = (- 1) n fr(- r)

we obtain the form required:

+ 2 (- i)n Jn

n= 1
( 2 cos n 01

When we compare these coefficients with those in Equation [15], we can immediately write

down the two-dimensional lift per unit span:

rp bVUeit t
(kb'

-ikJb
ivb
4V

This can be somewhat simplified by use of the following relationships:

2n
n 1 (a) + Jn+ 1 (Z) = -- Jnz()

ivb kb)
I kb ivb [4
2 - 4V - b

4V Lb

V+ c\
= i (_ V

The fact that v = kV ± c = k (V ± c) has been used here.

(+)2
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The two-dimensional lift corresponding to Expression [131 is now:*

rrp bVUe i v t
jo -p -iJ A 0(IA)] +i (L±c) J1 (k)

We note that for the two-dimensional wing, with very low frequencies of encounter and very

long wave length, the lift per unit span is:

r p bVU eivt

Unsteadiness and the nonuqiformity of velocity over the chord are thus

the simple lift formula is multiplied by:

accounted for when

{ ( ) ()kb v V (kb

Ei C Vo +2VC V 2 2

Again, in accordance with our assumption that the finite wing is

ness (and obviously by the nonuniformity of velocity over the chord) in

infinite wing, we multiply the quasi-steady finite wing lift, Expression

E to obtain the more general unsteady lift contribution:

± (p V 2 ) (b cot IL)

affected by unsteadi-

the same way as the

[20], by the factor

c'dia A e i( v t+ k 1l)

[21]

Figure 16 shows the complex vector E, as well as C and D. The interpretation of

curve E is entirely similar to that of curve D. It is evident that the difference between the

two is the result of considering nonuniform velocity distributions over the chord; if this

*The two-dimensional unsteady lift formula obtained above differs from Sears' result for a similar case,

inasmuch as the arguments of the Bessel functions and the Theddorsen function differ. If we let K = v b/2 V =

the argument of the Theodorsen function, and M = kb/2 = the argument of the Bessel functions, we find the

following rek ~nship between the two arguments:

b Vic
K=- k(V± c)=M

2V V

The difference between these quantities results, of course, from the fact that in the present problem the waves

themselves have a velocity c, while in Sears' problem the waves were stationary. If we let c approach zero,

the above result for unsteady lift becomes identical with Sears'.
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generalization had not been made, the last lift contribution above would have reduced to the

same form as the previous contributions. In this case there is a separate curve for head and

following seas, even if the frequency of encounter should be the same for the two situations,

since the curve depends on two parameters, vb/2V and V±c/V. The curves shown in

Figure 16 represent the conditions of the experiments of Reference 2, in which V = 5 ft/sec

and the wave lengths varied from 2 to 5 ft for head seas and from 2 to 4 ft for following seas.

It is seen that the forces due both to foil motions and to water orbital motions are re-

duced as much as 40 percent in head seas and 15 percent in following seas. The phases are

altered as much as 18 deg.

The complete expression for the time-dependent unsteady lift is obtained by adding

Expressions [14] (with the sinusoidal solutions substituted), [19], and [21]:

(cS'd ) vb i vb t

L-(pV 2 )(b cot j) (-) [V -ivZ -ivv IJ [ C _(j-) +- eiV

± (pV 2) (b cot /) iacAc'd eik8l k i J1 lkb2 C (v-2-) + j c) J1 (kb iv,

-(pV 2 ) (b cot ,) (c) 1Z +all - aeik8] eivt [221

The sinusoidal solutions can now be substituted into the equations of motion, along

with Equation [22] for the lift on each foil:

- + Z L =-0

fa

Sa

(The steady lift is still ignored; thus the weight of the craft does not appear in the heave

equation.)

These equations have been solved digitally and the amplification factors and phases

obtained for the same conditions as the experiments of Reference 2. In spite of the large

effect of unsteadiness on the forces as indicated by Figure 16 the net effect on the solutions,

as compared with the simple linearized quasi-steady Weinblum solutions, is quite small. In

fact, in head seas (where the forces were reduced up to 40 percent) the amplification factors

are changed negligibly, and in following seas they are reduced by 15 percent or less.
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The small net effect of unsteadiness seems at first to be most remarkable, when we

consider the large changes that actually occur in the forces. However, we can see qualita-

tively that this result could be reasonable. Four types of forces ate involved: (1) wave

forces depending on the orbital motion, (2) the forces due to varying trim attitude and vertical

velocity of the foils, (3) the forces due to varying span, and (4) the inertial forces of the craft.

