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ABSTRACT

The pitching behavior of a submerged towed body is analyzed on the

basis of the equations of motion. Restricting motion to the vertical plane of

tow and following certain linearizing assumptions, the open-loop pitch response

of the body is derived for a general input at the towpoint. The resulting analyt-

ical expression in the transform plane is then solved in the time domain for sev-

eral simplified reference inputs. The steady-state pitch response is then exam-

ined with regard to minimizing pitch amplitude. It is shown that this process

depends on certain parametric relations among the hydrodynamic stability de-

rivatives, the equilibrium conditions of the towing-force vector, the mass loading

conditions, the operating frequency, etc.

Two specialized extremes to the general equilibrium condition in the first

towing quadrant are given as examples and are discussed: first, the case of a

heavy low-speed towed body with a very high "lift-drag" ratio; and secondly,
the case of a light high-speed body with a very low "lift-drag" ratio.

INTRODUCTION

When dealing with the many design problems associated with submerged cable-towed
bodies, the depth and stability requirements can usually be satisfied on the basis of an analy-
sis of calm-water behavior. However, in a heavy sea, severe motion of the towing platform
can generate a forced input, causing undesirable pitching motion of the body, even though the
gross requirements for calm-water operation are satisfied. Thus a body design that was evalu-
ated solely on the basis of calm-water towing may no longer be as readily acceptable in light
of more refined requirements. The presence of a forced input due to motions of the towing
platform leads to the inevitable question: How should the towed body be designed for minimum
pitching? To shed light on this problem, it is necessary to delve into the fundamentals of
towed-body dynamics.

The present report was conceived as one facet of a research project entitled "The
Effect of Platform Motion on Cable-Towed Bodies," which is being carried out at the David

Taylor Model Basin under the Fundamental Hydromechanics Research Program, NS 715-102'
(S-R009 01 01).

This report deals with a theoretical investigation of the open-loop pitch response of an
oscillating towed body resulting from some disturbance input at the towpoint of the body. The
theoretical treatment is restricted to the longitudinal equations of motion of a body (three

degrees of freedom-pitch, heave, and surge). Using the Laplace transform technique, the
response matrix is derived from the linearized mathematical model on the basis of small per-
turbations about the equilibrium condition. Taking only the pitch degree of freedom, the

IReferences are listed on page 65.
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response is generalized in terms of an arbitrary input. Then for several specified types of

inputs, the steady-state pitch is obtained in the time domain by means of simple transform

inversions. The amplification factor which is extracted is then used to discuss the possible

ways of reducing pitch. Two simple cases are discussed: (1) A heavy low-speed towed body,

or one with very high weight-drag ratio; and (2) a light high-speed body, or one with very low

weight-drag ratio.

The general organization of this report is as follows: the body contains an orientation

of the physics of the problem and extracts from the appendixes only those mathematical rela-

tionships which are necessary to discuss physical applications. The appendixes contain the

bulk of the mathematics for those readers who are interested in the detailed derivations.

GENERAL CONSIDERATIONS

One of the most acute problems encountered in the towing of a deeply submerged body

by cable stems from the motion of the towing ship in a seaway. 2 The resulting vertical motion

of the ship's fantail, taken as the towing platform fromwhich the cable-body system is attached,

can cause the towed body to undergo oscillations in pitch which could impair its intended

effectiveness.

The sophistication of automatic control and its attendant problems, such as responses,

noise interference, vulnerability due to electronic failure, and the added space requirements,

suggests the desirability of an exploratory survey to determine the feasibility of pitch reduc-

tion by "passive" means alone. Specifically, this implies the "controls-fixed" aspect through

judicious body design, loading, fin arrangement, etc.

Such a study can be accomplished best if the mathematical relationships are determined

for the various parameters appearing in the pitch response for specified inputs to the body.

The types of inputs chosen, besides being mathematically convenient, have physical towing

analogies. Thus, the resulting analytical solutions of the pitch response can be used con-

veniently as a guide for design. The design problem which deals with pitch reduction for an

assigned input is essentially a minimization process, once the parameters are isolated.

SOME ASPECTS OF THE OVERALL TOWING SYSTEM

The overall dynamical problem associated with ship-cable-body systems, although

actually very complex, may be represented simply by an elementary analog consisting of three

basic black-boxes in tandem-ship, cable, and body. 3 (See Figure 1.) The external input q'

to the composite system shown in Figure 1 is the seaway, which, for simplification, is assumed

to act only on the ship. This is tantamount to saying that the body is submerged deeply enough

so that the wave disturbances acting on the body itself are negligible, and that the near-surface

disturbances on the upper-portion of the cable are of second order. The output of the ship q

resulting from the wave input depends upon the particular characteristics of the ship. This

relationship can be given by the transfer function G, (s) which, in operational notation, relates

lh i EJ III'llf -- MIHIiii i 1
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Waves

Cable

Output Motion

Figure 1 - Diagrammatic Analogy of Towing System

the output 7s coming out of the black-box representing the ship and the input w going into

it.

qs (8)

Hs (s) = KG s (s)= -
qw (s)

If the transfer function of a particular loop has been synthesized, then the output or

response can be determined readily for any input, providing, of course, that the system be-

haves linearly.

q (S) = Hs (s) q (s)

Similarly, there is a unique output-input relationship attributed to each of the other

components.

Cable: H -
qs - qf

Body: Hb - qb

Feedback: H -=

where H and Tare functions of a parameter s.

-_1 I A ".- - - - - - mrr~~~..^i.ll'l**u"* i.



0 _ 11,i

It must be noted that the input (s -') entering the cable black-box is represented

as the result of the combined outputs of ship and feedback link taking place at an appropriate

"mixer." For convenience, it is assumed that the output of the feedback link enters the

mixer at a point along the line, which is ahead of the cable loop. Effectively, this amounts

to replacing the cumulative influence of the body's position and motion on each elemental

cable element by a single equivalent input which enters the mixer at one point forward of the

cable loop. Thus, the foregoing simple approximation will result in the same input entering

the body's black-box.

In addition, it is postulated that the dynamic forces due to motion of the body and cable

do not in any way contribute to the motion of the ship. The a priori reasoning is easily justi-

fied when the mass of the towed body is small compared with the mass of the ship.

To avoid treatment of the complex ship-motion problem, it is expedient to bypass the

seaway as the input to the overall system at the starting point. Here, it is convenient to

choose the fantail motion of the ship as the starting point. This is tantamount to taking the

resultant vertical motion output of the ship at its fantail, regardless of how it was compounded,

as the towing platform initiating the disturbance input to the reduced cable-body system. The

overall problem then reduces to that of finding what the response qb of the body would be for

a given starting input motion q at the towing platform.

