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NOTATION

Area
Coefficient in partial-fraction expansion

Coefficient matrix corresponding to inertial coefficient in the
matric differential equation

The sth row and jth column element of the matrix A

Coefficients of the characteristic equation associated with the
zeroth, first, second, and third power of s, respectively

Buoyancy force
Coefficient in partial-fraction expansion

Coefficient matrix corresponding to damping coefficient in the
matric differential equation

The ith row, jth column element of the matrix B
Coefficient in partial-fraction expansion

Coefficient matrix corresponding to the spring constant in the
matric differential equation

Celerity of wave

The ith row, jth column element of the matrix C

Center of buoyancy

Center of gravity

Static center; location of point where (W - B) acts
Equilibrium drag force

Coefficient in partial-fraction expansion

Denominator expression in s giving the poles of the transfer function
Diameter

Coefficient in partial-fraction expansion

Characteristic matrix, E = As2 + Bs + C

Exponential

The ith row, jth column element of the matrix E
Excitation matrix in the matric differential equation
Components of total external force along #, y, or 2z axis
The ith row, jth column element of the matrix F

Components of perturbation force input along # and 2z axes and
perturbation torque about the y axis, respectively.
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5(8) s-dependent portion of transfer function; ’fT(s) = KZ?(s)

g Gravity constant
ﬁ(s) Transfer function; ﬁ(s) = Ka'(s) = Zf“t
Zin
Hy (3) Generalized transfer function of the towed body
ﬁc (s) Generalized transfer function of the cable
17} (s) Generalized transfer function of the feedback link
Tis (s) Generalized transfer function of the ship
h(2) Response to a unit impulse
I, Iy, I, Mass moment of inertia about z, ¥, or 2z axis
lxy, lyz, I, Products of inertia
Im, ¢ Designation for imaginary
z Row index of matrix
J Total including added moment of inertia about y axis
] Column index of matrix
K Gain function
kys Koy kg Added inertia coefficient along z, y, 2z axis due to hydrodynamic mass
k’ Added inertia coefficient about y axis
L Lift force
A Characteristic length
M Hydrodynamic pitching moment about y axis
3N
M Partial derivative —
q dq
IM
M. Partial derivative —
q J q
. ... oM
M Partial derivative —
u ou
. .. M
M, Partial derivative —
Ju
. .. OM
M Partial derivative —
w ow
. .. OM
M. Partial derivative ——
w dw
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Components of amplitude contributing to pitch response
Mass

Total including added mass along z, y, or 2 axis

Numerator expressions in 8 giving the zeros of the transfer function
Angular velocity about # axis

Angular acceleration about z axis

Total external moment about z, y, or 2 axis

Angular velocity about y axis

Angular acceleration about y axis

Generalized displacement; input or output in transform plane
Generalized displacement of the towed body

Generalized displacement of the cable at the towpoint
Generalized displacement of the feedback

Generalized displacement of the ship (towing platform)
Generalized input due to the wave

Coefficients of inverse transform of pitch response related
to the tension disturbance T (¢)

Angular velocity about z axis
Angular acceleration about z axis

Coefficients of inverse transform of pitch response related
to the cable angle disturbance y (¢)

Complex variable in Laplace transform

Towline tension at cable-body junction; Perturbation tension input
Equilibrium tension force at towpoint

Component of T along z or z axis

Time

Towpoint

Absolute linear velocity of origin of z, y, 2 axis; speed of advance

Component of absolute linear velocity U along z axis;
Perturbation velocity component along # axis

Time rate of change of  in direction of z axis
Volume

Component of absolute linear velocity U along y axis;
Perturbation velocity component along y axis
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Time rate of change of » in direction of y axis
Weight; W = mg

Component of absolute linear velocity U along 2 axis;
Perturbation velocity component along 2z axis

Time rate of change of w in direction of 2 axis

Component of hydrodynamic force along z axis
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ag

X
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Partial derivative
Partial derivative

Partial derivative

. ... 09X
Partial derivative 5—

. X
Partial derivative —
Jw

.4

ow

Partial derivative

Moving axes fixed in body

Space axes

z coordinate of center of buoyancy

2 coordinate of center of mass

z coordinate of static center

@ coordinate of towpoint

Component of hydrodynamic force along y axis

Response matrix corresponding to the dependent variable in the
matric differential equation

See 2z, ¥, 2

Component of hydrodynamic force along 2z axis

Partial derivative —
q

. .. Z
Partial derivative ——
ag

. Z
Partial derivative —
du
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Z
Partial derivative —/—
du

. o Z
Partial derivative —
w
. . .. 92
Partial derivative <
Jw

See z, y, 2

z coordinate of center of buoyancy
2 coordinate of center of mass

2 coordinate of static center

2 coordinate of towpoint

Angle of attack
Angle of drift or sideslip

Cable angle measured between space vertical and the projection
onto the 2z plane of the tangent to the towline at the towpoint;
perturbation cable angle input

Incremental change
Characteristic equation
Phase angles

Phase angle combinations
Wave length

Pi constant

Zeros of transfer function

Mass density of fluid medium

Poles of transfer function; roots of characteristic or stability equation

Period in seconds
Dummy variable of integration

Pitch angle in radians

Cable angle measured between the body’s vertical axis and a tangent

to the towline at the towpoint
Forcing frequency in radians per second
Natural frequency in radians per second

Phase angle in pitch response
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Sﬂ_l
1(¢)
5(@)
lle ;1!
|E|
16
adj E
tr E
E-l
AB

Phase angle related to tension input

Phase angle related to cable angle input

_ o a , d? i
Time derivative operator, 9= —, 9“= — , P" = —
g dt? dt"

Laplace transformation operator, £LF(¢t) = [~ e 5! F(¢) dt
0

Inverse Laplace transform operator, -1 F (s) = F (¢)
Unit step function

Impulse function, &(¢)

Matrix, E = el

Determinant

Absolute value of 6

Adjoint matrix

Transposed matrix, tr E = He’.i||

Inverse or reciprocal matrix

Matrix product, AB =n %, @ bki”

Convolution operator
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NONDIMENSIONALIZING DENOMINATORS

Length or distance l
Area 12
Volume 13
Time /v
Linear velocity U
Angular velocity or circular freauency U/t
Linear acceleration U2/l
Angular acceleration v¥1?
Mass Y% 3
Force or weight Y p U212
“{oment or torque y p U213
Inertia Ypl®
Tirst partial derivative of force with respect to:
linear velocity Y p Ul?
linear acceleration Yo 3
angular velocity %p ved
angular acceleration % plt

First partial derivative of moment with respect to:

linear velocity y pUL®
linear acceleration yplt
angular velocity Y pUL*
angular acceleration Ypld



ABSTRACT

The pitching behavior of a submerged towed body is analyzed on the
basis of the equations of motion. Restricting motion to the vertical plane of
tow and following certain linearizing assumptions, the open-loop pitch response
of the body is derived for a general input at the towpoint. The resulting analyt-
ical expression in the transform plane is then solved in the time domain for sev-
eral simplified reference inputs. The steady-state pitch response is then exam-
ined with regard to minimizing pitch amplitude. It is shown that this process
depends on certain parametric relations among the hydrodynamic stability de-
rivatives, the equilibrium conditions of the towing-force vector, the mass loading
conditions, the operating frequency, etc.

Two specialized extremes to the general equilibrium condition in the first
towing quadrant are given as examples and are discussed: first, the case of a
heavy low-speed towed body with a very high *‘lift-drag’’ ratio; and secondly,
the case of a light high-speed body with a very low ‘‘lift-drag”’ ratio.

INTRODUCTION

When dealing with the many design problems associated with submerged cable-towed
bodies, the depth and stability requirements can usually be satisfied on the basis of an analy-
sis of calm-water behavior. However, in a heavy sea, severe motion of the towing platform
can generate a forced input, causing undesirable pitching motion of the body, even though the
gross requirements for calm-water operation are satisfied. Thus a body design that was evalu-
ated solely on the basis of calm-water towing may no longer be as readily acceptable in light
of more refined”requirements. The presence of a forced input due to motions of the towing
platform leads to the inevitable question: How should the towed body be designed for minimum
pitching? To shed light on this problem, it is necessary to délve into the fundamentals of
towed-body dynamics.

The present report was conceived as one facet of a research project entitled ‘‘The
Effect of Platform Motion on Cable-Towed Bodies,’® which is being carried out. at the David
Taylor Model Basin under the Fundamental Hydromechanics Research Program, NS 715-1021
(S-R009 01 01).

This report deals with a theoretical investigation of the open-loop pitch response of an
oscillating towed body resulting from some disturbance input at the towpoint of the body. The
theoretical treatment is restricted to the longitudinal equations of motion of a body (three
degrees of freedom—pitch, heave, and surge). Using the Laplace transform technique, the
response matrix is derived from the linearized mathematical model on the basis of small per-
turbations about the equilibrium condition. Taking only the pitch degree of freedom, the

lRet‘erences are listed on page 65.



response is generalized in terms of an arbitrary input. Then for several specified types of
inputs, the steady-state pitch is obtained in the time domain by means of simple transform
inversions. The amplification factor which is extracted is then used to discuss the possible
ways of reducing pitch. Two simple cases are discussed: (1) A heavy low-speed towed body,
or one with very high weight-drag ratio; and (2) a light high-speed body, or one with very low
weight-drag ratio.

The general organization of this report is as follows: the body contains an orientation
of the physics of the problem and extracts from the appendixes only those mathematical rela-
tionships which are necessary to discuss physical applications. The appendixes contain the

bulk of the mathematics for those readers who are interested in the detailed derivations.

GENERAL CONSIDERATIONS

One of the most acute problems encountered in the towing of a deeply submerged body
by cable stems from the motion of the towing ship in a seaway.? The resulting vertical motion
of the ship’s fantail, taken as the towing platform fromwhich the cable-body system is attached,
can cause the towed body to undergo oscillations in pitch which could impair its intended
effectiveness.

The sophistication of automatic control and its attendant problems, such as responses,
noise interference, vulnerability due to electronic failure, and the added space requirements,
suggests the desirability of an exploratory survey to determine the feasibility of pitch reduc-
tion by ‘‘passive’’ means alone. Specifically, this implies the ‘‘controls-fixed’’ aspect through
judicious body design, loading, fin arrangement, etc.

Such a study can be accomplished best if the mathematical relationships are determined
for the various parameters appearing in the pitch response for specified inputs to the body.
The types of inputs chosen, besides being mathematically convenient, have physical towing
analogies. Thus, the resulting analytical solutions of the pitch response can be used con-
veniently as a guide for design. The design problem which deals with pitch reduction for an

assigned input is essentially a minimization process, once the parameters are isolated.

SOME ASPECTS OF THE OVERALL TOWING SYSTEM

The overall dynamical problem associated with ship-cable-body systems, although
actually very complex, may be represented simply by an elementary analog consisting of three
basic black-boxes in tandem—ship, cable, and body.3 (See Figure 1.) The external input ?w
to the composite system shown in Figure 1 is the seaway, which, for simplification, is assumed
to act only on the ship. This is tantamount to saying that the body is submerged deeply enough
so that the wave disturbances acting on the body itself are negligible, and that the near-surface
disturbances on the uppet-portion of the cable are of second order. The output of the ship 'q‘;
resulting from the wave input depends upon the particular characteristics of the ship. This

relationship can be given by the transfer function Es (s) which, in operational notation, relates

2



Output Motion

a wove qsmp shlp_ q fdbk qco ble qbody

——*Ship + Cable Body -
Input Waves q
q l
feedback Feedback body

Figure 1 — Diagrammatic Analogy of Towing System

the output 'q: coming out of the black-box representing the ship and the inp‘ut?;u going into

it.
_ - 7. (9
Hs(8)=KGs(8)= ZITv(s)

If the transfer function of a particular loop has been synthesized, then the output or
response can be determined readily for any input, providing, of course, that the system be-

haves linearly.
T () =H,(s) T, (5)

Similarly, there is a unique output-input relationship attributed to each of the other

components.
~
Cable: HC = e o~
99
~ 0
Body: Hy= =
9c
~ Y
Feedback: Hf = =
)

~ —~ .
where H and q are functions of a parameter s.