If all four types were changed in the same ratio by unsteadiness, there would be no net effect

on the resulting motions. In head seas, the responses are determined predominantly by forces

of the first two types, and Figure 16 shows that they are altered in much the same manner,

although there is a small phase difference. In following seas, the varying span forces are

quite significant, and since these were not modified for unsteadiness the heave and pitch

amplitudes do show a more marked change. It should be noted that, in view of the uncertainty

about how to handle the forces due to varying span, these following seas predictions are less

reliable than the head seas predictions.

It would be reasonable to assume that, in a situation in which the inertia were more

important, there would be further changes. Such a situation would be most likely to occur at

high speeds. In any particular problem the possibility of such changes should be carefully

considered before unsteadiness is neglected, although such neglect will generally yield

conservative estimates of craft response.

TRANSIENT RESPONSES

For the case of very small motions, the nature of transients can be found and described

simply. Following the classical procedure, one sets the forcing functions in Equations [6]

and [7] equal to zero (that is, all terms relating to wave motion of the water). Since the craft

motions are assumed small, only the linear terms in z and 0 (and their derivatives) are re-

tained. This does not alter the order of the equation, so the initial conditions can still be

satisfied as generally as before.

S One thus obtains two linear equations, homogeneous in z and 0. The following as-

sumed solutions are substituted into the equations:

z -Z e a t

= ea '

yielding two algebraic equations:

(a 2 +a a + a 2 )Z +(a 3 a + 0 4 ) ' I = 0 [23]

(y 3 a +y 4 ) Z + ( 2 + Ya+ 2 ) T = 0 [24]

Thea's and y's are constants.
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For the existence of nontrivial solutions, it is necessary and sufficient that the deter-

minant of the coefficients of Z and ' vanish:

(a 2 +a o +a 2) (3 or +a 4 )
= 0 [25]

(y 3
a + Y 4 ) (a 2 + Y10 + Y2 )

This fourth-degree equation is then solved for the four roots of a.

For the particular hydrofoil configuration considered throughout this report Equations

[23], [24], and [25] are:

(a2 + 62.29 a + 58.55) Z + (- 311.4) ' = 0

(a2 + 116.8 a + 109.8) T = 0 [26]

a4 + 179r 3 + 7440 a2 + 13,680 ar + 6430 = 0

The four roots are:

oal 2 = - 0.95

Or3 = - 115.9

U4 = - 61.3

The existence of a double root is an accident, resulting from the special geometry of

this craft. Generally there will be either four different real roots or two real roots and a

complex pair. In the present case, the existence of the double root indicates that the assumed

solution was not quite general enough and that there must also be terms of the following type:
a 1 t

Z 2 t ea l t 2 e te

This is of no general importance.

In the case of four distinct roots we can find a pair of constants, Z. and '', associated

with each root. Thus there are eight constants. However, from Equation [26], four of these

coefficients can be determined in terms of the other four. So there are four arbitrary constants

in the solution, as one would expect from the nature of the differential equations. For the

special case under consideration, we find:

T1 = 0.194 Z2

'2 = 0
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T3 = 20.1 Z 3

T4 = 0

The solutions are, explicitly:

z = (Z 1 + Z2 t)e-0.9 5 t + Z 3 e- 115 .9 t + Z 4 e- 6 1 .3 t

= (0.194Z 2 )e- 0. 9 5 t + (20.1 Z 3 )e- 115.9 t

It is obvious that almost any initial condition will cause an exponential transient,

decaying with a time constant of 1.05 sec. Only if Z 2 is much larger than Z I will this not be

true. The terms containing Z3 and Z4 allow the initial conditions to be satisfied, but they

decay so quickly that they will hardly be observable experimentally.

The nonlinear equations of Weinblum provide practically no extra general information.

For any given set of initial conditions, the heave and pitch responses can be found with the

analog computer, but because the equations are nonlinear the solutions so obtained cannot

be superposed to yield other solutions.

However, the transient responses are not greatly altered by the existence of nonlinear

forces. Figure 17 shows explicitly the nonlinearity effect in a simple case: a moderate

initial heave displacement with all other initial conditions zero. The heave response is

plotted for positive and negative initial heave, as predicted by both linear and nonlinear

equations.