Using the previous relations, the response of the body can then be considered in func-

tional form as

Hf H b

where !-1 is the symbolic operator denoting the inversion of the Laplace transform of the

expression in braces.

The foregoing equation, an idealization as it appears to be through the many assump-

tions made, is quite involved and requires further investigation for a quantitative solution.

It would require further research into the relatively unexplored field of ship-cable-body

dynamics. 4 ' 5 This implies delineation of H and H1 , the transfer functions of the cable and

the feedback elements, respectively, for a given input (q starting at the ship's fantail.

ANALYTIC APPROACH TO THE IMMEDIATE PROBLEM

The immediate study is not overly concerned with a precise prediction of the motion

response of the body following an input at the towing platform; such a prediction would

involve very complicated ship-cable-body dynamics. The present objective is rather to de-

termine how the design of a body can be improved to obtain minimum response on the basis

of the inherent characteristics of the body alone. It is convenient, therefore, to isolate the

body's black-box from the overall system and to temporarily ignore specification of the trans-

fer function of the elements preceding the body. The resulting output of the preceding

, I Nw milmmil
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elements is then treated as some input to the body. Accordingly, the overall problem is re-

duced to consideration of the particular body parameters which affect the motion of the body

subjected to some arbitrary reference input at the body's towpoint. Based on this arbitrary

input, without specifying for the time being how it is generated, the immediate problem is

approached in two parts.

First, the equations of motion are investigated on the basis of linearizing assumptions

for small perturbations about the equilibrium condition in the vertical plane of tow.

Using the Laplace transform technique, the equations of motion are solved specifically for

the pitch response by means of a matric inversion. The resulting pitch response is expressed

in terms of the body's hydrodynamic derivatives and its inertial and metacentric parameters,
for generalized inputs in terms of perturbated cable tension and cable angle.

Then, assuming some specialized inputs corresponding to particular towing situations,

the pitch response is obtained in the real or time domain by solving the inverse Laplace

transform. The relevant parameters, including the frequency relation, affecting the pitch re-

sponse are now isolated. The resulting algebraic expression for the pitch response amplitude

provides a rational basis for future studies in designing a body for minimum pitch.

DESIGN CONSIDERATIONS FOR PITCH MINIMIZATION BASED
ON SOME SIMPLE TOWING ANALOGIES

The coordinate system chosen to identify the body x, y, z axes and the space xo, Yo
so axes is shown in Figure 2.

Figure 2 - Coordinate System Used g- xo

Z  
yO

ZO

Based on the assumption of motion only in the vertical plane, the linearized, open-loop
pitch response of a towed body has been derived as

11,1 dwll I II n 1



Z

m 3  m 3

m 3J-MZ T i Tc (s-a1)(s-o 2)(s8-o 3 )

ST(t)

- MZ cosyo (Cs 3

To 3  m 3

+ 8e 8 . -. 7

To MZ M -

m 3 J-MZi (8-) (8-a2)(8 3

[Eq. 38, App. B]

To solve the above equation explicitly. in the real time plane, the input functions T (t)

and y(t) must be prescribed. The success in designing or modifying the "passive" body for

minimum pitch now lies in the choice of the input functions which one considers to be repre-

sentative of field conditions. For expediency, the forcing functions chosen for this study are

mathematical idealizations of those expected at sea. This approach is useful for many reasons,

one of which is to obtain a simple solution while still retaining physical realizability. For

analysis, the relationships of the body's characteristics affecting pitch can then be isolated.

Later investigations may provide actual numerical values for the design of a body less prone

to pitch under the same environmental circumstances.

A few examples of cases having simple physical towing analogies are discussed in the

succeeding paragraphs.

THE HEAVY LOW-SPEED TOWED BODY

For a heavy low-speed body or one with a high lift-drag ratio, the following initial con-

ditions are assumed to exist at the body:

1. The trim in the calm-water equilibrium towing is zero;

2. The cable element (at the body) is fixed perpendicular in space;

3. The tension force at the body approximately balances out the body's resultant

weight in water.

In addition, the perturbated cable angle y(t) is assumed to be insensitive to deviations about

III I r I I I I I -- IYS*IPP-
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the mean which is at yo = 0. The three assumed initial conditions and the approximation

y (t) = 0 are discussed as Equations [60a] to [60d] in Appendix D.

With these assumptions, the pitch response may be described by

s-

m3XT S rn3
m 3 J-MZ, 8 (8-a2(8-a

0 (s) =Ts)

8+
M M.w w

Mn3J- MjZ (S -o 1 ) (S-02)(s -a 3)SJ-MZ 
[Eq. 61a, App. D]

where a1 , a2 , a3 are the roots of the characteristic equation given in Equation [391.

Response to a Unit Step Input

One interesting aspect of the response problem concerns the determination of the

pitch output when the body is disturbed by a unit step input. Physically, this occurs when

the body is interrupted from equilibrium towing in calm-sea condition by a sudden pullup of

the body with an incremental towing force which is then held constant. This is apt to happen

either when the body is undergoing recovery to the towing ship or when the operational depth

is suddenly changed.

On the basis of a simple unit step input posed by Equation [641, the steady-state part

of the response is selected as a design criterion. The expression for the steady-state pitch

in the t plane is given as

z, Z w + M w
0 (t)]steady-state Z (W - B) ( - )  [Eq. 68, App. D

It can be seen from the foregoing equation that the following characteristics conducive to

effecting small pitching amplitudes in the case of a unit step input are:

1. (W-B), the weight in water, should be large.

2. (as -aT )' the distance between the static center through which (W-B) acts and the

towpoint through which T acts, should be large.

3. x T , the horizontal arm of the towpoint measured from the CG, should be small.

Mw
4. -, the ratio of the hydrodynamic static-moment derivative to the normal force

Z
w

derivative, should be small.

IM11141IIIu111Y 11
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In the actual design problem, the modification alternatives suggested by items 1 and 2

are generally difficult to effect a significant change so that the benefits of improved redesign

along these lines are fairly well limited. The alternatives suggested by items 3 and 4 can be

applied to the optimization of the pitch on the basis of the numerator of Equation [68] by

considering:
Mw

XT + -0
Zw

This expression can be interpreted in two ways. The first interpretation suggests that

the equality be maintained through an adjustment of the particular parameters. The second,

however, is preferable, and this is to ensure that the towpoint is located above the center
Mo

of gravity; i.e., z T - O. In addition, the ratio -- should be kept as small as possible conso-

nant with minimum static stability Mw . This can be achieved by the addition of damping fins

ahead of, or at, the towpoint. These fins can either decrease or maintain the static stability

Mw, depending on their location; both alternatives should increase Z w .