It must be noted that the input ('g: —?}) entering the cable black-box is represented
as the result of the combined outputs of ship and feedback link taking place at an appropriate
“mixer.’’ For convenience, it is assumed that the output of the feedback link enters the
mixer at a point along the line, which is ahead of the cable loop. Effectively, this amounts
to replacing the cumulative influence of the body’s position and motion on each elemental
cable element by a single equivalent input which enters the mixer at one point forward of the
cable loop. Thus, the foregoing simple approximation will result in the same input entering
the body’s black-box.

In addition, it is postulated that the dynamic forces due to motion of the body and cable
do not in any way contribute to the motion of the ship. The a priori reasoning is easily justi-
fied when the mass of the towed body is small compared with the mass of the ship.

To avoid treatment of the complex ship-motion problem, it is expedient to bypass the
seaway as the input to the overall system at the starting point. Here, it is convenient to
choose the fantail motion of the ship as the starting point. This is tantamount to taking the
resultant vertical motion output of the ship at its fantail, regardless of how it was compounded,
as the towing platform initiating the disturbance input to the reduced cable-body system. The
overall problem then reduces to that of finding what the response ﬁ;} of the body would be for
a given starting input motion 7, at the towing platform.

Using the previous relations, the response of the body can then be considered in func-

tional form as

H H,
c b —~
qb(t)=s£_1 —=== 1
L+ HeH Hy °°

where €71 is the symbolic operator denoting the inversion of the Laplace transform of the
expression in braces.

The foregoing equation, an idealization as it appears to be through the many assump-
tions made, is quite involved and requires further investigation for a quantitative solution. \
It would require further research into the relatively unexplored field of ship-cable-body
dynamics.*5 This implies delineation of /iTc and ,Tf’ the transfer functions of the cable and

the feedback elements, respectively, for a given input 'q'; starting at the ship’s fantail.

ANALYTIC APPROACH TO THE IMMEDIATE PROBLEM

The immediate study is not overly concerned with a precise prediction of the motion
response of the body following an input at the towing platform; such a prediction would
involve very complicated ship-cable-body dynamics. The present objective is rather to de-
termine how the design of a body can be improved to obtain minimum response on the basis
of the inherent characteristics of the body alone. It is convenient, therefore, to isolate the
body’s black-box from the overall system and to temporarily ignore specification of the trans-

fer function of the elements preceding the body. The resulting output of the preceding



elements is then treated as some input to the body. Accordingly, the overall problem is re-
duced to consideration of the particular body parameters which affect the motion of the body
subjected to some arbitrary reference input at the body’s towpoint. Based on this arbitrary
input, without specifying for the time being how it is generated, the immediate problem is
approached in two parts.

First, the equations of motion are investigated on the basis of linearizing assumptions
for small perturbations about the equilibrium condition in the vertical plane of tow.

Using the Laplace transform technique, the equations of motion are solved specifically for
the pitch response by means of a matric inversion. The resulting pitch response is expressed
in terms of the body’s hydrodynamic derivatives and its inertial and metacentric parameters,
for generalized inputs in terms of perturbated cable tension and cable angle.

Then, assuming some specialized inputs corresponding to particular towing situations,
the pitch response is obtained in the real or time domain by solving the inverse Laplace
transform. The relevant parameters, including the frequency relation, affecting the pitch re-
sponse are now isolated. The resulting algebraic expression for the pitch response amplitude

provides a rational basis for future studies in designing a body for minimum pitch.

DESIGN CONSIDERATIONS FOR PITCH MINIMIZATION BASED
ON SOME SIMPLE TOWING ANALOGIES

The coordinate system chosen to identify the body @, y, z axes and the space Zy Yoo

2, axes is shown in Figure 2.

Figure 2 — Coordinate System Used

Based on the assumption of motion only in the vertical plane, the linearized, open-loop
pitch response of a towed body has been derived as
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[Eq. 38, App. Bl

To solve the above equation explicitly in the real time plane, the input functions T'(¢)
and y (¢) must be prescribed. The success in designing or modifying the ‘‘passive’ body for
minimum pitch now lies in the choice of the input functions which one considers to be repre-
sentative of field conditions. For expediency, the forcing functions chosen for this study are
mathematical idealizations of those expected at sea. This approach is useful for many reasons,
one of which is to obtain a simple solution while still retaining physical realizability. For
analysis, the relationships of the body’s characteristics affecting pitch can then be isolated.
Later investigations may provide actual numerical values for the design of a body less prone
to pitch under the same environmental circumstances.

A few examples of cases having simple physical towing analogies are discussed in the
succeeding paragraphs.

THE HEAVY LOW-SPEED TOWED BODY
For a heavy low-speed body or one with a high lift-drag ratio, the following initial con-
ditions are assumed to exist at the body:
1. The trim in the calm-water equilibrium towing is zero;
2. The cable element (at the body) is fixed perpendicular in space;

3. The tension force at the body approximately balances out the body’s resultant
weight in water.

In addition, the perturbated cable angle y (¢) is assumed to be insensitive to deviations about



the mean which is at y, = 0. The three assumed initial conditions and the approximation
y(t) = 0 are discussed as Equations [60a] to [60d] in Appendix D.

With these assumptions, the pitch response may be described by

r N
Z
w
s -—
m3Tp S

m3J—M'quo (S—Gl)(8—02)(8—03)

() = < > T(s)
M
s + —=
M, M,
S myJ-MyZ; | (s=0)) (s-0,)(s-0,)
L vl ) [Eq. 61a, App. D]

where o, 0,, 05 are the roots of the characteristic equation given in Equation [39].

Response to a Unit Step Input

One interesting aspect of the response problem concerns the determination of the
pitch output when the body is disturbed by a unit step input. Physically, this occurs when
the body is interrupted from equilibrium towing in calm-sea condition by a sudden pullup of
the body with an incremental towing force which is then held constant. This is apt to happen
either when the body is undergoing recovery to the towing ship or when the operational depth
is suddenly changed.

On the basis of a simple unit step input posed by Equation [64], the steady-state part
of the response is selected as a design criterion. The expression for the steady-state pitch

in the ¢ plane is given as

z, Zw +M,

1€ =
( )]steady-state Zw W =B) (zs -z T)

[Eq. 68, App. D]

It can be seen from the foregoing equation that the following characteristics conducive to

effecting small pitching amplitudes in the case of a unit step input are:
1. (W-B), the weight in water, should be large.

2. (zs ~27), the distance between the static center through which (W - B) acts and the
towpoint through which T acts, should be large.

3. @p, the horizontal arm of the towpoint measured from the CG, should be small.

M
w
4. 7 the ratio of the hydrodynamic static-moment derivative to the normal force
w
derivative, should be small.



In the actual design problem, the modification alternatives suggested by items 1 and 2
are generally difficult to effect a significant change so that the benefits of improved redesign
along these lines are fairly well limited. The alternatives suggested by items 3 and 4 can be
applied to the optimization of the pitch on the basis of the numerator of Equation [68] by
considering:

M

w
Tp+ —=0
w

This expression can be interpreted in two ways. The first interpretation suggests that
the equality be maintained through an adjustment of the particular parameters. The second,

however, is preferable, and this is to ensure that the towpoint is located above the center
M
of gravity;|i.e., zp > 0. In addition, the ratio ;ﬁ)- should be kept as small as possible conso-
|

“w

nant with minimum static stability M, . This can be achieved by the addition of damping fins
ahead of, or at, the towpoint. These fins can either decrease or maintain the static stability

M, , depending on their location; both alternatives should increase Z .

Response to a Unit Impulse

There are times when the towed body will be excited by an instantaneous tension load
of high intensity which occurs over a very short time interval and then disappears. The physi-
cal analog to this type of input, known as an impulse, may easily be visualized as a sudden
jerk on the body applied through the towline. This type of input can actually happen when
the towing ship is slamming,® or when the body is excited by resonance conditions on the
cable system corresponding to the critical speed of wave propagation along the cable.”

If the transient part of the response is ignored as of little use for design purposes, the

steady-state or asymptotic pitch response is shown by Equation [72] in Appendix D to be

~

lim gy - lim Big -0
> o s->0

This result is as expected, since the body must first satisfy Routh’s ‘‘go, no-go”’
criterion for stability.

If, however, the design was motivated on the basis of the transient response, it would
be necessary to solve the characteristic stability equation explicitly for the roots ¢, 0,, 0.
The design possibilities of having either three positive real roots or three negative real roots
can be discarded because the first implies an unsatisfactory body and the second is trivial.
For most body designs, there is more apt to be one real root and a pair of complex conjugates.
Knowing the minimum stability bounds, it may be of some use to consider how to adjust these

roots in the s plane to get the desired transient response in terms of specified rise time,



overshoot, etc. It is more advantageous, however, to use an input function which will better

simulate more normal towing situations, as indicated in the next section.

Response to a Sinusoidal Input

The most representative input to the towed body is that which simulates the motions
transmitted by the towing ship in a sustained seaway. The resulting steady-state response
of the body will be oscillatory with a period equivalent to the ship’s period of encounter. If
the transient part of the response is neglected, a more rational basis of approach can be
taken that would result in an analytical expression for minimum pitch design information.
The sinusoidal input can be used to simulate the foregoing situation. The steady-state so-
lution of the pitch response due to a sinusoidal input has been derived in Appendix D as

Equation [96]. The magnification factor is given by:

o \2|% M, o \2 | %
zT1+-Z +Z—1+M

w w _w
61 = I7] i M
2\2 2 2\2 Y4
W-B)(zg-2) Jf1-2 N 12
%o %o it
(12 al (1»3

(Eq. 99, App. DJ
where

a0=—-Zw(W—B)(zS—zT)

=myW-B)(ag-2.)+ M Z, - M, (m+Z)

-
i

a, =- [(m3Mq +JZ,) + My (m+ Zq) + MwZ‘;]

m3J - M!l:’Zli

The above relations are applicable only for the special case of a very heavy body with
a high weight-drag ratio.

To achieve minimum pitch, the previous arguments presented in the step-input case
(which does not have the frequency dependent terms) will also apply here. In addition, since
the pitch magnification is now frequency dependent, it is imperative to design the body to
have its resonant frequencies away from the operating range of frequencies. The resonant
frequencies appearing here are those frequencies which make the denominator go to zero and

hence result in || approaching infinity in the limit. This happens when



For an approximation, the driving frequency » on the body can be taken to be equal to
the towing ship’s frequency of encounter. This can be estimated on the basis of knowing the
ship’s speed of advance and the wave length of a simple two-dimensional seaway. Assuming

a ship advancing into a head sea, the frequency of encounter is

27 c+ U (217(/)% 27U
—-] +
A A
Depending upon the particular ship used, the speed of towing operation, and the wave length,
the period T may vary from 4 to 6 seconds.
Hence, once the frequency of encounter is known, the resonant condition of the body

can be avoided by adjusting

a
0 22 w?
<
@2
a
1 22 w?
a3
a, a
Care should be exercised at the same time not to allow — to become equal to — simulta-
%2 a, a, 23
neously with the input frequency. If the critical frequencies — and — are kept far over
a a
2 3

toward the direction of increasing o, the problem of large pitching amplitude due to resonance
will be minimized.
The remaining terms which affect pitch amplification appear in the square-root terms of
VA M
the numerator in Equation [99]. By making both of the ratios — and I as large as possible
m .
3 w Z
compared to the driving frequency o, further gains may be accomplished. The ratio —~ can be
M M3
made large by increasing Z , and M—w can be made large by making M, small comp’:red to
w
M,. In this manner, there will be no conflict with the earlier requirement of small — which

w
appears as the coefficient of the second square-root term in the numerator.