Other nonlinear transient responses were plotted with the analog computer. As was

observed in the above case, they were quite similar to the linear responses, and since they

cannot be superposed they are not reproduced here.

Finally, the effect of unsteadiness on the transient responses was considered. General

conclusions can be reached from a study of the linear equations again, in view of the above

result that the quasi-steady linear and nonlinear calculations do not differ greatly.

We start out immediately with the equations simplified for the symmetrical model con-

sidered throughout this report. For this model,Weinblum's equations become, after lineari-

zation:

2B'd.
mz-2B'd + z+2B z=0

V

2 B 'dl 2

+ + 2Bo = o
V

I
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Figure 17a - Linear and Nonlinear Calculations
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Figure 17 - Initial Heave Transient Response
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where B'= (pV 2 ) (b cot f) c', and B0 = (pV 2) (b cot p) co0 .

It is convenient to express these in terms of the nondimensional tinte,

2V
17=- t

6

Then the equations are:

4V 2 m 4B 'd-2B'd¢ +- a+2 Boz =0

b2 b

4V 2 1 4B'dl 2

"+ '+2B l2¢=0

b2  b 0

As in the case of the wave responses, we correct the terms corresponding to varying angle of

attack, but we retain in quasi-steady form the terms resulting from variation in span. We con-

sider possible nonzero initial values of heave, heave velocity, pitch, and pitch velocity. We

arbitrarily assume that at time t = 0 the lift forces corresponding to these conditions have

reached their steady values. Then the equations can be written in the following form:

4V 2 m 4B' "d 4Bld

b2 z" 2 B'd[ (0)] + b [z'- z'(0)] + 2Bo z = 2B'd (0) - b z'(0) [27]

6226b

b2  b b

The terms on the left of each equation represent the inertial forces and the time-dependent

hydrodynamic forces, and the terms on the right specify the steady forces. The latter can be

treated as step functions, for the purpose of the transient analysis.

Two changes must be effected to correct these equations for unsteadiness: (1) the mass

and moment of inertia must be increased to include the added mass forces, and (2) the terms

resulting from variation of the angle of attack must be changed to include wake effects.

The added mass is taken as the two-dimensional mass times the equilibrium span:

Am = 2 [p ( 2 (2 d cot t) = 0.093 slug

(The extra factor of 2 enters because there are two identical foils.)

The total mass m' is then:

m =m + Am = 0.126 + 0.093 = 0.219 slug
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The moment of inertia becomes:

I'= I + A! = 0.151 + (Am)1 2 - 0.362 slug-ft 2

In computing the added moment of inertia, the length I was used rather than the diagonal length

from the center of gravity to the foils, because the added mass acts only for vertical transla-

tions.

The second and third terms in Equation [27] and the second term in Equation [28] result

from the changing angle of attack. In unsteady flow theory, they become Duhamel integral terms.

We now obtain these terms explicitly.

The lift on an airfoil following a unit step change in angle of attack is proportional to

the Wagner function 0 (q). This function has a value of 0.5 at 7 = 0 and it approaches unity at

large times. It is derived by superposing the effects of all of the steady-state oscillations

which combine in a Fourier integral representation of a step function. One fundamental formula

for the function is: 6

2 sinK710(7/)- Re [C(K)] sinKI dK
T K

0

where K = v b/2V and C = Theodorsen function.

A convenient approximation for (77) is: 6

0(77) 1 -0.165 e- 0. 0455ss - 0.335e - 0 .3 71

This approximation suffers in that it does not give a proper limiting behavior for large times,

but it has the great advantage of having a simple Laplace transform. It should be noted that

in true time the exponents are - 2.73 t and - 18.0 t, respectively, in the approximation. These

quantities indicate how quickly the actual circulatory lift approaches the quasi-steady lift

predictions. Since it has already been found that the important transient in the quasi-steady

linear analysis is an exponential e- 0.95os t, it would not be expected that a lag in lift buildup

specified by the exponential e-2.73 t would have much effect. Solutions of the equations will

confirm this prediction.