Response to a Unit Impulse

There are times when the towed body will be excited by an instantaneous tension load

of high intensity which occurs over a very short time interval and then disappears. The physi-

cal analog to this type of input, known as an impulse, may easily be visualized as a sudden

jerk on the body applied through the towline. This type of input can actually happen when

the towing ship is slamming, 6 or when the body is excited by resonance conditions on the

cable system corresponding to the critical speed of wave propagation along the cable. 7

If the transient part of the response is ignored as of little use for design purposes, the

steady-state or asymptotic pitch response is shown by Equation [721 in Appendix D to be

lim (t) = lim sO(s) = 0
t-oo s*0

This result is as expected, since the body must first satisfy Routh's "go, no-go"

criterion for stability.

If, however, the design was motivated on the basis of the transient response, it would

be necessary to solve the characteristic stability equation explicitly for the roots a1 , a 2 , '3'
The design possibilities of having either three positive real roots or three negative real roots

can be discarded because the first implies an unsatisfactory body and the second is trivial.

For most body designs, there is more apt to be one real root and a pair of complex conjugates.

Knowing the minimum stability bounds, it may be of some use to consider how to adjust these

roots in the s plane to get the desired transient response in terms of specified rise time,

'Vnr~ Z I~



overshoot, etc. It is more advantageous, however, to use an input function which will better

simulate more normal towing situations, as indicated in the next section.

Response to a Sinusoidal Input

The most representative input to the towed body is that which simulates the motions

transmitted by the towing ship in a sustained seaway. The resulting steady-state response

of the body will be oscillatory with a period equivalent to the ship's period of encounter. If

the transient part of the response is neglected, a more rational basis of approach can be

taken that would result in an analytical expression for minimum pitch design information.

The sinusoidal input can be used to simulate the foregoing situation. The steady-state so-

lution of the pitch response due to a sinusoidal input has been derived in Appendix D as

Equation [96]. The magnification factor is given by:

S + + - 1+-Z Z M
101 ITI

0) 2 2 2(W-B)(zs-sZ){jy- +(1 )
[Eq. 99, App. DI

where

a0 =-Z w (W- B) (as- ZT)

a1 = m 3 (W-B) (as-zT)+MqZw -M w (m+Zq)

a2 = - [(m 3 Mq + JZ W) + M, (m + Zq) + MwZ4]

a3 = m 3 J - M

The above relations are applicable only for the special case of a very heavy body with

a high weight-drag ratio.

To achieve minimum pitch, the previous arguments presented in the step-input case

(which does not have the frequency dependent terms) will also apply here. In addition, since

the pitch magnification is now frequency dependent, it is imperative to design the body to

have its resonant frequencies away from the operating range of frequencies. The resonant

frequencies appearing here are those frequencies which make the denominator go to zero and

hence result in 101 approaching infinity in the limit. This happens when
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a0 1
2 2 0 al

n a 2  a3

For an approximation, the driving frequency c on the body can be taken to be equal to

the towing ship's frequency of encounter. This can be estimated on the basis of knowing the

ship's speed of advance and the wave length of a simple two-dimensional seaway. Assuming

a ship advancing into a head sea, the frequency of encounter is

21T c+U 27Tng 2rnU
o -2 77 + -

T X X

Depending upon the particular ship used, the speed of towing operation, and the wave length,

the period 7 may vary from 4 to 6 seconds.

Hence, once the frequency of encounter is known, the resonant condition of the body

can be avoided by adjusting

0 >> 2

a 2

a 1

a3

a0  a1
Care should be exercised at the same time not to allow - to become equal to - simulta-

a 2  a0  a 1  a 3

neously with the input frequency. If the critical frequencies - and - are kept far over
a 2  a3

toward the direction of increasing o, the problem of large pitching amplitude due to resonance

will be minimized.

The remaining terms which affect pitch amplification appear in the square-root terms of
Z Mw

the numerator in Equation [991. By making both of the ratios - and - as large as possible
m 3  M Z

compared to the driving frequency o, further gains may be accomplished. The ratio - can be
M m3

made large by increasing Z W, and - can be made large by making Ma small compared to
Ma M

Mw . In this manner, there will be no conflict with the earlier requirement of small - which
w

appears as the coefficient of the second square-root term in the numerator.

In the frequengy response range, a very small o is advantageous for small pitching

amplitude. In fact, for o = 0, the resulting equation for the amplitude is identical to that for

the step input, and the optimization of the pitch follows the same arguments as before.

Likewise for o = -o, it can be shown that the pitch will approach zero in the limit which

is identical to the results previously obtained when the body was excited by an impulse.

I W1 M1110111 1,1-1ll
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THE LIGHT HIGH-SPEED TOWED BODY

To solve the case of a light high-speed towed body, without losing sight of the actual
physical situation, the following conditions are assumed to apply (see Equations [101] in
Appendix D):

1. The trim angle 00 is zero in the equilibrium condition of tow.

2. The cable angle yo is n/2 on the basis of the cable being horizontal at the body.

3. The equilibrium tension at the body is mostly due to drag.

4. The perturbation cable angle y(t) is negligible in amplitude.

With these a priori considerations, the pitch response can be expressed as

m 3 z T  mZ
0 (s) = T (s) [Eq. 102, App. D]

n3J-M Zq s-l)(s-)(--a3

where again al, a 2, a3 are the roots of characteristic Equation [391 with the particular equilib-
rium conditions listed above.

Response to a Sinusoidal Input

In the case of a light high-speed towed body only a sinusoidal input is chosen for the
tension perturbation. In this case, however, the tension acts in a horizontal plane instead of
vertically as in the heavy low-speed towing case. The steady-state solution in the time plane
is given as

ITI ZwZT + _ ] sin (ot - 7))

(M
0 (steady state -

{Z [s(W B) + D] + MWD} 1 - 22 2 2 D

where

ao =-IZ [z (W-B) + xTD] + M wD

al = m 3 [zs(W-B) + TD] + MqZ -MD - Mw(m + Zq)

a2 = - {(m 3Mq + JZ w ) + M, (m + Z) + M wZ

a 3 = Im 3J- MtZ 4 I



The amplitude can be seen for this case to be:

TI T1 +
-Z

MW)2 22 2 2 2 V2

(W-B) zs + D X + 1+
Z ao ao al

a2 1 3 [Eq. 110, App. D1

Comparing this amplitude expression with that of the previous case of a heavy low-

speed towed body, it can be seen that to achieve minimum pitch, it is desirable to:

1. Decrease z T , the vertical moment arm of the towpoint with respect to the CG of the

body as much as possible. This is the moment arm through which the perturbation input ten-

sion ITI acts as a horizontal disturbance force.
w

2. For a given D, the equilibrium drag force, keep the ratio - as high as possible.
w

This can be achieved by designing the body with a high restoring, pitching-moment derivative

Mw; the normal-force derivative Z w should be kept small. To satisfy the conditions of large

M and small Z w simultaneously, it is necessary to have a small (horizontal) control surface

mounted as far aft as possible within practical dictates of a good functional design.