In the frequengy response range, a very small o is advantageous for small pitching
amplitude. In fact, for = 0, the resulting equation for the amplitude is identical to that for
the step input, and the optimization of the pitch follows the same arguments as before.

Likewise for @ = =, it can be shown that the pitch will approach zero in the limit which

is identical to the results previously obtained when the body was excited by an impulse.
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THE LIGHT HIGH-SPEED TOWED BODY

To solve the case of a light high-speed towed body, without losing sight of the actual
physical situation, the following conditions are assumed to apply (see Equations [101] in
Appendix D):

1. The trim angle 6 is zero in the equilibrium condition of tow.

2. The cable angle y is #/2 on the basis of the cable being horizontal at the body.
3. The equilibrium tension at the body is mostly due to drag.
4

. The perturbation cable angle y(¢) is negligible in amplitude.

With these a priori considerations, the pitch response can be expressed as
zZ

w

8 - Y
~ m3zT m3 ~
(s) = T(s) [Eq. 102, App. D]
m3J—Mu~)Zq- (3"”1)(3"“2)(3“’3) 1 PP

where again ¢, 0,, 0, are the roots of characteristic Equation [39] with the particular equilib-

rium conditions listed above.

Response to a Sinusoidal Input

In the case of a light high-speed towed body only a sinusoidal input is chosen for the
tension perturbation. In this case, however, the tension acts in a horizontal plane instead of

vertically as in the heavy low-speed towing case. The steady-state solution in the time plane

is given as
@ 2 i
|T| Zyep |1 +[—— sin (w? - 7,)
~Zy
m
<9(z:)]stmdy state = 3 o
2 2\2 %

{Zw[zS(W-B)+:cTD]+MwD} 1.2 H2 1.2
a, ay ay

[Eq. 108, App. DI
where

ag=-12, lz,(W-B) + z D1 + M, D}

a, = {my [zs(W—B) + 2,D] + Mqu -M;D-M, (m+ Zq)}
a, =~ f(mqu +JZ,) + M, (m + Zq) + MwZéi

11



The amplitude can be seen for this case to be:

@ 2 1/2
IT) 2, | 1+ —
_w
m
3
6] = m
w 0)2 2 © 2 w2 2\ %
(W—B)zS+D(mT+—) 1-— \ +/— 1- —
Zw il-?. ao ay
2 2y a3

[Eq. 110, App. DI

Comparing this amplitude expression with that of the previous case of a heavy low-

speed towed body, it can be seen that to achieve minimum pitch, it is desirable to:

1. Decrease z, the vertical moment arm of the towpoint with respect to the CG of the
body as much as possible. This is the moment arm through which the perturbation input ten-

sion |T| acts as a horizontal disturbance force. Y

w
9. For a given D, the equilibrium drag force, keep the ratio 7 as high as possible.

w
This can be achieved by designing the body with a high restoring, pitching-moment derivative

M, ; the normal-force derivative Z  should be kept small. To satisfy the conditions of large
M, and small Z | simultaneously, it is necessary to have a small (horizontal) control surface

mounted as far aft as possible within practical dictates of a good functional design.

3. Likewise for a given equilibrium drag D, the horizontal moment arm of the towpoint z .
should be made as large as possible. The simultaneous satisfaction of this requirement with
that given by item 1 implies that the towpoint is lotated at the nose of the body. The towing
configuration suggested by this requirement would result from the towing of a body by either
a submarine or a blimp on almost the same elevation. This type of towing is not very realistic

for the case of a surface ship required to tow a body at a deep depth.

4. For a given value of (W -B), which is generally fixed by functional requirements of a
towed body, zg, the vertical distance (generally negative) of the static center through which
(W -B) acts should be kept small.

5. As in the heavy low-speed towing case, the body should be examined from the frequency

standpoint. The resonant or critical frequencies given in the denominator by the ratios
a a

0 1
— and — must be adjusted to stay well away from the operating frequency of encounter.
a a

2 3
If possible, these critical frequencies should be kept far over to the right of the expected
range of operation in the frequency response diagram, as indicated by Figure 3.

a a

In the process of designing for minimum pitch through adjustment of the -9 and L
a a

2 3

12



Figure 3 — Optimization of Design in the /
Frequency Response Range Selected /1

Operating
Range

n 02 O3

AN

ratios, the body must be kept stable at all times. This is a necessary condition which can be
checked by using the Routh criteria,
AS @ > o, the resulting pitch amplitude (as in the heavy low-speed towing case) should

approach zero in the limit corresponding to the response to an impulsive excitation.

lim |_0|__
@ o |7

At o = 0, the pitch amplitude is synonymous to the response resulting from a step input,

|6l 2r

IT|

Mw
®=0 3z W-B) + D(a;T + —Z-->

w

THE GENERALIZED CASE

The general case for which the previous two cases have been presented as the opposite
extremes embraces all of the towing situations in the first quadrant. Since it is slightly more
complex than the preceding cases, it is purposely presented last.

Response to Sinusoidal Inputs T(¢) and y (¢) in Parallel

The case under consideration is actually the inversion of the generalized pitch response
given by:

13



- —
e W
ms3 m3
_— 1 x s
mad Mgz, ST Y0 Er Y| oo (s-0p) (s-03)
< — ¢ LT(t)
s+ 2
Mg M
T Mgy 0 | (5mop) (s=ay) (s-0y) J
(
LO(t) = S_E_,,_, W
Tomg my
— Syg — iny,)
m3J—M';,Za 7700870 =~ Fr PMYo (3_01)(3"‘72)(8"03)
+ﬁ L @ y(t)
s + &
ToMy . My
4 ———— 81N
m3'I-Mu°)Z6 }’o (8-01)(8—02)(8—03)
| L / i

[Eq. 38, App. Bl

where o,, 0,, 03 are the roots of the characteristic Equation [39].

The initial or equilibrium conditions in this case are dependent upon the equilibrium
drag force D and vertical force (W ~B); the following conditions are assumed to apply:

1. The trim angle 6 is zero.

9. The cable angle y, measured with respect to the perpendicular space axis is formed by
1 P
W-B
3. The equilibrium tension is the resultant of the horizontal and vertical forces on the
body when no perturbations are present; i.e., Ty = (D2 + W-B)21%.

the horizontal and vertical equilibrium forces; i.e., y, = tan™

Assuming sinusoidal functions for the perturbation inputs, the resulting inversion of
the generalized pitch response is

14
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T o \2 %
_lal Z,(zpsinyg+apcosy,) |1+ ~
0 w
™3

sin(w? ~
o\T ot
+ M, cosy, |1+
w Mw
M,
J
-
Ileof 0 \2 %
+ — 4Zw(zTcosyo—x,siny0) 14+ —
(/] w
my X
’,sm(wt—xy)

L J -
B(t)] =
steady state 1~ i 2 + ._m_ ? —i 1
%o % %y
o/ e o

It can readily be seen that the total pitch is made up of two contributions in parallel

[Eq. 116, App. D]

and may be portrayed according to the idealized box diagram in Figure 4.
The total amplitude may be obtained as the resultant of the component due to the ten-

sion and the component due to the cable angle.

%
161 = [(10712 + 16,19

where [0..| and |6y|, taken from Equations [118] and [119], respectively, may be examined

from the following relations

o \2|% Mw 14
(2 sinyy + 2, cosy)) |1+ — + ——cosy,
1971 M3
7| M, 2 2\ 2\ %
zs(W—B)+T0(a:T sinyy ~ 24 cosy0+?- sinyo> 1- l—a—
w 1
@ 21 43
r-————— b |
T K
o |
Figure 4 — Box Diagram to Show Input- __,L"' Hy (s) T LA
Output Relations at the Body | | s
~ | |
T e
| | 07
b - - J
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and

] o V2 |7 Mw ‘ o \2 |%
(zT cosy, — @ sinyy) | 1+ — - — siny, [1+ o
“w w w
)
l)"_ my Me
i <w-3>(,‘ Y N\ [0 [ o2\
2 + (2, siny, — 25, COSy, + = Siny, - —\ +f— -
S T 0 T 0 0
TO Zw > aO 24 al
a2 al a3

in which a, a,. a,, a; are the characteristic coefficients given in Equations [40].

To achieve a body of minimum pitch amplitude, the overlying principle aims to make the
numerator small and the denominator large. The previously mentioned arguments with respect
to designing the body with a critical frequency well beyond the expected range of operation

still hold. This is perhaps the soundest and the only sure advice than can be given if frequen-
a a
0 1
cy is considered a problem. Before designing a body to have ratios — and — well beyond
a a
2 3
the range of operating frequency, the design must be such that the body will satisfy stability
at all times. This can be checked with the Routh criterion, discussed in Appendix C, as the
first requisite for the dynamic behavior of towed bodies.

All other alternatives and considerations for minimizing pitch can be discussed in more
or less general terms only, since they are dependent upon the particular functional aspects of
the design and the conditions in which the body is expected to operate. Again, successful
minimization of pitch amplitude depends on making the numerator small and the denominator

large in the amplification term for pitch.

CONCLUSIONS

The entire ship-cable-body dynamical problem is quite complex, especially where quanti-
tative prediction of the closed-loop body response to a prescribed input at the towing platform
is required. Where the immediate goal is to optimize the body design from the standpoint of
minimum pitch, however, the problem may be simplified considerably by making a study of the
open-loop responses of the body alone to isolate the body’s hydrodynamic, inertial, and loading
parameters.

This report has shown by theoretical analysis which parameters affect the pitch response
and how they are related. Based on this analysis, it is concluded that the pitch amplitude de-
pends on:

1. The absolute magnitude of the disturbance itself;

a
0
2. The operating frequency range with regard to the critical or resonant frequencies —

and — which are implicit functions of all the hydrodynamic stability derivatives, the meta-

a
.3 . .
centric and inertial parameters, etc;

16



3. The location of the towpoint through which the cable tension acts with respect to the

center of gravity and the location of the resultant weight in water (W — B) of the bodys;

M
4. The location of the body’s resultant center of effort as defined by E’i; and
w

5. The initial conditions with respect to the equilibrium tension vector, defined by T,
and y,, which are fixed by the weight in water and the lift and drag of the body at equilibrium.

The first factor is the only one which is presently beyond the control of the designer,
who must take the amplitude of the input as the starting point. The input amplitude depends
on the phasing of the body motion with the towing platform motion through the cable.

The practical result of this analytical study is the conclusion that a body may be de-
signed within the dictates of functional simplicity to operate at minimum pitch. This state-

ment is subject to the following two qualifications:

1. The design for minimum pitch can be attained subject to the given input amplitude.
Doubling the amplitude of input (for a linear system) would, of course, mean doubling the

amplitude of the resulting output.

2. The design of a passive body should not be expected to satisfy the entire frequency
range. A flat amplitude-frequency curve may not be as desirable as one that has a low ampli-

tude to the left of the maximum expected operating range of frequencies.

Thus, the results of this analytical study can serve as a starting point for a systematic,
parametric investigation of the terms affecting pitch. For the longer range aspects, the in-
verse problem of design, using the technique of synthesis, can then be approached in a method-
ical and rational fashion to accomplish any new design or redesign of a towed body to reduce

excessive pitching amplitudes,

RECOMMENDATIONS FOR FUTURE STUDIES

The ultimate goal in treating problems dealing with ship-cable-body systems is to pre-
dict quantitatively the motion of the towed body as a consequence of the actual motion at the
towing platform. The subject of the present report was restricted to the open-loop response
of the towed body as one entity of the entire system. Whicker, in his thesis on the Oscillatory
Motion of Ship-Towed Cable Bodies,* has examined the dynamics of the cable without con-
sidering the detailed characteristics of the body. It should be possible to combine these two
phases as a step toward the final goal.