The actual lift on the foil is obtained through a Duhamel integral representation, with

the function ( - 11) serving as the indicial admittance. The terms of interest change as

follows:

2 B 'd [ - (0)] - 2 B 'd -[ (0)] (7 - 1 1) d i,
0

4 B 'd 4B'd d
[aB ' - z '(0)] -* [z ' - z " (0)] S (7 - 7 1) dr/,b b dj/
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4Bd12  (7 4B'dl 2  d

b [06- 0'(o)] -, J b [b - b (0)] q(77 - 7) d771
0

We make the following definitions and then

transient conditions:

4V 2 m'
A 4 ,= 788

b2

4B'd
S - 470

S 2B = 7.37b
A3 2 B0 = 7.37

write the complete equations for unsteady

4V21 ,

C 1 - = 1303

4D 1'dl2

2 - b =1058

C3 2B 0 12 =16.59

A 4 2 B'd=39.2

A +fo+ d  {A2[''(0)]A4[A (0)] (7- 77) d 7 + 4 z

A4 0 (0) - A 2 z'(0)

C "+ foi

These are solved straightforwardly by the application of Laplace transforms, which

are used particularly to render the convolution integrals tractable. The transform of the

approximate Wagner function is:

1 0.165 0.335

s s + 0.0455 s + 0.3

where s is :. argument of the transforms, and the bar

transform:

over the symbol O(s) indicates the

---- IN 61
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After being reorganized, the transform equations are:

(0) [A s + A 2s (s)] + z(0) [A + A 2(s) + 0(0) - A4(s)+8 2

i(s) (0) + i (s) [C 8 2 + C3 + C2 82;(S)
8 + C 3 ++ C28 ]

(0) [C, +C 2 8 s(s)8)] + "(0) c + 2 (s)-

Finally, with the numbers given above for the A's and C's, and with O(s) explicitly substi-

tuted in, we have:

z (s) (788 s + 507 84 + 150.9 83 + 8.96 s2 + 0.1006 s) +

(s) (- 39.22 s4 - 13.55 s3 - 0.535 s2)

a (0) (788 s4 + 507 S3 + 142.8 2 + 6.42 s) +

z'(0)(788 s3 + 37.25 s2 - 19.56 s) + t/ (0) (19.61 82 + 2.53 s)

z(s) (0) + s (s) (1303 85 + 979 s 4 + 332 s 3 + 20.2 s2 + 0.226 s) =

0 (0) (1303 4 + 979 S3 + 315 82 + 14.44 s) + V '(0) (1303 s3 - 78.8 s2 + 50.5 s)

If we make the following definitions:

a (s) = 788 s (83 + 0.643 s 2 + 0.181 s + 0.00815)

a 2(s) = 788 s (s2 + 0.0473 s - 0.0248)

a 3 (s) = 19.61 s (s + 0.129)

f3 (s) = 1303 s (s3 + 0.7518 2 + 0.242 s + 0.0111)

84 (s) = 1303 s (s 2 - 0.0605 s + 0.0388)
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iWe can write out the solutions explicitly:

[z(0) aC 1 (s) + z'(0) a2(s) + b(0) a 3 (s)] [- 39.22 s 2 (s 2 + 0.345 s + 0.0136)]

[(0) 3 (s) + '(0) 04(s)] [1303 s(s 4 + 0.751 s + 0.255 s 2

+ 0.0155 s + 0.000173)]

D

[788s (s 4 + 0.643 s + 0.191 s2 [z(0) a (s) + Z'(0) a2(s) + b(0) aC3(s)]

+ 0.00114 s + 0.000128)]

)= ~0 [ (0) 0 3 (s) + (/r0) 14 (S)]
(S) D

where D -- 1.027 x 106 s2 (s + 0.0147)2 (s + 0.0583)2 (s2 + 0.678 s + 0.205) (s2 + 0.570 s + 0.149).

Thus the transforms z (s) and (s) have poles at:

s = 0 (double); - 0.0147 (double); - 0.0583 (double); - 0.9285 ± 0.260i; - 0.339 ± 0.300i.

The inverse transforms are most easily found by writing both solutions in partial fractions.

However, it is not necessary to evaluate the entire expressions to observe the nature of the

solutions. The double pole at the origin would indicate a constant term and a term proportional

to time. But these terms do not materialize, since this pole is canceled by the corresponding

double zero at the origin in the numerator. Of the remaining terms, the most important will be

proportional to e- 0.014777 and e- 0.os0583 7. In real time, these decay exponentials are - 0.882 t

and - 3.50 t. The first of these is only slightly different from the quasi-steady solution, in

which the exponent was - 0.95 t. It thus appears possible that unsteadiness will not alter the

solutions greatly.