3. Likewise for a given equilibrium drag D, the horizontal moment arm of the towpoint xT

should be made as large as possible. The simultaneous satisfaction of this requirement with

that given by item 1 implies that the towpoint is located at the nose of the body. The towing

configuration suggested by this requirement would result from the towing of a body by either

a submarine or a blimp on almost the same elevation. This type of towing is not very realistic

for the case of a surface ship required to tow a body at a deep depth.

4. For a given value of (W-B), which is generally fixed by functional requirements of a

towed body, z S, the vertical distance (generally negative) of the static center through which

(W -B) acts should be kept small.

5. As in the heavy low-speed towing case, the body should be examined from the frequency

standpoint. The resonant or critical frequencies given in the denominator by the ratios

a0  a1

- and - must be adjusted to stay well away from the operating frequency of encounter.

a2  a3
If possible, these critical frequencies should be kept far over to the right of the expected

range of operation in the frequency response diagram, as indicated by Figure 3.

In the process of designing for minimum pitch through adjustment of the -o and --
a 2 a 3
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ratios, the body must be kept stable at all times. This is a necessary condition which can be

checked by using the Routh criteria.

As o =0, the resulting pitch amplitude (as in the heavy low-speed towing case) should

approach zero in the limit corresponding to the response to an impulsive excitation.

lim 101
- = 0

At o = 0, the pitch amplitude is synonymous to the response resulting from a step input,

TI=o- 0= ZS (W-B) + D XT +
w

THE GENERALIZED CASE

The general case for which the previous two cases have been presented as the opposite
extremes embraces all of the towing situations in the first quadrant. Since it is slightly more
complex than the preceding cases, it is purposely presented last.

Response to Sinusoidal Inputs T(t) and y(t) in Parallel

The case under consideration is actually the inversion of the generalized pitch response
given by:



8 _

n3 (Z sinYo + zTCOS YO) cs3

m3 J (s-oJ-MZ TT )(S- 2 (s-ca 3)

- T(t)

Tom 3  w m

TO , co - T sin yo)
maJ-M-Z) o(T (-)- (sinS-2) (S-a3)

+ 3 W y(t)

8 + --

[Eq. 38, App. B]

where a 1, a 2 , a3 are the roots of the characteristic Equation [391.

The initial or equilibrium conditions in this case are dependent upon the equilibrium

drag force D and vertical force (W-B); the following conditions are assumed to apply:

1. The trim angle 00 is zero.

2. The cable angle yo measured with respect to the perpendicular space axis is formed by

--1
the horizontal and vertical equilibrium forces; i.e., yo = tan- W1

W-B

3. The equilibrium tension is the resultant of the horizontal and vertical forces on the

body when no perturbations are present; i.e., To = [D2 + (WB)21/2

Assuming sinusoidal functions for the perturbation inputs, the resulting inversion of

the generalized pitch response is

- - -IIH
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J] teady state

-IT Z (acosyZ osiny) +- ao T sin Z T (;_

S sin (t -XT)

+ , (T COonY I++ 'W

L 2 2 (2 
2j sin(ot - X

- M sinyo +

a2 a3

[Eq. 116, App. D]

It can readily be seen that the total pitch is made up of two contributions in parallel

and may be portrayed according to the idealized box diagram in Figure 4.

The total amplitude may be obtained as the resultant of the component due to the ten-
sion and the component due to the cable angle.

IOl = (0lT, 2 + 1IY12)

where OTI| and 10 lel, taken from Equations [1181 and [1191, respectively, may be examined

from the following relations

(zT sin Yo + T cos ) - Cos O +
-ZW ZW Mw

10lT

S(W - B) + To T sin Yo - a cos o + - siny - - +- - - -
Z w  ao ao al

f- - - --1

T H(s)
Figure 4 - Box Diagram to Show Input- HT()

Output Relations at the Body
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and

a 2 M 2 V2

(ZT cosy - T sin Yo) 1 + - sinyo 1+

S T 0) + (T sin Yo - T cos O +  sin 1 - ao +a al

a2  a3

in which ao, a1, a2 , a3 are the characteristic coefficients given in Equations [401.

To achieve a body of minimum pitch amplitude, the overlying principle aims to make the

numerator small and the denominator large. The previously mentioned arguments with respect

to designing the body with a critical frequency well beyond the expected range of operation

still hold. This is perhaps the soundest and the only sure advice than can be given if frequen-
a0  a 1

cy is considered a problem. Before designing a body to have ratios - and - well beyond
a2  3

the range of operating frequency, the design must be such that the body will satisfy stability

at all times. This can be checked with the Routh criterion, discussed in Appendix C, as the

first requisite for the dynamic behavior of towed bodies.

All other alternatives and considerations for minimizing pitch can be discussed in more

or less general terms only, since they are dependent upon the particular functional aspects of

the design and the conditions in which the body is expected to operate. Again, successful

minimization of pitch amplitude depends on making the numerator small and the denominator

large in the amplification term for pitch.

CONCLUSIONS

The entire ship-cable-body dynamical problem is quite complex, especially where quanti-

tative prediction of the closed-loop body response to a prescribed input at the towing platform

is required. Where the immediate goal is to optimize the body design from the standpoint of

minimum pitch, however, the problem may be simplified considerably by making a study of the

open-loop responses of the body alone to isolate the body's hydrodynamic, inertial, and loading

parameters.

This report has shown by theoretical analysis which parameters affect the pitch response

and how they are related. Based on this analysis, it is concluded that the pitch amplitude de-

pends on:

1. The absolute magnitude of the disturbance itself;
a

0

2. The operating frequency range with regard to the critical or resonant frequencies
a1  a 2

and - which are implicit functions of all the hydrodynamic stability derivatives, the meta-
a

3
centric and inertial parameters, etc;

____ __Nil,
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3. The location of the towpoint through which the cable tension acts with respect to the

center of gravity and the location of the resultant weight in water (W- B) of the body;

Mw
4. The location of the body's resultant center of effort as defined by - ; andzw

5. The initial conditions with respect to the equilibrium tension vector, defined by To

and yo, which are fixed by the weight in water and the lift and drag of the body at equilibrium.