It is believed that the transfer function of the total system, excluding the ship except
as to using its resultant platform motion as the system input, can be constructed by a process
of synthesis. This can be accomplished if the individual transfer function of the cable, body,
and feedback as components of the system can be isolated first. It is recommended, therefore,
that:

17



1. Additional theoretical work be carried out along the following lines:

a. Construct the individual transfer function of each component in the system.
Techniques similar to those used in this report and the literature can be used for
isolating these individual transfer functions.

b. Determine the relationship between the component parts, to arrive at an
analytic function giving the total system transfer function.

9. Additional experimental work be carried out to augment and verify the hypothesized

mathematical model, as follows:
a. Perform captive model tests to determine the stability derivatives of the body.

b. Conduct model tests to verify the dynamical characteristics of the cable as
a rigid element and then as a flexible line subject to initial and boundary conditions.

c. Conduct towing studies of cable plus body together, carefully instrumented,
to probe input-output relations at each loop to verify the hypothesized component
transfer functions as well as the total system transfer function.
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APPENDIX A
EQUATIONS OF MOTION OF THE BODY
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GENERALIZED EQUATIONS

An orthogonal axes system 2, y, 2z (see Figure 2) fixed to the moving body is chosen
with the origin taken as the towpoint;* 2 is positive in the direction toward gravity, y is posi-
tive along the starboard direction, and # is positive in the direction toward the nose. Follow-

ing the SNAME conventions, the generalized equations of motion have been given as:%°

mlt - vr + wq - :::G(q2 +12) + Yo (pg-1)+ 2, (pr+ Pl =F, [1a]
mlo - wp + ur -y (2 + p2) + 2o lgr-p) + e (gp+ 9= F, [1b]
mlw - ug + vp- 2z (p?+¢?) + 2o (rp—q) +yo (rg +p)) = F, [1e]

and
- - 2 2 .
Lp+(, - Iy)qr— F+pl , + (% —gq )lyz + (pr - 9)1,,,

+m[yc(u'7—uq+'vp)-zc(é-wp+ur)]=Qx [2a]

. > 2 2 :
Iyq+(Ix -1)rp-(p+ qr)lyx + (% -9, + (qp—r)lyz

z

+m[zc(d—'vr+wq)—xc('u')—uq+'vp)]=Qy [2b]

LA+ ~1)pg=(g+m I, +(® - +g-P1,

+m[a:c('5—wp+ur)—yc(d—'vr+wq)] =Q [2¢]

z

SPECIALIZATION OF EQUATIONS TO MOTION IN THE VERTICAL PLANE

If motion is restricted to the vertical plane, then the body is assumed to have freedom

only in pitch, heave, and surge;

If it is further assumed that the body has a vertical plane of symmetry in the zz-plane
and that the origin lies in this plane, then

Y =0

*The equations with the origin taken at the center of mass will be introduced later.
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On the basis of these assumptions, Equations [1] and [2] reduce to

m [ﬁ+wq—ch2+zcd]=lf‘x [3a]
m[zb-uq—ch2—a:6§]=lfz (8b]
Iytj +mlzg (@ + wg) - 2 (b - ug)] = Q, [3c]

in which Iy is the mass moment of inertia about a transverse axis through the towpoint which
includes that of the moment of transference. This is readily shown by means of the parallel-

axis theorem of mechanics,

I=Ig+m@Z+2d). (4]
The right-hand sides of Equations [3al, [8b], and [8c], which include the external forces but

exclude the inertial forces are given as

F,=X-W-B)sin 0+T, [5a]
F,=Z+W-B)cos 6+T, [5b]
Qy =Mpp -W(z; cos b +2, sin6) + B(zy cos 0 + zp sin6) [5¢]

where X, Z, and M can be easily recognized as the hydrodynamic contributions.
In a calm sea, the equilibrium towing conditions can be expressed by dropping out the

inertial or acceleration terms so that
F,=0=X-(W-B)sin0+T, [6a]
F,=0=Z+W-B)cos 0+T, [6b]
Qy =0=Mpp-W(z;cos0+3z;8in6) + Blzy cosd + 2 sinb) [6cl
It should be noted that the foregoing equations are based on an origin at the towpoint.

The equations of motion can be simplified considerably in their later developed perturbated
form by taking the origin at the body’s center of gravity instead of at the towpoint.*

*The choice of using either the towpoint or the center of gravity as the origin should not change the final resulit.
Both are mentioned here for comparison.
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When the origin is taken at the center of mass, the equations of motion analogous to

the sets given by Equations (3] and [5] become

m(t+wg)=X-W-B)sin0+ T, ‘ [7a]
m(w-ug)=Z + W-B)cos6+ T, ['7b]
I.9=Mg~W-B) (zg cos 6 + 25 sinf) + 2, T, -2.7, [7c]

where the coordinates (zg, zg) through which (W ~B) acts and the towpoint coordinates (z,
zp) through which the cable tension T acts, are both taken with respect to the center of gravity.

The z and z components of the external tension force T can be written as

T, = sin Q [8a]
T, = -T cos Q [8b]

where
Q=0+y [9]

is the lower-end cable angle referred to the body’s vertical axis, as shown in Figure 2.
To represent the disturbed state from the equilibrium towing condition, the Equations
(7] must be modified. Taking a Taylor’s expansion in which second-order and cross-product

infinitesimals are dropped, the equations of motion for small perturbations which replace Equa-

tions [7] are given as

. X axX
m (At + wyAg + g, Aw) = e Au + FY™ Aw — (W-B) cos0,A 0
X . 9X ., X X
+ —- Au+ — Aw+ —Ag+ — Aq
du w dq dq

+ Tycos(fy+yy) [AO+ Ayl +sin(0 + y)) AT [10a]

. A XA
m (A0 — ugAq - ¢g Au) = ™ Au + 3— Aw — (W-B) sin 6, A0
u w
dZ . dZ ., JZ 9z .
+— M+ — Aw+ — Ag+ — Ag
du dw dq aq

Ty sin (0, + yo) [A0 + Ayl - cos (6, + o) AT [10b]

+
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aM oM

1.A§ = 3w Au + EY™ Aw + (W-B) (zg sin 6y ~ 25 cos 6,) A
oM ., OM . JIM IM .
+—— Au+ —( Aw+ — Ag+ — Aq
U w dq aq

+ 2, 1T, cos (0, + yo) [AO + Ayl + sin (6, + o) AT}
~ 2, 1T sin (64 + yo) [A6 + Ayl ~cos (6, + y,) AT} [10c]

The 0 subscript is used to denote terms taken in the equilibrium condition before per-

turbation; the A symbol, the perturbated quantities. The partial derivatives are taken about
the equilibrium condition in which the zero subscripts are implied though not explicitly

written.

The following assumptions are made with regard to the initial or equilibrium conditions:
. The fluid is at rest ahead of the body at the operating depth of tow;

. The angle of attack and the trim angle of the body are both equal to zero;

. There is no angular motion of the body about the y axis;
90 = 00 =0
. The z-component of the body’s velocity is equal to the steady-state speed of advance;

uy =[Au + U cosal = U

. The z-component of the body’s velocity is equal to zero;

w, = [Aw + U sinal, ~ 0

6. The rate of change in X force with respect to w velocity evaluated at & = 0 is equal to

zero, since X is an even function of a;

7. The rates of change of force with linear acceleration in the direction normal to the force

are negligible;

X 9z o
aw du
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8. The rate of change of moment M with respect to % in the neighborhood of the equilibrium
is negligible;

9. The rate of change of X force with respect to ¢ is approximately equal to zero in the

neighborhood of the equilibrium, since X is an even function of ¢;

D¢
dq

10. Similar to item 9, the effect of angular acceleration ¢ on X in the neighborhaod of the

equilibrium is negligible;

@
>

=0

ST

q

11. When the various terms are nondimensionalized according to the convention set forth
in the nomenclature and denoted by the superscript notation, it can be seen then, as a conse-

quence of the relatively small dependence of Z*, and M “on u’, that

AL
du’  du’
Letting
Ag=A6 [11a]
Aj=AB [11b]

and using the foregoing assumptions, the perturbated equations of motion can be written in the
following form:

X X
rr D~ ™ v+ [(W-B) - T, cos y,l 6 =

[Ty cosygl y + [sinyy) T [12a]
( az)gJ 9z 9Z o2 ( az) . 0
- — - —lw - — =
Py o g + \m + g D+ T, sin y,
[T, sin yol y —[cos y I T [12b]
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IM IM oM oM
— r— — — —— 2—.— —-—
[azbg)+ aw]w+[(lc 69‘)9 aq9+zs(W B)
-2y T, cos Yo + &g T sin y{l0=

[Ty (2 cosy, - zp sin yo)l y + [z sin yg + xp cos y,l T [12¢]

where the following have been adopted for convenience:

1. The operator 9 is used to denote differentiation with respect to nondimensional time

9 d d
=" TR

(%)

2. The body length ! has been used in the nondimensional forces, moments, and distances.

3. The symbol A used in denoting the perturbated quantities and the prime notation con-
ventionally used in nondimensionalizing have been omitted for convenience without unduly
sacrificing interpretation or clarity.
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APPENDIX B
DELINEATION OF THE PITCH RESPONSE IN THE TRANSFORM PLANE

27



To solve the resulting equations of motion, it is advantageous to rewrite Equations [12]
in a more generalized and concise form. This is done by means of tensor notation which per-
mits a more systematic treatment of the mathematical manipulations that follow. To this end,
the following single matric differential equation representing the system given by Equations
[12] in the real (¢) plane is introduced:!°

AY () +BY (6) + CY () = F(¢) [13]

The terms in Equation [13] denoted in bold-faced print represent matrix quantities,
with Y and F as the generalized response and input, respectively, and A, B, C as the coeffi-
cient matrices. Taking the Laplace transform of both sides of Equation [13] and rearranging,
the following is obtained:

[As2+Bs+CleY () =2F () +[As+B1Y(0)+AY(0) [14]

where the Laplace transformation* of a function f(¢) is defined in accordance with

00

L) =f e St f(¢) dt =7zs)
0

in which s is a complex variable in the transform plane.
Premultiplying Equation [14] by the inverse matrix [A 32 + Bs + CI7}, the expression
for the response matrix in the transform plane is written as

LY (@) =[As2+Bs+CI 1 [€F () +(As+B)Y(0) +AY(©@] [15]

For convenience in notation in the perturbated equations of motion, Equations [12], let

my=m-X, =~m (1+Fk) [16]
m3=m-—Zu-)zm(1+k3) (171

where &, k5, and k”are the added inertia coefficients due to hydrodynamic or added mass.
In the following context, the subscript notation has been adopted for convenience in designating
the partial derivatives, replacing the earlier method; e.g.,

*The use of the transform method and its application to physical systems can be found in many textbooks. The

ensuing treatment will presume familiarity with this operational technique in solving linear ordinary differential
equations with constant coefficients.
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YA
a —_—
9Z (% puzﬂ)

dw

= 7Z

.

The coefficient matrices A, B, and C using Equations [12a], [12b], [12¢c], and Equa-
tions [16], [17], [18] are written as:

A= llall =
B- ”bi]'“ =
C = lleyll =

0

_Mw

—(m+Zq)
..Mq

(W-B) - T, cosy,
-T, siny,

agW-B) ~ 2, T, cosyy + zy Ty siny,

[19]

[20]

[21]

In each matrix, the ¢th subscript used in the row designation corresponds tothe sequence
of the successive equations appearing in Equations [12]; the jth subscript used in the column
designation, on the other hand, corresponds to the dependent variables u, w, 6, in that order.