We now consider a special case to show that this prediction is actually true: the case in

which there is an initial heave amplitude only. The solution for Z(s) simplifies considerably:

() z(0) [ 3 + 0.643 s2 + 0.1818 + 0.00815

(s + 0.0147) (s + 0.0583) (s 2 + 0.570 s + 0.149)

When this - expanded into partial fractions, the inverse transforms taken, and the solution

expressed in terms of real time t, we have our final result for this case:

Z(t) = z(0) t0.915e - 0 .882 t + 0.0798e-3.s5 0 t

+ [0.000836 cos (15.6t) + 0.0714 sin (15.6 t)] e- 17.1 t}
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Thus it is actually found for this case that the wake effects are small, since this solution is

quite similar to that found for the corresponding quasi-steady case. (See Figure 17b.) The

components with fast decay are grossly different, to be sure, but they have little effect on the

general nature of the response.

EFFECT OF HORIZONTAL ORBITAL MOTIONS

Equations [21 and [3] gave the wave height and vertical orbital velocities at each foil.

To these equations we must add a third, the equation for the horizontal component of orbital

velocity:

uw = a co e- k cos (vt + k 8 1)

The exponential factor can again be averaged over the span and replaced by A, its mean value.

The expression for lift, Equation [5], can be modified easily to include the effects of

these horizontal velocities. The forward velocity is effectively changed, so that the lift can

be written:

1
L =-p(V-u+) 2 S(co + c')

1

2 p (V 2 -2 u
w V)S (c0 + c 'a)

if uW/V is much less than unity. With this approximation (which is generally quite valid), the

lift is:

L pV ) 1 - + c - (z + V 1 -vw )

Consider now only the orbital motion terms:

/(1 rc 'v 2 co
Lo.m. = V 2 S V V

L=y2) s[1 - V J

The effect of the horizontal component of orbital velocity is obviously small only if the

inequality,

2 co - << C 
[

U V
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is satisfied. It can be seen immediately that the inequality can be reduced to:

2 co
<< 1

C

Actually, for the case considered in this report, 2 co/c' = 0.207, which is not really small

enough to be neglected.

The orbital motion lift forces can be expressed:

L =- pV2) Sa c sin (vt + kl) -2c o cos (vt+ k8l)

1 ac ASc'

2 V= ¥ pg 1+ 4 (Co/ec) 2 sin (vt + k3l - y)

where y = arctan (2 co/c ).

For our special case

1 + 4 (co/c ') 2 = 1.02

y = 11.7 deg

Thus the amplitude of the orbital motion forces is practically unchanged but the phase is

retarded by about 12 deg. It has already been observed that the heave and pitch responses in

head seas are controlled mostly by the orbital motion forces, and that a change in either

magnitude or phase of these forces is reflected directly into the calculated magnification

factors and phase leads. A sample calculation, for the condition that A = 3.0 ft, does indeed

yield this result; that is, that the heave phase is retarded by about 12 deg. Thus the effect of

the horizontal components of velocity is not negligible, and the calculations of the previous

sections would have been significantly improved had they been included.

Evidently, this effect decreases in importance as the velocity of advance increases.

EFFECT OF DOWNWASH

There three components of the downwash behind an airfoil in unsteady motion:

(1) the stea ,orticity, which has its axis parallel to the direction of motion; (2) the unsteady

vorticity in this same direction; and (3) the unsteady vorticity with axis parallel to the span-

wise direction of the wing. This distinction is, of course, arbitrary, especially as it concerns

the second and third components. But it is convenient to consider them individually in comput-

ing their effects on the after foil.
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We will not consider the steady component inasmuch as it simply changes the lift

coefficient of the after foil somewhat and we assume that this lift coefficient is adjusted fur-

ther to compensate for it. This change in the lift coefficient causes some second-order effects,
since it modifies the lift terms resulting from varying span, but the affected terms are fairly

small generally and the change in these terms should be quite negligible.

We consider in detail the third component. It will be of interest to estimate the vertical

velocities induced at the after foil by the distributed vorticity from the forward foil, and we

make a first-order approximation of these induced velocities by assuming that whatever change

of lift they may cause does not in turn affect the vorticity shed by the forward foil. The prac-

tical effect of this assumption is that we calculate the downwash from the forward foil as if

it were alone in the fluid, and we assume that this downwash induces certain vertical veloc-

ities at the position of the after foil. These velocities are then used to compute any changes

in the lift of the after foil.