The first factor is the only one which is presently beyond the control of the designer,

who must take the amplitude of the input as the starting point. The input amplitude depends

on the phasing of the body motion with the towing platform motion through the cable.

The practical result of this analytical study is the conclusion that a body may be de-

signed within the dictates of functional simplicity to operate at minimum pitch. This state-

ment is subject to the following two qualifications:

1. The design for minimum pitch can be attained subject to the given input amplitude.

Doubling the amplitude of input (for a linear system) would, of course, mean doubling the

amplitude of the resulting output.

2. The design of a passive body should not be expected to satisfy the entire frequency

range. A flat amplitude-frequency curve may not be as desirable as one that has a low ampli-

tude to the left of the maximum expected operating range of frequencies.

Thus, the results of this analytical study can serve as a starting point for a systematic,

parametric investigation of the terms affecting pitch. For the longer range aspects, the in-

verse problem of design, using the technique of synthesis, can then be approached in a method-

ical and rational fashion to accomplish any new design or redesign of a towed body to reduce

excessive pitching amplitudes.

RECOMMENDATIONS FOR FUTURE STUDIES

The ultimate goal in treating problems dealing with ship-cable-body systems is to pre-

dict quantitatively the motion of the towed body as a consequence of the actual motion at the

towing platform. The subject of the present report was restricted to the open-loop response

of the towed body as one entity of the entire system. Whicker, in his thesis on the Oscillatory

Motion of Ship-Towed Cable Bodies, 4 has examined the dynamics of the cable without con-

sidering the detailed characteristics of the body. It should be possible to combine these two

phases as a step toward the final goal.

It is believed that the transfer function of the total system, excluding the ship except

as to using its resultant platform motion as the system input, can be constructed by a process

of synthesis. This can be accomplished if the individual transfer function of the cable, body,
and feedback as components of the system can be isolated first. It is recommended, therefore,
that:



1. Additional theoretical work be carried out along the following lines:

a. Construct the individual transfer function of each component in the system.

Techniques similar to those used in this report and the literature can be used for

isolating these individual transfer functions.

b. Determine the relationship between the component parts, to arrive at an

analytic function giving the total system transfer function.

2. Additional experimental work be carried out to augment and verify the hypothesized

mathematical model, as follows:

a. Perform captive model tests to determine the stability derivatives of the body.

b. Conduct model tests to verify the dynamical characteristics of the cable as

a rigid element and then as a flexible line subject to initial and boundary conditions.

c. Conduct towing studies of cable plus body together, carefully instrumented,
to probe input-output relations at each loop to verify the hypothesized component

transfer functions as well as the total system transfer function.
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APPENDIX A

EQUATIONS OF MOTION OF THE BODY
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GENERALIZED EQUATIONS

An orthogonal axes system z, y, z (see Figure 2) fixed to the moving body is chosen

with the origin taken as the towpoint;* a is positive in the direction toward gravity, y is posi-

tive along the starboard direction, and x is positive in the direction toward the nose. Follow-

ing the SNAME conventions, the generalized equations of motion have been given as: 8 ,9

m[ - vr + wq - xG (q 2 
+ r 2) + y G (pq - ; ) + G (P )]= Fx

m[i - wp+ ur - G ( + p2 ) + G(qr ) + x
G (qp+ ) ] = F

m[tk - uq + vp- zG (p2 
+ q2) + G (rp + YG (rq + ) = Fz

lx + (I - ly) qr - (i + pq) lxz + (r 2 -q 2 ) y z +(pr - ) xy

and

+ m [YG (t - uq + vp) - zG ( - wp + ur)] = Qx

[lal

[1b]

[10]

[2a]

IY + ( - rp - ( + qr) ly x + ( 2 r2 1 + (qp - i)lyz

+ m[zl (4 - vr + wq) - xG (th - uq + vp)] = Qy

+ m[zG (' - wp + ur) - YG (1i - Vr + wq)] Qz

[2b]

[2c]

SPECIALIZATION OF EQUATIONS TO MOTION IN THE VERTICAL PLANE

If motion is restricted to the vertical plane, then the body is assumed to have freedom

only in pitch, heave, and surge;

v=i=r=;=p=0=0

If it is further assumed that the body has a vertical plane of symmetry in the Xz-plane

and that the origin lies in this plane, then

lxy = ly x = ly z = lzy = 0

YG = 0

*The equations with the origin taken at the center of mass will be introduced later.

I I I r rl -- ---
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On the basis of these assumptions, Equations [1] and [2] reduce to

m [tz + wq - G q2 + ZG ] = Fx [3a]

m [N - uq - aGq2 - scr] = F [3b]

Iy4 + m [z G (4 + wq) - xG (t - u)] = Qy [3c]

in which I is the mass moment of inertia about a transverse axis through the towpoint which
includes that of the moment of transference. This is readily shown by means of the parallel-
axis theorem of mechanics,

y = IC + +m(X 2). [4

The right-hand sides of Equations [3a], [3b], and [3c], which include the external forces but
exclude the inertial forces are given as

F = X - (W-B) sin 0 + T [5a]

Fz = Z + (W-B) cos 0 + Tz [5b]

Qy = MTP - W (XG cos 0 + zG sin 0) + B ( CB cos 0 + aB sin 0) [5c]

where X, Z, and M can be easily recognized as the hydrodynamic contributions.
In a calm sea, the equilibrium towing conditions can be expressed by dropping out the

inertial or acceleration terms so that

F O = 0 = X - (W-B) sin O + Tx  [6a]

Fz =O = Z + (W- B ) cos0 + T  [6b]

Q = 0 = MTP - W (XG cos 0 + zG sin 8) + B (zB cos 0 + ZB sin 8) [6c]

It should be noted that the foregoing equations are based on an origin at the towpoint.
The equations of motion can be simplified considerably in their later developed perturbated
form by taking the origin at the body's center of gravity instead of at the towpoint.*

*The choice of using either the towpoint or the center of gravity as the origin should not change the final result.
Both are mentioned here for comparison.



When the origin is taken at the center of mass, the equations of motion analogous to

the sets given by Equations [3] and [51 become

m ( + wq) = X - (W - B) sin 0 + Tx

m (t - uq) = Z + (W-B) cos 0 + Tz

IG M G - (W -B ) (S cos + z S sin 0) + Tx -  Tz
IG "Tx " Tz

[7a]

[Tb]

[7c]

where the coordinates (xS, ZS) through which (W-B) acts and the towpoint coordinates (xT,

ZT) through which the cable tension T acts, are both taken with respect to the center of gravity.