The matrix of the excitation functions in the complex plane is expressed by

@£, ()

€F @) = || ¢f, @)

£f; (2)

where the functions f1s fy, and f3 have beengiven as

f1(8) = Ty cosy, y(¢) + siny, T (¢)

f2(8) =T siny, y(2) - cosy, T (¢)
f3@) =2 f, (@) -2, f,()

=Ty [z, cosy, - zp siny,l y (¢) + [2, siny, + @, cosy,] T(2)
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The response matrix of the dependent variables in the complex plane is given by

Lu(t) “
LY @) =|| Lw()
£ 06(t)

[24]

The initial-value matrices for the perturbated displacements and velocities at time

t =ty = 0 corresponding to their equilibrium value in the ¢ plane are given, respectively, as

follows:
© 0
YO =|| w =|lo0 [25]
0ll,- o 0
% 0
YO =|| -1lo [26]
ll,_o 0

The characteristic matrix can now be written with the use of Equations [ 19], [20], and
[21] as follows:

(mys - X)) 0 (W-B) - T, cosy,
As2+Bs+C= 0 (mys-2) —[Z‘}s2 + (m+Zq) 8+ Ty sinyy]
0 ~(Mzs+M,)  JsP-M s+a;(W-B)-2p Tocosyy+2p Tosiny,

(271

Denoting A s2 + Bs + C = E for brevity, the inverse matrix of E may be obtained by
the following relationship:
adj E ”cofactor e..l

= - Al (28]
|E| |E|

E-l

where adj E is the adjoint and |E| the determinant of E. The inverse matrix of Equation [27]

can then be shown as

[As2 +Bs+CI 1=
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2
Js —qu+zs (W-B)

(my8-2,) -M, s+ M,] -lmgs -7 ]
) + Ty (2, siny,~25cosy) F
[(W-B) ~ Tycosy,] (W -B) - Tycos y,)
-(M 8+ M,) [Z632+(m+Zq)s+Tosinyo]
\ 7 r \ o7 h
[mys - X,1 [mys-X,]
2 2
0 ) Js —qu+zs(W—B) , Zés +(m+Zq)s
+To(zpsiny,~2, cosyg) + Ty sin y,
. 7N y,
[mys - X,] [m,s-x,1
0
My s+ M) mys -2z ]
(mys- X)) 0 [(W - B) - T, cos y,]
0 (mys~2Z,) —[Z632+(m+Zq)s+ Ty siny,] [29]
Js2 - qu + 25 (W-B)
0 -(M;8+M,)
+ Ty (@p sinyy — 2, cos y)

With Y (0) and Y (0) as null column matrices from Equations [25] and [26], the latter
half of the right-hand side of Equation [15] is seen to be

@f, (t)
LF(t) +[As+BIY(0) + AY(0) = | @f,(®) [30]

gef3(t)

where f,, f,, and f; are given by Equations [23a], [23b], and [23c], respectively.
Substituting the results of Equation [24] and the matrix product of Equations [29] and

[30], the response matrix of Equation [15] can be shown in the following form:

Lu(t)
LY()= ||Lw(®)
L0 (t)
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(mys—-Z ) [Jsz—qu-i—zs W-B)+Ty(2 sinyy—2pcosyg)]
£f, (@)

-(M;s +M,) [Zész+(m+Zq)s + Ty 8iny,)
—{Mﬁs+Mw) [W-B) - T,cos Yo]} Lf, (@) - {(mss—-Zw) (W-B) - T, cos yo]} Lf 3(2)

[Jsz—Mq s+2,(W-B) + Ty (2 sinyy —2 cos yo)l £f5 (@)
(mls—Xu) ) .
+ [Zé" +(m+Zq)s + Tysinyg)l @f,(2)
[31]

(my3-X,) {[Mtbs+Mw] L, @) + [mgs-Z 1< f, (t)}

( ) (mys-Z,) [J82—M98+ 2g(W=B) + Ty(zsinyy—25cosyy)l
m,s-
* -(M;s+M,) [Zész+(m+Zq) 8 + Tysinyg)

Since the pitch response is of concern for this study, the equation for 0 in the complex
plane, after canceling out (m;s — X ), can be obtained from the response matrix [31] as

follows:

M;8+M,) Lf,(t) +(mys-2Z,) £f5(2)
£0(t) =

(mys-Z,) [/s2- M, 3+2g W - B)+Ty (2 sinyg— a5 cosyg)l - (M;8+M,) [Z‘-182+(m +Zq) 8+ T siny,]

[32]
Representing the denominator (the characteristic equation) by
A=(mys-27 ) [Js? - M8+ 25 (W -B) + Ty(zy siny, — 24 cos y )]
-(M;3+M,) [Zész+(m+Zq)s+ T, siny,] [88]

and writing f,(¢) in terms of f, and f, from Equation [23c], it can be seen that Equation [32]
may also be written in terms of the z and 2z components of perturbation input to the body as
follows:

2p(mys-Z, ) Mys+M,) - 2,(mys-Z )
£0(¢) = _T__Z__ @f, (2 + - r e

£f,(¢) [34]

As it is more convenient to characterize the input in terms of the perturbation tension
T'(¢) and the cable space-angle y(¢), the functions £, (¢) and £, (¢) given in Equations [23a]
and [23b] may be substituted into Equation [384] to obtain the pitch response as
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1
Lot) = ~ [(mys-2,) (2 sinyg+zp cosyy) ~ (M, 8+ M) cosy LT (¢)

Ty

+— WUmgs-Z ) (2, cosyg~2p sinyy)+ (M, 8+M,) sin y, ] Ly (2)

[35]

Equation [35] may be further simplified to a more amenable and recognizable form for

solution by an inversion in the real or ¢ plane. To do this, a few preparatory steps are now

made subsequent to Equation [35].

Expanding Equation [33] and collecting terms in descending powers of s, the character-

istic equation can be recognized as

( 3
{msJ - Mt;)Zq} 8

.

2
- {(m3Mq+JZw)+ M, (m+Zq) + MwZ[;} s

- {Zw lzg(W-B) + Ty (z siny, - zpcosyg)l + M, T, sin yo}

+ {ms[zs (W -B)+Ty(zp siny, -2, cosyy)] + Mz, - M;Tosiny,-H, (m+Zq)}s

[36]

Vv

J

The above cubic equation may be written in terms of its three roots 04 0o 04, providing

the values of each of the coefficients of the powers of the complex variable s are specified.

However, until numerical values are available, it is sufficient to write Equation [36] as

A=(myd - M';)Zé) [(s-0)) (8-0,)) (s-03)]

[37]

Substituting Equation [37] back into Equation [35] and rearranging, the pitch response

can be written in the following form:

-
8 ~ W
M3 M3
S E— si z
myd—HgZ, TS Y0 ¥ 27 o05Y0) (-0 -0 s=0) |
M
s+ X
M. .
-—=c
myd-MyZg; 70 | (a0 (s—0p) (s-0y)
.
L6(t) = r § - —w
Tom3 ( ) ) my
- (2, C08 - &, 81N
msJ—M&,Zé r Yo T Yo (8-—01)(8—02)(8—03)
+<
8+ X
Toks Mg
+ m
myd-MzZ; O | (a0 (s-0,)(s-0y)
- S
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The complete solution for the pitch response, including the transient as well as the
steady-state, can be obtained from Equation [38] for a specified body design, given the follow-
ing conditions:

1. Determination of the equilibrium conditions T, and y at the lower end of the cable.
These can be computed if the body’s weight and buoyancy, and the resulting lift-drag ratio
for a given speed are provided, either through experimental measurements or by estimates

based on available theory.
2. Specification of the perturbation inputs T (¢) and y(¢).

3. Determination of the body parameters including the hydrodynamic derivatives, either

through experiment or theory.
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APPENDIX C
PITCH STABILITY CRITERIA
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In problems of dynamics, it is necessary to determine whether a given body will be
dynamically stable or not; that is, whether the motion will be attenuated or amplified with
time after the body is subjected to a small temporary disturbance.

All stability criteria have one goal in common: to determine whether or not the poles
of the response function (the roots of the characteristic equation) lie in the left-half s-plane.
One way of determining the location of these roots in the complex plane is to solve for the
zeros of the characteristic equation given by Equation [33]. However, without explicit deter-
mination of the roots themselves, mere knowledge of the sign of roots are useful for the later
discussions on the evaluation of the steady-state behavior of the body when subjected to a
disturbance input.

Where the transient behavior of the body is to be assessed solely in terms of a ‘‘go,
no-go’’ proposition without due regard to the degree of stability, the problem is no longer
critical as long as the motion does not amplify with time. That is, if the body is overdesigned
with more than necessary stability and if the response amplitude is of no importance, there is
no necessity to alter the design. Hence, without specifically solving for the roots of the char-
acteristic Equation [33], as long as these roots are assured to be in the left-hand plane, the
application of the Routh-Hurwitz criterial! should suffice. In essence, if these conditions
are met, the body will satisfy the stability requirements.

To this end, the characteristic Equation [36] may be written in the following form:

_ 3 2
A=a,s +a,8° + a8+ ay

3
a, a, a
= a, s3+——32+—-—3+—0
ag a, a,
= (myd - M,LZ&) (s -0,) (8-0,) (8 -0,)] [39]
where
a, = —{ wl2gW=B) + Ty(zpsinyy — 2, cosyy)l + M, T sin yo} [40a]
a, = {m3[zs W-B) + Ty(zsinyy — z2pcosyy)l + M,Z,
-M; Tysinyy - M, (m + Zq)} [40b]
az-—{mqu +JZw)+Mu-)(m+Zq) +szé} [40c]
a, = {maJ -M, Zq-} [40d]

36



Routh’s criterion for stability, in the case of a cubic equation, takes the form of two

tests:

1. ay, a,, a,, a3 >0 (or equivalently, the coefficients must all bear the same

sign, so that, if negative, a,, a,, a,, a, <0) [41]
@y %9

2. = (a;a, - agaz) >0 [42]
as a,

The Routh requirements for dynamic stability are strictly qualitative and as such, are
not particularly useful for purposes of synthesis. Consequently, it would be more enlightening,
for purposes of design, to examine the makeup of the particular solution. Where the amplitude
of response is an important factor in the final design of the body, the solution of the particular

integral Equation [38] is imperative, but only after the stability requirements have been met.
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APPENDIX D
INVERSIONS OF THE PITCH RESPONSE FOR PARTICULAR INPUTS

39



GENERAL CONSIDERATIONS BEFORE SOLVING
THE INVERSION INTEGRAL

The preceding discussion on stability criteria is a necessary prelude for the analyses
to follow. If the body does not meet the Routh criteria, it would be futile to proceed further
without backtracking to alter the design until positive stability was achieved. However, if
the body satisfies the Routh criteria for stability, then the problem which consists in minimiz-
ing the pitch amplitude as the eventual goal can be considered. It shall now be assumed per
se that the body under consideration has sufficient stability without clarifying the degree of
stability, or more precisely, the makeup of the individual elements contributing to the whole
by an exact knowledge of the poles and zeros appearing in the response function.