From Reference 5 we quote the result that if the quasi-steady circulation about a foil is:

IP = Ge i v t

then the vorticity distribution in the wake is:

y(6) = - b e V [301

Ko + K,
2V 2 V

These formulas apply to a foil traveling in the negative e-direction. The trailing edge of the

foil is located at 4 = b/2. Once we find the induced vertical velocity at the center of the after
foil, it will not matter in which direction the foils are moving, so we do not bother to change

any of the formulas before applying them to our foils, which we have taken to be traveling

toward positive =.

We note that the exponential in Equation [30] above can be rewritten:

iv -¥[vt - k (V! c -

e =e =e i(vt - kV)

Thus the vortices will be shed with a wave length:

(VC)
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They stand still in space (except for a small vertical motion) and the second foil encounters

them with a frequency:

2 7r
v'=- V = k(V ± c)=v

This is expected, of course.

We next obtain G, for later use. We note that the lift per unit span of a two-dimensional

ideal airfoil is L '= p V F. The average lift per unit span of our hydrofoil is approximately

L "'= c'(1/2 p V 2) ba. If we consider each spanwise section of the actual hydrofoil as part of

a two-dimensional airfoil, we can consider the circulation about it to be given by:

c V(1 2) ba "VF -- 'V- be
pV 2

(We are considering only the time-dependent part here, of course.)

Explicitly, we now have for Ff and y (6):

0' iki
F=G iVt C . f t [31]f=Gfeit = b (VT- ivZ-iv IT±iaAfe )eive [311

y(4) - gei(v t - k )

(c'/2)b ik I(o +/2 (VT -ivZ - ivIf + ia Afe 7f)ei(v -kV) [32]

Ko + K,

Positive circulation is taken clockwise.

This would be the vorticity distribution if there were no dissipation in the wake.

Actually the amplitude of the vorticity decays rapidly, and we must estimate this rate of decay

before calculating the induced velocity at the after foil. From Reference 7 we find the rate

of decay of energy of the discrete vortices shed from a cylinder to be given by:

Energy density of vorticity - e- x/12 b

where x is the distance downstream from the point of generation of the vortices. The vorticity

described in Reference 7 is formed by a different mechanism than in the present problem, and

the Karman vortex street is not a plane of vorticity, as is assumed to be the case with the

hydrofoil wake. However, the data presented in the reference are the only known measure-

ments concerning the rate of decay of vorticity in a wake of any kind, and it is assumed here
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that the result can be carried over to the present problem. The different generating mechanism
should not matter greatly, and the fact that the Karman vortices are not in a plane is assumed
not to be an important determining factor in their decay. In any case, the assumption of a flat
wake for the hydrofoil is only a convenience.

The data of Reference 7 apply to Reynolds numbers up to 104 . In the special case
considered here, this parameter is about 5 x 104, so the results of the reference must be extra-
polated somewhat. This is probably valid, in view of the fact that the dependence of the decay
on Reynolds number is reported to be very weak in the range of large Reynolds numbers.

The energy of a vortex is proportional to the square of the vorticity, so we take the rate
of decay of vorticity to be:

( - b/2)

y() e 24 b

The vorticity is assumed to be generated at the trailing edge of the forward foil, which has the
coordinate = b/2. The exponential above is entered as a factor in y (0:

y() = qgei(v t-k )e1/48 e-/24 b

We now let v, be the vertical induced velocity at the after foil. From the Biot-Savart

Law, it is given by:

00

v, - e1/ 4 8 ivt f e - i k ' e - / 24bde
2

7r 1b / 2 1

This integral has an infinite integrand at = z, where 1 is the distance between foil centers
(equal to 2 1 in the present case). However, we note that the integrand can be rewritten so
that its imaginary part is regular at this point, and the real part is odd with respect to (e - 1)

for a small neighborhood of the point 41. Therefore it may be expected that the principal

value of the integral exists and that it represents the true physical conditions.
The induced velocity at the after foil was calculated numerically for a special case:

A = 3.0 ft, head seas. The integral above was found to equal (- 1.49 + 0.20 i), so that the
induced velocity is:

9r
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The quantity g is evaluated from Equation [32]. It is necessary to use the relations
for the Bessel functions, K0 and K,:

$7 7r

Ko (i) = - 2 Yo () - i Jo ()

7r Ir

K1 (iz) = -2 J (s) + i - Y1 (z)

so that (K0 + K1 ) = (1.05 - 5.42 i). Finally, the velocity induced at the after foil by the
distributed downwash from the forward foil is:

v, =(0.00729 + 0.0219i)eiVIt (- V + ivZ + iv lfP + iawAf)

At the same time that this correction is made we should include the velocities induced
at each foil by the vorticity around the other foil. Thus, associated with r' at the forward foil
(Equation [31]), there is an induced velocity at the after foil:

Gf

2 ,

There is a similar induced velocity at the forward foil.