The x and z components of the external tension force T can be written as

T = sin 2 [8a]

[8b]T_ = -T cos Q

where

a= 0+y

is the lower-end cable angle referred to the body's vertical axis, as shown in Figure 2.

To represent the disturbed state from the equilibrium towing condition, the Equations

[7T must be modified. Taking a Taylor's expansion in which second-order and cross-product

infinitesimals are dropped, the equations of motion for small perturbations which replace Equa-

tions [71 are given as

m (A + w o Aq + qo Aw) =
ax ax
- Au + - Aw - (W -B) cos 00 A 0
au w

aX aX ax ax
+ Au + a - + -Aq + h A

+ To cos (0o + yo
) [A 0 + A y] + sin ( 0

o + yo
) AT [10a]

m (,Xo - uoAq - q0 Au) =
az az
- Nu + - Aw-(W-B) sin0 o A

+ A- + - Ai + - Aq + Ag
S; aq aq-

+ To sin (Oo + y o ) [AO + Ay] - cos (0 o + y o) AT [10b]

- IIMII
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aM aM
IA= Au + Aw + (W - B) ( s sin 0o - as cos 00 ) AO

+ aM O+M +Aq M
++ +

+ z ITO cos (0 0 + yo) [AO + Ay] + sin (00 + yo) ATI

- T ITo sin (0 o + yo) [AO + Ay] - cos (0 o + yo) ATI [10c]

The 0 subscript is used to denote terms taken in the equilibrium condition before per-

turbation; the A symbol, the perturbated quantities. The partial derivatives are taken about

the equilibrium condition in which the zero subscripts are implied though not explicitly

written.

The following assumptions are made with regard to the initial or equilibrium conditions:

1. The fluid is at rest ahead of the body at the operating depth of tow;

2. The angle of attack and the trim angle of the body are both equal to zero;

a o = 0 = 0

3. There is no angular motion of the body about the y axis;

qo = °o = 0

4. The x-component of the body's velocity is equal to the steady-state speed of advance;

Uo = [Au + U cosa]o = U

5. The z-component of the body's velocity is equal to zero;

w o = [Aw + U sinalo = 0

6. The rate of change in X force with respect to w velocity evaluated at a = 0 is equal to

zero, since X is an even function of a;

ax 1 ax
- -- =0

dw U da

7. The rates of change of force with linear acceleration in the direction normal to the force

are negligible;

ax aZ
- - 0

a a 9

-- - L----~w



8. The rate of change of moment M with respect to i in the neighborhood of the equilibrium

is negligible;

aM
=0

9. The rate of change of X force with respect to q is approximately equal to zero in the

neighborhood of the equilibrium, since X is an even function of q;

aX
-0

aq

10. Similar to item 9, the effect of angular acceleration 4 on X in the neighborhood of the

equilibrium is negligible;

aX
-=0

11. When the various terms are nondimensionalized according to the convention set forth

in the nomenclature and denoted by the superscript notation, it can be seen then, as a conse-

quence of the relatively small dependence of Z', and M'on u', that

aZ' aM'
=--- 0au"~ au"~

Letting

A q = AO

A 4 = AO

[1a]l

[11b]

and using the foregoing

following form:

assumptions, the perturbated equations of motion can be written in the

-X + [(W-B)- To cos y o ] 0

[To cos yo] y + [sin yo ] T

- - - w- 92+ m) + To sin y 0

[To sin yo] y - [cos yo0] T

[12a]

[12b]

__ _ 11
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aq a

- T To cos y o + To sin yo

[To (ZT cOSyo - xz sin yo)] y + [z sin yo + "r cos yo] T [12c]

where the following have been adopted for convenience:

1. The operator 9 is used to denote differentiation with respect to nondimensional time

d d

dt' d )

2. The body length I has been used in the nondimensional forces, moments, and distances.

3. The symbol A used in denoting the perturbated quantities and the prime notation con-
ventionally used in nondimensionalizing have been omitted for convenience without unduly
sacrificing interpretation or clarity.
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APPENDIX B

DELINEATION OF THE PITCH RESPONSE IN THE TRANSFORM PLANE



To solve the resulting equations of motion, it is advantageous to rewrite Equations [121

in a more generalized and concise form. This is done by means of tensor notation which per-

mits a more systematic treatment of the mathematical manipulations that follow. To this end,

the following single matric differential equation representing the system given by Equations

[121 in the real (t) plane is introduced: 10

AY(t) +BY (t) + CY(t) = F(t) [131

The terms in Equation [131 denoted in bold-faced print represent matrix quantities,

with Y and F as the generalized response and input, respectively, and A, B, C as the coeffi-

cient matrices. Taking the Laplace transform of both sides of Equation [131 and rearranging,

the following is obtained:

[As 2 + Bs + C]Y (t) = seF(t) + [As + B] Y(O) + AY (O) [141

where the Laplace transformation* of a function f(t) is defined in accordance with

00

e f(t) = e- s t f(t) dt = f(s)

in which s is a complex variable in the transform plane.

Premultiplying Equation [141 by the inverse matrix [A s2 + B s + C ]-1, the expression

for the response matrix in the transform plane is written as

eY(t) = [A s2 + Ba + C 1]- [VF(t) + (As + B) Y(O) + A (0)] [151

For convenience in notation in the perturbated equations of motion, Equations [12], let

m = m - X; m (1 + k )  [161

m = m - Z. m (1+ k3 ) [171

J = IG-M - IG (l+k') [18]

where k 1, k 3 , and k'are the added inertia coefficients due to hydrodynamic or added mass.

In the following context, the subscript notation has been adopted for convenience in designating

the partial derivatives, replacing the earlier method; e.g.,

*The use of the transform method and its application to physical systems can be found in many textbooks. The

ensuing treatment will presume familiarity with this operational technique in solving linear ordinary differential

equations with constant coefficients.
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z
%Za PU212)

dw ('-) w

The coefficient matrices A, B, and C using Equations [12a], [12b], [12c], and Equa-

tions [161, [171, [181 are written as:

0 0 0
A = Ila.. o o -Z. [19]

0 0 J

mi 0 0
B = Ilbjll = 0 m3 -(m+Zq) [201

0 - M -Mq
w q

-XU 0 (W-B) - To cosyo

C = Iciii = 0 -z W  - To sin yo [21

0 - M zS (W-B) - zT To cos Yo + X T o sinyo

In each matrix, the ith subscript used in the row designation corresponds to the sequence

of the successive equations appearing in Equations [12]; the jth subscript used in the column
designation, on the other hand, corresponds to the dependent variables u, w, 0, in that order.