Recalling Equation [38], it is readily seen that the total pitch response is composed
of two components, one resulting from the tension input T (¢) and one resulting from the
cablo angle input y (£). This may be visualized in Figure 4. Using the transfer function

concept,12 the output-input relations for each of the components making up the total pitch may
be defined as

- 26,0
HT (8) = m [43a]
N 20, ()
H)’ (8) = m [431)]

where the appropriate subscripts T and y are used to identify the proper components corre-
sponding to the tension and the cable angle at the lower end of the towline. The total pitch,
using Equations [38] and [48], can now be written in the following form:

LO(t)=L0p(2) + £6,(2)

= Hyp () 2T (@) + H,(s) £y () [44]
with the component output-input ratios FT (8) and 'I;;,(s) given as
( z, N
8 - S—
M3 M3
——————— (2, siny, + 2, cosy,)
mgl —MZy T 0TI RO (o) (s-0,) (s-0y)
Hp(8) =Ky Gp(s) =< M,
8+ —
t ¢ [45]
-———— co8
L myd Mz 0 | (s-0y) (s-0,) (s-0y)
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Z
. .o o
Tymyg my
——— (2, cosy, - &, Siny,)
myd = Mgz, T 0TI PO (T Y (smay) (s-ay)
- ~ J \
= - M
HY(S)—K}’GY(S) s+ w
TOMu-} ) >
iny, [46]

+ ——————— s
Mmad ~ Mu')Z(;7 (s~0,) (8—02) (s-0,) J
The gain functions K, and K y give a measure of the relative ‘‘rheostat’’ strength or
amplitude factor independent of frequency. These are computed by taking the limit of [45]
and [46], respectively, as s approaches zero, i.e.,
- Z,(zpsinyy + zpcosyg) + M, cosy,

Z,l2gW-B) + Ty (zpsinyy - 25 cosyy)l + M, T, siny,

T,[Z (2,cosy,-2,siny,)-M siny,]
o~ 0 T o~ %r 0 0
Yy~ i Hy () = - - [48]
80 Z, lzgW~B) + Ty (zpsinyy — 2 cosy )l + M, T, siny,

13

and utilizing principles from the theory of equations™® in which the product of the roots of a

cubic equation in 8 can be expressed in terms of the coefficients,

a, Z,lzgW=B) + Ty(zpsiny, - 2, cosyg)l + M, Tysiny,
(13 msJ - M,;,Zq-

To solve for 6(¢) in the real or time plane, it is necessary to obtain the inverse Laplace

transform of Equation [38]. Using Equation [44], this may be stated as

0)=2 | Hp(s) 2T+ H (5) 2y(@) [50]

For convenience, let

my (2, sinyg + @, cos yg)

R, = [51]
1
m3J - Mu.)Z(}
. M, cosy, (501
20 my-MyZ,
Tymy (2 cosyy — 2psin yq)
8, = [53]
m3J - Mrbzq'

41



Ty M, sin yg
§y= —— [54]
ms']— M';)Zq'

and for the s-dependent functions,

5(3) =(s-0)) (8-0,) (s-0,) [55]

_ Z .,
N,(8)=s~ [56]

m3

o~ l’"’
N,(s)=s+ . (57

Substituting Fquations [51] through [57] into Fquation [38], the solution for the pitch,

6(t) expressed by Equation [50] lies in evaluating the inversion integrals

( 3

c+ioo —'A‘fl (s) ™ .
RIJ‘ o L e™ST T(r) dr| e°tds
c -

oo

c+i oo F’sz(s)
+R2J' J e ST T(7) dr| eSt ds
0

D(s)

0(¢) = —1—,4 L [58]

2nt . _

c+i oo —NI(S) ) . —\

+SIJ Clﬁj‘ e™T y(r) dr| e*'ds
0

criv [0 ¢
2
+Szj — j e ST y(r) dr| et ds
LD 0

L C—1 )

where 7 has been used as a dummy variable of integration.
Assuming that the transforms of T (¢) and y(¢) exist and that each of the bracketed

expressions in Equation [58], e.g.,

Ny(s) N, () T ()
po =sT dr=—"—=
D(S)J; e Tin dr D (s)
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satisfy the following conditions:
N, (s) T(s)
D (s)

2. 5(3) is of higher degree in s than the numerator ﬁl (s) ?(s),

is a rational, well-behaved function in s,

3. N,(s) T(s)and E(S) are polynomials having no common factors, and
4. the zeros of the denominator E(s) are distinct,

the inverse transform of the pitch response can be easily accomplished by the classical method

of residues.'® T he complete pitch response in the t-plane following Equation [58] can be

summarized in the following form: _ N

( [ N & T
R, Res |e*f — =

i b D (S) —ts=0.

i
[ N, T (9]
+R, Res |e*f — =

i L D(s) ds=0.

1]

0() = § G [59]

Z" N, (s) y(s)
+Sl,~ Res |e®? 7 (s

—JS=0.
1]

r~ —~ 3
N,(s)y(s)
+ 8, Res |eSt — <
i

n D (s)

—As=0.
.
.

For a given towed body, 2, B,, S;, S,, ﬁl (s), ﬁz(s), and 5(8) are fixed. These are

related to the specific design of the body in terms of the various hydrodynamic derivatives

and the loading conditions.

The generalized solution for the pitch response in the s-plane has been derived in
Equation [38]. To obtain the inversion in the ¢ or real plane for the pitch 6(¢), it is interest-
ing to consider two towing analogies as the two extreme cases in the first towing quadrant.

With these, several types of inputs are investigated.

THE SPECIAL CASE FOR A HEAVY LOW-SPEED TOWED BODY

For a heavy low-speed body having a very high weight compared to drag, the conditions

of towing equilibrium can be approximated by

0, =0 [60a]
Yo = 0 {60b]
TO = W-B [60c]



In addition, it is convenient in this case to assume that the perturbation angle* y (t),

measured with respect to the vertical space axis, is approximately zero. This is tantamount
to saying that the cable element adjacent to the body will always stay perpendicular in space

(while the body is still free to pitch and heave);

y(@) =|y| e®t = 0

[60d]

With these assumptions, the pitch response Equation [38] takes on the following special-

ized form:

L6(t) =

3

.

( Zw 3
8 - ——
m3Tr my
m3J - Mu-]Z‘i (8—01) (8—02) (8—03)
Mw
$ +—
M- .
w w
mad — M“-)Zé (8_01) (s—oz) (3—03)

\ @T()  [61al

J

Using the abbreviated notation of Appendix D, Equation [61a] can be rewritten in the

form

L) =Ky, Gpy(8) + KpyGpy ()] LT (2)

[61b]

where K5, and K ., are the components of the gain function attributable to tension. These

components can be obtained from Equation [47] on the basis of the initial conditions listed

in Equation [60] so that

Tr
K11 " WoB) Gg-ap)

M

w

K12 =7 B (eg-2p)

The s-dependent part of the transfer functions can be obtained as

*See Figure 2.
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VA

S ~
~ m3010203 m3
Gr1 (s) = Z (s—-al) (8—02) (8—0'3)
Zw
s—_._-—
myW-B) (zg-2,) mgy (632
C myJ - M, 7, (s-0,) (s-0,) (s-0y)
and similarly
Mw
M.Z, W-B) (s,~2,) *u,
Grpls) = - —~ > T e [63b]
T2 M, (maJ-M;Z) (s-0,) (s-0,) (s-0,)

Response to a Unit Step Input

Consider a perturbation input at the towpoint in the form of a unit step as follows:

0 for t<¢,
T(2) =1(t-¢y = [64]
1 for z2¢,

where T (¢) is the perturbation tension force above that of the equilibrium tension. The La-

place transform of the unit step input can be shown as

oo st
e 0
L1(t-t,) =J et dt =
t

0

[65]

8

Substituting Equation [65] for £7 (¢) in Equation [61b], the resulting pitch response

can be written

—st
e 0

L 6(t) = Ky, Gy (8) + Ky Gy p (9)] [66]

s
Where the inverse problem of design is predicated on the basis of the steady-state
condition, the transient part of the solution is disregarded. The steady-state solution can

then be readily accomplished by means of the *‘final-value’’ theorem'* if there are no poles

in the right-half s-plane.* Assuming that the body design has satisfied the Routh criteria

*The provision of ‘“‘no poles in the right-half s-plane’’ is equivalent to requiring that the real part of all the

characteristic roots remain negative in order that the body be stable.
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outlined in Appendix C, then the final-value theorem can be safely applied in the inversion of
Equation [66] to determine 6(¢) for a large lapse time after the initiation of the step disturbance.

The final-value theorem, in this case, is stated as

lim gy = lim sG(s) (67
> oo s-0

— . S~ . S~
where 6(s) = £6(¢) specified in Equation [66]. Since 81:"2) Gp,(s)=1and slirr(l) Gr,(8) =1

from Equations [63a] and [63b], respectively, and K, and Ky, are both independent of s, the

final value of 6(¢) as the inversion of [66] can readily be obtained as

.2 +M
lim T w w

6(t) = + Ky = [68
t > oo (6) = Ky T2 z,W-B) (zs—zT) ]

Response to a Unit Impulse

It may be useful, if not trivial, to look into the response of the towed body when the'
input is taken as a unit impulse. Where the transient part of the response is of little concern,
examination of the steady-state or asymptotic response is merely an adjunct to the Routh cri-
teria which must be met if a body is to be stable. For this purpose, let the impulsive force

input of unit magnitude be represented by
d
T(t)=8(t—t0)=g£-1(t—to) t> ¢, [69]

where 8 (¢ — ¢,) is the Dirac delta function. It is to be noted that 8(¢ — ¢,) is not a function in
the usual mathematical sense. However, its formal use here leads to results that can be
physically interpreted.

Employing the theorem for taking the transform of derivatives, the Laplace transform

of Equation [69] is related to that of the step function by
Lo(t~ty) =3sL1~ ¢ty

Then using the transform of the unit step function from Equation [65], the above equation

becomes

Lo(t—t)=e 0= LT (2) [70]

Substituting Fquation [70] for the input, the pitch response analogous to Equation [66]
becomes

L0(2) = Ky, Gpy (8) + Kpp Gy (e 0= 8ls) [71]
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Since the portion of interest is the steady-state response, the final-value theorem can
again be used in the inversion of ¥ quation [71]. The pitch response, after a long interval of

time, is obtained from Equation [71] as

lim () - “mo $0(s) >0 [72]

- oo S -

which is just as expected. The result given by Equation [72], although somewhat trivial and
academic, serves to verify the dynamic stability requirements without having to qualify the

degree of stability.

Response to a Sinusoidal Input

For a better representation of the perturbation input to the body, consider a sinusoidal

tension input given by
T(¢) = |T| sinwt t>0 [73]

The Laplace transform of Equation [73] can be shown to be

"+ w

Substituting £ T (¢) from Equation [74] into Equation [61al, restricting the discussion
to the case of the heavy low-speed body, the pitch response to the sinusoidal input can be
written as

s+ & s+ ¢,
£L6(t)=|R

17| —= [75)
2

R
1 (3—01) (8—0'2) (8—03) e (8-01) (8—0’2) (8—03) 20

where the following are specializations of Equations [51], [52], [56], and [57]:
m3Tr

m3J - Mu'zzé

By= - —————— [76b]

[76c]

iy
[y

]

1

[76d]



On the basis that the poles o, 0,, 0, are not repeated and do not lie in the right-half
s-plane, it would be convenient to break down each of the two additive components of Equation
[75] into partial fractions. This will expedite the use of the method of residues in evaluating
the inverse transforms. Assuming that the mathematical conditions specified in Appendix D

are satisfied, consider the generalized partial-fraction expansion of the first rational fractional
function in s of Equation [75],

w(8+f) A D E
! = + B + ¢ + + [77]

8—(71 8—0’2 8—03 St+iw 8 —tw

(8—01) (8—02) (8—03) (s2+0?)

where 4, B, C, D, and E are as yet unknown constants. By letting s =0, 8 =0,, 8 =03,
s = iw, 8 = —iw, respectively, in Equation [77], it can be shown by the method of undetermined

coefficients that

wlo,+¢&,)
A- . [78a]

(0,-0,) (0;~03) (af+w2)

oo, + &)
B - . [78b]

(0,-05) (0,~0) (022+w2)

wlo, +£&,)
C = 3 ! [78c]
(03—01) (03—02) (032+w2)
¢ —iw
= - ['78d]
2%(0, + iw) (02+iw) (05 + iw)
¢ +iw
E - [78e]

-2i(ol—im) (oz—im) (03—1:(»)

Substituting the coefficients A, B, C, D, and E back into Equation [77] and using the

method of residues, it can be seen that
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- . 2

m(al + fl) eol

(o, —02) (01—03) (012+w2)

ot
2

a)(a2+<fl) e
+

(02 - 03) (02 —01) (022 +w2)

0'3l
£—1|: w(s+¢)) :I=% . m(03+§1)e } (791

(s~0,) (s=0,) (s-0,) (82 +w?) (03-0)) (03-0) (o5 +0?)

; (El"iw) e—iwz

) (al+i(o) (02+im) (a3+im)

(&, +iw) €19t

z
¥ 2 (0, -iw) (0,-tw) (04 ~iw) J

Equation [79] was written to show the transient part of the solution as well as the part
that remains after the transients have faded away.