When these induced velocities are added to the other components of relative velocity
at the after foil and the equations are solved for heave and pitch, it is found that there is

negligible difference between this result and the previous calculation. Therefore we conclude

that it is reasonable to ignore this component of downwash.

The unsteady components of downwash which consist of vortices parallel to the direc-
tion of motion should have an effect of the same order of magnitude as the vortices perpendic-

ular to the direction of motion. This conclusion is based partly on the assumption that the
orientation of the axis of a vortex does not greatly affect its rate of decay in a wake. A quan-
titative evaluation of the effect of this component would depend heavily on the three-
dimensional properties of the hydrofoil, which are not well understood. Therefore, we do not
consider it further, but assume that it is probably no more significant than the component

considered in detail above.

COMPARISON OF THEORY AND EXPERIMENT

The experiments, which have been referred to several times, are described in detail in

the report by Leehey and Steele. 3 Figure 2 is a simplified drawing of their apparatus for

measuring heave and pitch.
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The experimental data have been plotted on the same figures in this report which show

the theoretical predictions. (See Figures 4 to 7, 9 to 12, and 17.) It can be seen that the

agreement is good, with the following exceptions:

1. The experimental heave and pitch phase leads in head seas are about 30 deg less than

the best theoretical predictions.

2. For the head seas wave length which equals the foil spacing, the prediction of very

small pitch amplitude is not realized.

3. In following seas, the predicted heave amplitudes are too high by as much as 15 percent.

4. The observed response to a heave transient is damped much more quickly than is

predicted.

A possible cause of the first difference is the neglect of waves generated by the

forward foil, with their effect on the after foil. Since the craft is oscillating at the frequency

of encounter, it will generate waves at this frequency. Therefore the after foil will experience

periodic wave forces that are somewhat different from those used in the calculations. This

difference in the after foil forces could possibly cause the observed phase angles. To the

extent that this is true, the present theory must be considered as incomplete.

There is some ambiguity in the test results concerning the pitch amplitude for the

condition that the wave length equals the foil spacing. The oscillograph records provide the

data shown in Figure 6, but motion pictures of the tests show the existence of negligible

pitch for this condition. It is noted that the pitch record was obtained by taking the difference

of two electrical signals, both of which contained heave signal. Furthermore, the pitch sig-

nal for the condition in question is just 180 deg out of phase from the heave signal. Therefore

it seems possible that the measurements are in error, and in view of the evidence provided

by the motion pictures it is concluded that the data do not invalidate the theory for this

condition.

The third point of disagreement, concerning heave amplitudes in following seas, may

possibly be due to the existence of further nonlinearities in the system, which were not con-

sidered in this report. For example, the lift-curve slope is not actually constant, but depends

in some manner on aspect ratio. Also, unsteadiness effects on the varying-span-forces were

not calculated; this is a possible source of error.

It is also possible that the experimental results may again be at fault. At the low

frequencies of encounter involved, a small amount of damping in the bearing pivots could

cause a significant reduction in the measured amplitude. The experimenters have indicated

that the craft constantly tended to yaw, and it might be expected that this would cause at

least a small amount of binding in the bearings.

The reason for the failure of the theory to predict the transient response is not known.

The theory for this type of problem is entirely similar to the theory for wave response, and its

rather great success in the latter case indicates that the theory is probably not seriously in

error.
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CONCLUSIONS

It has been shown that the theory developed in this report can be applied to the con-

ditions of the tests of Reference 2 with considerable confidence. It is believed with reason-

able certainty that the theory can be applied to situations in which the conditions are quite

different. Some restrictions have been noted.