The matrix of the excitation functions in the complex plane is expressed by

sF(t) = f (t [22]

Sf3 (t

where the functions fl, f2 , and f3 have been given as

fl(t) = To cos yo y(t) + sinYo T(t) [23a]

f 2 (t) = TO siny 0 y(t) - cos yoT(t) [23b]

f3 (t) = ZT fl(t) - T f 2 t)

= To [T cos yo - Xr sin Yo] y(t) + [z r sin yo + T cos yo] T(t) [23c]



The response matrix of the dependent variables in the complex plane is given by

I-Y(t)= W e W(t)se (t)
~e~ 0(t)

[24]

The initial-value matrices for the perturbated

t = t o = 0 corresponding to their equilibrium value in

follows:

U

Y(0) = =

t=O

Y (0)= th =

0

The characteristic matrix can now be written

[211 as follows:

displacements and velocities at time

the t plane are given, respectively, as

[25]

[26]

with the use of Equations [19], [201, and

(mIs - X,)

As 2 + B + C= 0

0

0

(mas - Z )

-(M s + M.)

(W-B) - To cos Yo

-[Z 82 + (m+Zq) S+ To siny o ]

Js2_Mq +Z S (W-B)- ZT Tocos YO + T To sin Yo

Denoting A s 2 + B s +

the following relationship:

C = E for brevity, the inverse matrix of E may be obtained by

E- adj E Jlcofactor e 1ilE- lEt E

where adj E is the adjoint and IEl

can then be shown as

the determinant of E. The inverse matrix of Equation [27]

[As 2 + Bs + C -1 =

[27]

[28]
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[mis - X U]

0 Js 2 -Mq8 + 
S (W -B)

+ To (T sin Yo - ZT COS Yo

-[m3s - Z ]

- B) - To cos Yo

[mls - X U]

82 +(m+Zq)8

To sin yo

(mls - X u)

(m3 s - Z )

-(M 8 + Mw )

[(W - B) - To cos yo]

-[Zq s 2 +(m + Zq) s + To sin yo]

s - Mq8 + zs (W- B)

+ To (T sinYo - ZTCOSYo)

With Y (0) and Y (0) as

half of the right-hand side of

null column matrices from Equations [251 and [26], the latter

Equation [151 is seen to be

Sf (t)

F (t) + [As + B] Y () + AY (0) = f2 (t)

e f 3 (t)

[301

where fl, f 2, and f3 are given by Equations [23a], [23b], and [23c], respectively.

Substituting the results of Equation [241 and the matrix product of Equations [291 and

[301, the response matrix of Equation [15] can be shown in the following form:

eu (t)
e Y(t)= sew(t)

so (t)

[29]
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(m 3 s-Z ) [Js 2 -Mqs+ s (W-B)+ T (x T sin yo- ZT cos YO)

-(Ms +Mw ) [Z s 2 +(m+Z) s + To siny o]

- {M, s + M) [(W - B) - To cos yo 1f 2  -{(M3 -ZW) W-B) -To cos yo f 3(t)

(M1-XU) - M8+S (W -B) + TO(T sinyo _ T cos YO)]Sef2 (t)

(mIS8-X) (Ms-Z ) [J82 _ M s+zS (W B) + To(xT sinyo- TcosYO) 1

-(M,s+M ) [Z s 2 +(+Zq) s + To sin y o]

Since the pitch response is of concern for this study, the equation for 0 in the complex

plane, after canceling out (mls - Xu), can be obtained from the response matrix [311 as

follows:

(M s+Mw ) ef2(t) + (m3-Z w ) gf3(t)
e0(t) = (m 3 s-Z) [Ja2 - Mq8+Z (W - B)+TO(xT siny o - a T cosyo) - (M sa+ M) [Zia2 +(m +Z) s+ T sin yo0

[32]
Representing the denominator (the characteristic equation) by

A = (m3s-Z ) [Js 2 _ Mqs + z S (W-B) + To(-T sinyo - ZT cos yo)]

-(M s+Mw) [Z 82 +(m+Z q) + To sin y o] [33]

and writing f3 (t) in terms of fl and f2 from Equation [23c], it can be seen that Equation [321

may also be written in terms of the x and z components of perturbation input to the body as

follows:

Z T (m 3 8-Z) (M s+M w) - xT(m 3 8 - Z,)
Aeo(t) = f, (t) + ef, (t) [341

As it is more convenient to characterize the input in terms of the perturbation tension

T (t) and the cable space-angle y(t), the functions f, (t) and f2 (t) given in Equations [23a]

and [23b] may be substituted into Equation [341 to obtain the pitch response as

- I 1 11 111 ''I ~_~_



o(t) = A [(m 3 s-Z ) (ZT sin Yo + T coso) - (M s + Mw) cosyoe T(t)

+ A [(m 3 s-ZW ) (zT cos yo-X r sin y o)+ (M s+M w ) sin yolSy(t)
AM,+~ ybyt [351

Equation [351 may be further simplified to a more amenable and recognizable form for
solution by an inversion in the real or t plane. To do this, a few preparatory steps are now
made subsequent to Equation [35].

Expanding Equation [331 and collecting terms in descending powers of s, the character-

istic equation can be recognized as

{m 3 J- MZ} s83

- {(m 3 Mq+JZw)+ M, (m+Zq) + MwZ*} s2

+ m3 [zS(W-B)+To(xTsinYo-zycosYo)l + MqZw - MZTosinYo Mw(m+Zq)) s

- Zw [z(W-B)+ To (xT sinyo - ZTcosyo)] + MT o sinyo}

[36]

The above cubic equation may be written in terms of its three roots a 1, a 2 , a 3 , providing
the values of each of the coefficients of the powers of the complex variable s are specified.
However, until numerical values are available, it is sufficient to write Equation [36] as

[37]

Substituting Equation [37]1 back into Equation [351 and rearranging,
can be written in the following form:

Z
8 W

m3 F 3
M~ (S sinyo + zT COS Yo)

m 3 J-M,;Z s (8a-) )(8o 2 )(- 3)J

M7

m 3 J-Mt;Z cos (s -a) 1)(8-a2) (8 -a3)

o(t) =

+

To m3

m o J-~M Z ( T cos yo - zr sin yo)

m J-MZ -o

m3 J-M';Z' Y( 8£i)

the pitch response

T (t)

Yrt)

[381

_I___~_C_~__~_I~~___CIII~L__UUII__

A = (m3J- Mt Z ) [(s-a 1 ) (8-a2) (8-3) ]

M
MZ



The complete solution for the pitch response, including the transient as well as the

steady-state, can be obtained from Equation [381 for a specified body design, given the follow-

ing conditions:

1. Determination of the equilibrium conditions To and yo at the lower end of the cable.

These can be computed if the body's weight and buoyancy, and the resulting lift-drag ratio

for a given speed are provided, either through experimental measurements or by estimates

based on available theory.