Since the roots o, 0,, 05, of the cubic characteristic equation, without writing them
specifically, all have negative real parts, the first three terms will drop out as £ » ». (For a
stable body, this can be shown by means of the test using the Routh criteria given in Appen-
dix C.) The remaining two oscillatory, nonvanishing terms make up the steady-state response
that is of concern for the moment. Combining these latter two terms of Equation [79] and
using Euler’s relationships

IOt - coswt + isin wi

e ¥t =~ cos wt - isin wt,

the steady-state solution of the first half of Equation [75], after some algebraic manipulation,
can be given as

r—cr10203 [wcos wt + £, sin wt] w

IT| Rl —(o(0102+0203+0301) [(flCOS ot - sin ot ]
6, (2)] = =
1 steady state (al2+w2) (022_'_(02) (03'.’+w2)

+w? (0,+0,+0,) [wcos wt+ ¢, sinwt]

L + o3 [£, cos wt-w sin wt]

[80]
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From the theory of equations, certain relationships have been established for relating
the roots o,, 0,, 04 of the cubic Equation [39] in terms of its coefficients ay, a,, @,, a;.

These are given as

a
2
—(a1 +0,+ 05) = — [81a]
a3
a
(0 09 + 0,04 + 0301) = — {81b]
3
20
—(010203) = — [81c]
a3

Substituting Equations [81] into Equation [80] and employing simple trigonometric re-

lationships, it can be shown that

Ya

|7} Rl(€f+w2) (ao—azwz) cos (ot - €,)

6, )] =
1 steady state 03(012 + a)2)(022 + w2) (032 " w2) +w(al _ 0’3(‘)2) sin (wt — el)
Y% 2 2%
IT) B, [£2+0%) [(ag-ay07) +0*(a;~a50%) ]
= sin (of - €, +¢€)
a, (012+w2) (022+w2) (032 +o2)
%
1, %o 02\? fwa,\? w? \2
71 By [€2+ 0B — |[1-— +(——l) 1-2
a3 29 % 2
a
- 2 I3 sin (wt - 1,)
(012 + w?) (022 +o?) (032 + 02
[82]
where
& ay ~ 1,07
n,=€; —€= tan”! — —tan”! ———— [83]
® 13) (al - a4 w?)
The denominator of Equation [82] can be expanded and then simplified as
aq 2 wz (1] al w2 2
02 +0)(02+0?) (02+0?) =— 1-—\ + 1-— [84]
1 2 3 a a a a
3 _2 0 _l
a, a,
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Substituting Equation [84] into Equation [82], the following is obtained:

Y

(13 m2
T, e [1 —2]
0
6, ()] - 4 sin (@t - 7,) [85]
steady state w2 2 2 co2 )
1-—\ +/ — 1-—
) 29 a4y
o/ \ay/ \ a

In a similar manner, 6, (¢) can readily be determined after replacing R, and &, by E,
and £, given by Equations [76],

6, (¢)] = sin (ot - n,) [86]
steady State a)2 2 © 2 (o2 2
-2\ /2N -2
ag ) 2y
) 1 a3
where
2
. 62 . ey = ay®
n,=tan”" — —tan”’ —4—4mm8m8 ——— (871
@

2
wla, - a; 0%

Combining the results of Equations [85] and [86], the inverse transform of the pitch
response formulated in Equation [75] can be given as

N
a 7%
3 [ e
|T| — Ry & L+ 5 sin (wt-17,)
(4]
6(2)] . ) L 4 >(88]
steady state w2\ 2 o\ 2 02 \2 % ~ 71w
1 ——\ + 1- @ :
29 2 a +R, &, |1+ g{- sin (0t -17,)
2, a4 a3
~ J

In order to simplify Equation [88], the part of the expression contained in brackets can
be represented as

Y %
(1)2 602
R & [1+? sin (0t - 7,) + B, &, 1+-—2- sin(wf - 7,) =

1 2
M, sin (ot - 7n,) +M, sin (@t - 7,) [89]
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in which

— w2—|%
‘m1=131§1 1+ —
{_-2
_ 1 ]
L
m,=R,¢& |1+ —
| &

Expanding the right-hand side of Fquation [89] and then collecting terms in sin of and
cos wt, it can be shown that

29m,M, [cos (n,~19,) -11 e
I, sin(wt-7,) + M, sin(wl-9,) = M +Mny) {1+ sin (wt-y ) [91]
A, +Mmy)?

where the phase lag is written as

» M, sinn, +M, sinn,
x = tan [92]
M, cosn, +M, cosn,

The square-root term in Equation [91] can be readily expanded into a convergent power

series, providing that

29, M, [cos (n, - n,) - 1]

<1 9
(M, +‘I112)2 (93]

To do this, consider the following argument which is to be proven
@2 +mp) + 2, M, >> 29, M, cos (n, - 1,) - 2M; M,

Form, andIm, both positive on the basis of an examination of Equations [76a] to [76d] in-
clusive, it can readily be seen through substitution into Equations [90a] and [90b] that

MM, >>-MyM,
MmZ +m} >>2m m, cos(n, —n,)

Hence, as a result of the foregoing, only the first term in the convergent series ex-

pansion need be retained for the present purposes, so that Equation [91] becomes

M, sin(t - 7,) +M, sin (ot - n,) = @ +9n,) sin (ot - x) [94]

52



Using Equations [94] and [89], the pitch response in the time domain given by Equation

[88] can then be obtained as

a3
T — Iy +Mm,)
a
()
0(¢)] = sin (ot - x) [95]
steady state w2 2 © 2 w2 2 |%

1- — \ +f/— 1 - —

) 2o ay

) e aj

Substituting 7, and 7, from [90a] and [90b] in terms of B, R,, &;, and £, from Equa-

tions [76], and then simplifying, Equation [95] becomes

IT‘ 2 ) 27 " ) @ 27\%
2 + + +f ——
T
-a, w -7 w M,
M3 M, .
6()] = sin (ot - x) [961]
steady state (02 2 ® 2 w2 2\%
1-— \ +/—\ /1 -—
20 ) @y
a9 ay a3

Since this is for the special case of a heavy body of high weight-drag ratio, a, is spe-

cifically obtained from Equation [40a] by recalling the conditions imposed by Equations [60a],

[60b], and [60c].
Yo = 0

T, ~ W ~B)

Substituting the resulting a, in the numerator of Equation [96] and rearranging, the

pitch equation can be written as

o \2|% M, o \2 | %
zr 1+ + 1+ —
-Z, Z, M,
m i/ R
0(¢)] = |T| 3 w sin (ot - x) [97]
steady state (o2 2 @ 2 w2 2 |%

W-B) (zg-24) | [1- — +f — -

%9 aq ay

@y a4 a3



where

ag=-2,W-B) (zg-27) [98al
ay=myW-B) (z5~2p) + M, Z,, - M, (m+Z) [98bl
ay=-UmM +JZ,) +M;(m+Z )+ M, Z;) [98c]

[98d]

ag=mzJ ~ My Z,}
are the coefficients of the characteristic equation specialized from the Equations [40] through
the use of the initial conditions given by the Equations [60].

To isolate the terms which affect the magnitude of pitch it is convenient to consider

the pitch equation given by Equation [97] in the form

0(2)] = |6| Im[e‘(m—x)]
steady state

where the amplitude 6] is

o \2]% M, o 2| %
zpl 1+ +— |1+
-Z, w M,
m M-
3 w
|6l =1 17| 99
(02 2 ® 2 w2 2 Y [ ]
W-B)(zg-24) J[1- - 1-
% | | % it}
a, ay ag
and the phase lag y . _ 2 =9
- w
2
o\2|% , Ms 1 %%
zp 1+ sin | tan — -~ tan = ————————
-Z, w(al-asmz)
m3 L Jd ¥
< — Mw =
M, o\2|% Tw_ ao-a2m2
+— | 14+ [— sin | tan™! — —tan™! —— ~
Z, i @ w(al—asmz)
M.
x = tan~! A R o< [100]
w
o\ 2% s mgy ao-a2w2
zpl 1+ cos| tan™! —— — tan~!
-Zw @ w(al—asmz)
M3 L -
= ", >
M, w\2]|% M, a(.,-azm2
+ e |1 4f —— cos|tan™! — ~tan™! ——~
Z, & @ w(al—aswz)
L M L .y




THE SPECIAL CASE FOR A LIGHT HIGH-SPEED TOWED BODY

For a light high-speed towed body, it is convenient to take the weight or down-force
as small compared tothe drag. The initial conditions of towing equilibrium for this case are

assumed as

0y =0 [101a]
i {101b]

Yo = P

Ty=D [101c]

In addition, as in the heavy low-speed towing case, the perturbation cable-angle input
y(?) is also zero. This condition is the result of a very high speed of advance compared to
the perturbation surge velocity with the tension vector acting predominantly in the horizontal

plane. This again fixes the angular perturbation as

ly@)] =0 [101d]

Introducing the above conditions into Equation [38], the pitch response equation for
this case can be seen to be
VA

w

8 - ——

M3 2p M3

£0(t) = LT (¢) [102]

myd - MyZ s |(3-0)) (5-0,) (s-0;)

Response to a Sinusoidal Input

For this case, the body is excited with a sinusoidal tension input, since this type of
input is more appropriate and useful than some of the other inputs previously considered.
Using Equation [74] for the transform of the sinusoidal input, Equation [102] may be rewritten

as

s+§1 ®

£0(¢) = |T| B, [103]

(8—01) (8—02)(8—03) 2 4+ 0?2

where R 4 can be seen as
Mmy2p
[104]

<
-
I

m3J—M,LZé
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and
Zw
[105]

| Rp—
1
M3

Following the mathematical steps as in the previous case, the inversion of Equation
[103] can easily be shown to be similar in form to that given by Equation [88] neglecting the

R, component.

T} = ¢ o |
T )4 1+ —| sin(wt-n,)
ag 1>1 §12 LBl

0 ()] =
steady state w2\ 2 o \2 w2\ 2|% [106]
1-— +[— - —
ao ao al
e/ \ar ay

Using the particular initial condition given by Equation [101b], a, is obtained from

Equation [40a] as

ag =~ {Zw [zs (W-B) + 2,D] + MwD} [107]

and with a; unchanged in Equation [40d], the steady-state pitch equation for this case is

obtained after substituting R, and £, into Equation [106] as

o \? |*
IT| Z,2p |1+ sin (w? - 7,)
Zw
m
e(t)]steady state 3 [108]
2\2 2
{Zw[zs(W-B)+zTD]+MwD} 1-2 2 1_12 ¢ |
a, a, a,
%2 ¢1 ‘73.

where the coefficients of the characteristic equation are now

as stated in Equation [107]

%

a, = {”‘3[35 W-B) + &pD) + M, Z,, ~MzD ~ M, (m + Zq)} [109a]

a,=- {(mqu +JZ,) + My m+Z) + M, Z:I} [109b]
[109c]

ay = {msJ -M: Z‘;}
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The phase lag n, follows the form of Equation [83] but with the specialized coefficients
of the characteristic equation specified in Equations [107] and [109a] to [109c], inclusive.

The amplitude is obtained from Equation [108] as

2|%
IT| 2,1+ =
“Zw
6] = ™3 [110]
M 2\2 2 2\2\%
(W—B)zs+D(xT+l\) 1o 22N L[N el
z, %9 ) ay
2, oy a3

THE GENERALIZED CASE

The two cases previously discussed, simplified as they appear to be, cover only the
two opposite extremes of a body towed in the first quadrant. These cases serve as an ex-
pedient for design guidance once a given body can be classified as one of these two extremes.