In particular, the following points have been discussed:

1. A linear, quasi-steady theory, such as Weinblum's, gives very good predictions of heave

amplitudes in head seas and fair predictions in following seas. The accuracy of pitch pre-

dictions is uncertain because of possible errors in the experimental data, but since the theory

is so successful for heave predictions it is reasonable to assume that it will give valid results

for pitch also. However, it must be emphasized that Weinblum's equations must be modified to

include the effect of depth on the water orbital velocities. Without this modification, the pre-

dicted amplitudes of motion in typical cases are about twice as large as they should be.

2. The predicted heave and pitch phases are about 50 deg in error for head sea conditions,

when calculated as described above. The cause is not entirely known. One possibility that

was not considered is that the waves generated by the forward foil, acting on the after foil,

are responsible. Such waves were not considered in the theory.

3. Neglect of the horizontal component of wave orbital motion, as in Weinblum's equations,

causes about 12 deg phase error for the head seas conditions studied. This error should be

smaller for following seas conditions. In general, it will be most significant in situations in

which the lift coefficient is high and the lift-curve slope is small; that is, at low speeds.

4. It is necessary to use a nonlinear theory for predicting the important steady components

of heave and pitch. According to the nonlinear equations studied, the steady component of

heave which appears in both head and following seas is often quite comparable with the ampli-

tude of oscillation, and sometimes is even larger. It is always downward, tending to cause the

craft to crash. There is no experimental confirmation available for these predictions.

5. When there are large steady components of heave or pitch, the foils oscillate about mean

positions which are quite different from their calm water equilibrium levels, and thus they

encounter different orbital motions of the water. This results in a small decrease in the pre-

dicted amplitudes of motion, especially in following seas, where the amplitudes are usually

large. This is generally the only way in which the nonlinearities of the system affect the

oscillatory amplitudes.

6. Cc -!eration of unsteadiness improves the phase lead predictions for head seas by

about 10 uog in the cases studied. It causes practically no change in predicted amplitudes for

head seas conditions, but reduces the amplitudes in following seas by as much as 10 percent.

It is important to note that the major forces on the foils are reduced by as much as 40 percent

in head seas when unsteadiness is considered, but because all of the forces change in approx-

imately the same manner the net result on the motions is small. In situations in which the
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inertia is much more important than in the experiments considered, there may be a significant

reduction in motions because of unsteadiness. Neglect of unsteadiness should always produce

conservative results.

7. Downwash from the forward foil causes negligible effects on the after foil.

Again it is pointed out that several factors were neglected in the theory:

1. The effects of generated waves were not considered.

2. Several sources of nonlinearity were not investigated.

3. The effect of the surface on the lift of the shallow part of a foil was ignored.

4. The effects of unsteadiness on the forces due to varying span were not calculated.

The most important lack of knowledge about the dynamic response of hydrofoil craft

results from the paucity of experimental information. Reference 2 includes the only known

systematic accumulation of data. In that project, Leehey and Steele were greatly handicapped

by the limited speed range available with their carriage, especially in their investigation of

following sea responses. A wave only slightly longer than their craft had a celerity as great

as the maximum speed of the carriage. This is a condition which is very unlikely to occur

with a prototype hydrofoil craft. Therefore it was not possible to investigate much of the range

of following-sea conditions which is of interest. A higher available test speed would also be

useful in determining the effect of the "mass ratio"; that is, the ratio of the mass of the craft

to the added mass of the foils. A higher value would be possible only with higher forward

speeds. It has been mentioned previously that unsteady effects might be more noticeable if

such a variation were considered.
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APPENDIX

ANALOG COMPUTER SETUP

Figure 18 is a block diagram of the analog computer setup. The layout follows closely

the form of Equations [6] and [7]. The elements which form the quantities af, a., Of and

a are summed and then multiplied appropriately by the servos. Note that the output of the

servos is equal to the product of the inputs divided by 100. The proper quantities are taken

from the right-hand side of the diagram and summed at the left to form ' and i. These are

integrated twice, thus becoming available for the first summation mentioned above.

The forcing function, representing the wave amplitude and the orbital motions, is gen-

erated by the secondary circuit shown at the lower left.

Initial conditions can be inserted at each block marked "I.C."

The computer solutions were obtained at a speed 1/10 of the real craft rates; that is,

1 sec of real time was equal to 10 sec of computer time. This change was necessary because

of the frequency response of the plotting board. It also simplified the problem of scaling force,

for the computer, offsetting the factor of 1/100 introduced by the servo multiplication.
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