For the “‘in-between’’ cases where these two extremes are not justifiable, it is neces-
sary to drop the simplified equilibrium conditions given by either Equations [60] or Fquations
[101]. The intermediate case then becomes the generalized case. The initial conditions for

the generalized case are taken as

6, = 0 [111a]
tan™! D [111b]
= tan
Yo W_B
2 2%
T, = [D? + W-B)%] [111c]

Response to Sinusoidal Inputs 7(z) and y(z) in Parallel

Let the perturbation inputs to the body be of the form

T(¢)

i

|T]| sin ot
t>0

y(2)

ly| sin wt

With these inputs, the solution of the generalized pitch response Equation [38] can be
shown to follow the same form as Equation [88] by symmetry. In this case, the pitch equation

in the ¢ plane can be stated as
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B a
3 ("
|T| — R & |1
)
02\2 /o \2 02 \2 7% P,
1-—\ +f[—\ [1-—
aq ay a4y R.c
- - - +
252
a, @y a3
\
3] =
steady state Gy -
h’l - Slfl
Qo
02 \2 2 02\? %{
1-— \ +/— - —
@y ) e,
—_— - —_ +SZ€2
| o) @/ N 83 L

@2 ke . 3
+ — | sin (0t-7,)
¢

2%
sin (wt~1,

)
& J
)

27
sin (wt -7,

avas
+ — | sin(wt-1n,)

2
£, )

(112]

where B, B,, S,, S, are previously given as Equations [51] to [54], inclusive, and £; and &,

the zeros of the equation, are given by Equations [76¢c] and [76d].

The phase angles are given by

2
. ¢ » Gy—0a, o
n, = tan — - tan
(3] 2
wla,~a;0 )
2
. &, o %%
1, = tan — - tan
@

2
m(al—a3w )

Again for convenience in notation, let

_ K
Mpy =RB& |1+ ey

L 1

e
My, =R |1+ vy

L ‘52

T W2
‘m}/l = S1§1 1 + —2

B 1

B 0wl %
My, = 8,6, |1+ —

| 62

[113a]

[113Db]

[114a]

[114b]

[114c]

[114d]



Substituting in Equation [112] and applying the argument of inequalities previously
used to lump the coefficients of the paired sine terms into a single coefficient for each of the

tension and cable angle components, it can be seen that

( aq )
0 sin (ot ~ X7)
02\2 o \2 02\2| 4%
1 ———\ + e —
2y 29 ay
% % 23
6(¢)] - { S [115]
steady state as
., +9m_.)
+ sin(wt - y.)
w2\2 o \2 2 % y
1-2\ 4 1-—
29 29 a2,
\ a, @y a3 J

Substit;u(:ing‘m“,‘m”,‘m),l,‘my2 in terms of k,, B, 8,, S, from Equations [51] to [54]

’

and £, and £, from Equations [76c] and [76d], respectively, and simplifying, the steady-state

pitch equation in the time plane becomes:

b2l To

-a,

+

? sin(wt - Xr)

" sin (wt - xy)

o(t)]

steady state

[

ol

[116]

where a,, a,, a,, a, are the characteristic coefficients given by the Equations [40], and the

phase angles x, and X, are specified as

My sinn;+ My, sin 9,

[117a]

Xp = tan™!
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- ‘myl sin 7, +"my2 sin 7,
¥, = tan
Y

[117b]
‘mylcos 71 +My, cOSN,

in which the M and 7 terms are given in Equations [113] and [114] which, in turn, depend on
the R and S terms of Fquations [51] to [54] and the characteristic coefficients given in
Equations [40].

For the general case, there are two amplitudes contributing to the total pitch. The
first amplitude attributed to tension input T (¢) is

|Tl . © 21 % ® 2%
— Z, (zp sinyg + zp cosyy) |1+ +M cosy, |1+

w
0 —Zw Mw
m e
3 w
1671 = - [118]
] 02\2 o \2 ( w2\ 2 | ¥
- c— + — — c—
Qg 2o a2y

The second attributed to the cable angle y(¢) is

Iyl To % o\ |~
e Z (zpcosyg—zpsinyy |1 - M, siny, |1+ e
0 w
W,
10,1 - >

[119]
2\2

These component amplitudes may be combined to a single resultant amplitude of the
pitch angle magnification factor as follows:

|6] = [120]

{16712 + 10, 121%
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APPENDIX E
COMMENTS ON POSSIBLE EXTENSION TO MORE COMPLEX INPUTS
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One question will probably arise with regard to the mathematical results obtained so
far, and that is the effect of the simplifying assumptions made with respect to the input. Al-
though these assumptions may appear simple, even to the extent of reductio ad absurdum, they
should not invalidate the results so far obtained. On the basis of the a priori considerations
of a linear system, the concept of linear superposition can be applied to render the more com-
plex inputs to an aggregate of simpler ones. These more complicated inputs are briefly dis-
cussed in order of increasing complexity.

It is relatively simple to decompose inputs having higher-order harmonics into their
Fourier components, whether or not the extra refinement and work involved would result in a
more precise prediction. Using established results for the simple input and on the basis of
linearizing assumptions, the principle of superposition can be used to sum up the individual
contributions to the total pitch. For a periodic input which can be approximated by a few har-
monic components, a Fourier series expansion should suffice. An ordinary desk calculator
may be used, although automatic computing machines or special harmonic analyzers can be
utilized to expedite the work.

For an input not necessarily sinusoidal but still periodic, it may be simpler to forego

the laborious Fourier expansion. In its stead, for a periodic function where

T@)=T{+T)
then

1 T
LT () = —— f et T(t)dt R_(s)>0 [121]
1__e—sT A

The function T (¢) in the time domain can be fitted with straight-line functions, etc.,
and subsequently substituted into Equation [121]. In a similar manner, £y (¢) can be obtained.
Then both the Laplace transforms of T (¢) and y(¢) can be substituted into Equation [38] to
formulate the pitch response in the transform plane. The ensuing inversion for 6 in the time
plane follows as before. Without elaborating further, it suffices to state that if the transform
exists the solution is merely a matter of some manipulations.

If the assumption of a sine wave or periodic input to the body is not readily acceptable
because of oversimplification, other approaches can be used to satisfy the purists who might
reject the simple input approach on the grounds that nature does not really behave in such a
convenient fashion.

In that case, the approach using the Duhamel integral'> may be used. This technique
is essentially that of breaking down the input into a series of impulses. To illustrate, let
the generalized output-input relationship in the s-plane be denoted by

~

q t P d ~
WP k@s) = A (3)
input
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The inverse problem of determining ﬁ(s) can be resolved in either of two ways. One is an
experimental approach through frequency response measurements in the real plane. The other

is a theoretical approach based on a study of the equations of motion, as discussed in this
report. However determined, assume now that H (s) is known. Then the direct problem is to

solve for

To=H() T, [122]

in which Z is the input to be chosen. Assuming a simple impulse occurring at ¢ = 0, then

the particular response for this input as previously obtained, can be written
70 = L7 H ) = () [123]

With the response to an impulse known, consider now an arbitrary input which may not
be easily represented as simple harmonic nor as periodic. Denote the arbitrary transient input

as

7:0) =T ()

where T (¢), for example, represents the perturbated tension. The response, say, for
Gout = 0(2) following Equation [122], may be written

9(s) = H(s) T(s) [124]

where ?(s) is the Laplace transform of the tension input. The inversion of ’(T(s) can be ob-

tained from the convolution theorem!? as
0(t) = ¢ 1 H(s) T (s

=h@)#T@)=T)# A @)

z

=f h(¢) T(t-7) dr [125]
0

The above integral implies that the input can be taken as a series of discrete pulses so that
the resulting response is no more than the result of summing up the individual responses.

Finally, the most complicated type of input that may be considered is that generated'
by a random seaway. The resulting platform motion, by way of the cable, produces a disturb-
ance input which is in general nonsinusoidal and characterised by no well-defined period.
Here the input will have to be considered in terms of either the two-sided Laplace transform
or the Fourier integral. The approach for this type of problem will require the use of more
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sophisticated techniques based on Generalized Harmonic Analysis, the Fourier transform
operator, and the concepts of stationary random processes and probability.

More and more, recent papers can be found in the field of engineering which employ
the powerful tools of ‘‘spectral analysis’’ for handling problems of random nature. 16,17,18
Except for brief mention, no attempt will be made in this report to delve along these lines

for two reasons:

1. Brevity considerations. To include the effect of irregular seas here would exceed the

scope of this report.

2. Difficulty in reaching a simple design or evaluation guide. In the present study, the
primary concern is on trends rather than on prediction. The added refinements of a complex
input representing more realistic conditions at sea required for the latter would not be very

instructive for design purposes.

It will suffice to say that this study is eoncerned only with shedding some light on
what could be called a rational guide toward the design of a minimum-pitching body. The
underlying reasoning is that until the experience of actual measured values prove contrary,
some rational approach is needed to develop the trends of cause and effect rather than a pre-

cise prediction which borders on the vagaries of probability phenomena.
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Attn: Librarian

Franklin Inst, Philadelphia
Attn: Libranian

College of Engin, Comell Univ, Ithaca
Attn* Librarian

DIR, Inst of Engin Res, Univ of Califormia,
Berkeley
1 Prof, E. Laitone
1 Engin Library



Copies

INITIAL DISTRIBUTION (continued)

Case Inst of Tech, Cleveland, Attn: Librarian
Camegie Inst of Tech Library, Pittsburgh

Daniet Guggenheim Aero Lab, CIT, Pasadena
Attn: Libranian

Tech Library, Douglas Aurcraft Co, Inc, EI Segundo
1 Mr. AM.0. Smith

Cornell Aero Lab, Inc, Buffalo, Attn: Tech Library

Consolidated Vultee Aircraft Corp, San Diego
Attn: Engin Library

The Martin Co, Baltimore, Attn: Engin Library

Westinghouse Electnic Corp,
Elec Div, Baltimore

Aerojet-General Corp, Azusa, Calif.
1 Mr. B, Peters

B.F. Goodrich Industnal Products Co, Akron
Attn: Mr. WA, Smith, Mgr, Govt Coordination,
New Product Sales

U.S. Rubber Co, Passaic, N.J.
1 Mr. LeFevre

Grumman Aircraft Engin Corp, Engin Library,
Plant 5, Bethpage, Long Island
1 Dr. R. Jensen

Lockheed Arrcraft Corp, Burbank
1 Dr. E.Y. Hsu, Dept 66-23

McDonnell Aircraft Corp, St. Louis
Attn: Engin Library

Tech Library, N American Awiation, Inc, Downey
1 Dr. E.R. van Driest

N American Aviation, Inc, EI Segundo
Atta: Tech Library

Northrop Aircraft Co, Hawthorne
Attn: Tech Library

United Aircraft Corp, Res Dept, East Hartford

Chief Librarian, VPI, Blacksburg
1 Prof. D, Pletta
1 Prof. R. Trutt

Tech Res Group, 2 Aenal Way, Syossett, Long Island
Attn: Dr. Paul Kaplan

General Electric Div, Syracuse

Bendix Aviation Cotp, Pacific Div, Hollywood
Baldwin-Lima-Hamilton Corp, Waltham, Mass.

Commercial Engin, Houston

Clevite Ordnance Div, Clevite Corp, Cleveland
Raytheon, Waltham; Mass,

International Telephone & Telegraph Corp,
Federal Tel Labs Div, New York

Telephonics Corp, Huntington, Long Island
1 M. W, Lane
1 M. P, Lujac

68

Copies
1 Dr S.F. Shen, Aero Engin Dept, Univ of
Maryland, College Park

3 Cleveland Pneumatic Industnes, lnc,
Systems Engin Div
1. Mr. W.M. Ellsworth
1. Mr. S.M. Gay
1. Mr. Hugh M. Fitzpatrick

1 P. Eisenberg, Hydronautics Corp, Rockville
1 Edo Corp, College Point, Long Isiand

1 Vitro Corp of America, Silver Spring
Div of Vitro Lab, Attn: Libranian

1 Dr. A.G. Strandhagen, Head, Dept of Engin
Mechanics, Univ of Notre Dame

2 DIR, Inst fur Schiffbau der Univ Hamburg,
Berliner Tor 21, Hamburg, Germany

9  USN Attache, London, England
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