2. Specification of the perturbation inputs T(t) and y(t).

3. Determination of the body parameters including the hydrodynamic derivatives, either

through experiment or theory.
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APPENDIX C

PITCH STABILITY CRITERIA



In problems of dynamics, it is necessary to determine whether a given body will be

dynamically stable or not; that is, whether the motion will be attenuated or amplified with

time after the body is subjected to a small temporary disturbance.

All stability criteria have one goal in common: to determine whether or not the poles

of the response function (the roots of the characteristic equation) lie in the left-half 8-plane.

One way of determining the location of these roots in the complex plane is to solve for the

zeros of the characteristic equation given by Equation [331. However, without explicit deter-

mination of the roots themselves, mere knowledge of the sign of roots are useful for the later

discussions on the evaluation of the steady-state behavior of the body when subjected to a

disturbance input.

Where the transient behavior of the body is to be assessed solely in terms of a "go,

no-go" proposition without due regard to the degree of stability, the problem is no longer

critical as long as the motion does not amplify with time. That is, if the body is overdesigned

with more than necessary stability and if the response amplitude is of no importance, there is

no necessity to alter the design. Hence, without specifically solving for the roots of the char-

acteristic Equation [331, as long as these roots are assured to be in the left-hand plane, the

application of the Routh-Hurwitz criteriall should suffice. In essence, if these conditions

are met, the body will satisfy the stability requirements.

To this end, the characteristic Equation [361 may be written in the following form:

2A= a 3 83 + a 282 + as + a0
= a 3  3 + - 82 + - +

a3 # a3 3

= (mJ - M, ZI) [(s - Oa) (s - r2 ) (s - a 3 )] [391

where

a= -{Zw [z (W-B) + To( T sinyo - T cosyo)] + Mw Tosinyo} [40a]

a = m 3 [zsS (W-B) + TO(rT sinyo - zTcosyo)] + MqZw

- M To sin Yo - Mw (m + Zq) [40b]

a 2 =- (mMq + JZW)+M~ (m +Zq) + M Z [40c]

a3 = {m 3 J - MZ [40d]

11M 11IU
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Routh's criterion for stability, in the case of a cubic equation, takes the form of two
tests:

1. ao, al, a2, a3 > 0 (or equivalently, the coefficients must all bear the same

sign, so that, if negative, a 0, al, a 2, a 3 < 0) [411

a1  ao
2. = (a 1 a2 - ao a3 ) > 0 [42]

a3  a2

The Routh requirements for dynamic stability are strictly qualitative and as such, are

not particularly useful for purposes of synthesis. Consequently, it would be more enlightening,
for purposes of design, to examine the makeup of the particular solution. Where the amplitude

of response is an important factor in the final design of the body, the solution of the particular

integral Equation [381 is imperative, but only after the stability requirements have been met.
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APPENDIX D

INVERSIONS OF THE PITCH RESPONSE FOR PARTICULAR INPUTS
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GENERAL CONSIDERATIONS BEFORE SOLVING
THE INVERSION INTEGRAL

The preceding discussion on stability criteria is a necessary prelude for the analyses

to follow. If the body does not meet the Routh criteria, it would be futile to proceed further

without backtracking to alter the design until positive stability was achieved. However, if

the body satisfies the Routh criteria for stability, then the problem which consists in minimiz-

ing the pitch amplitude as the eventual goal can be considered. It shall now be assumed per

se that the body under consideration has sufficient stability without clarifying the degree of

stability, or more precisely, the makeup of the individual elements contributing to the whole

by an exact knowledge of the poles and zeros appearing in the response function.

Recalling Equation [381, it is readily seen that the total pitch response is composed

of two components, one resulting from the tension input T (t) and one resulting from the

cable angle input y (t). This may be visualized in Figure 4. Using the transfer function

concept, 12 the output-input relations for each of the components making up the total pitch may

be defined as

e 0(t)

(s) = [43b]ye (t)

where the appropriate subscripts T and y are used to identify the proper components corre-

sponding to the tension and the cable angle at the lower end of the towline. The total pitch,

using Equations [381 and [43], can now be written in the following form:

s ect) = se(ot + e Oy(t)

= HT(s) eT(t) + Hy (s) gy(t) [441

with the component output-input ratios HT (s) and Hy(s) given as

8 -
3 (a sin yo + T cOS Yo)

mJ- M T ZT (s-ao ) (s-a 2 ) (8-a 3)

HT (s) = KT GT (s) =

- cos ye [451
m 3 J - MZ. o (s-a 1) (S-a2) (s-a 33 L W U 1 2 )
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To m3

m- MZ (ZT COS yo - z T sin yo )

Hy () = Ky Gy (s)=

To M,

m+ sin y
m3J - M Z .

The gain functions KT and Ky give a measure of the relative "rheostat" strength or

amplitude factor independent of frequency. These are computed by taking the limit of [451

and [461, respectively, as s approaches zero, i.e.,

lim W

KY = H (s) =

K lim (s)
s 0

Z (Z T sin Yo + xT cos YO) + Mw cos Yo

ZW [ (W-B) + To (xT sinyo - ZT CosYo)] + M To siny o

T o [Z (z Cos y o - "T sin y o ) - M . sin y o]

Z w [z (W-B) + To (T sin yo - T cosYo) + Mw To sin yo

and utilizing principles from the theory of equations13 in which the product of

cubic equation in s can be expressed in terms of the coefficients,

a0
-a 1 a 2 a3 =

a 3

[471

[481

the roots of a

Z w [z s (W- B) + To (zT sin yo - z T cos yO)] + Mw To sin yo

mJ - M.Z.V w q
[49]

To solve for 0(t) in the real or time plane, it is necessary to obtain the inverse Laplace

transform of Equation [381. Using Equation [44], this may be stated as

[501

For convenience, let

(t) = H (8) T(t)+ H (s) y(t

m3 (ZT sin Yo + r cos YO)
R =

1 m 3 J- M Z.

3 wqM& cos Yo2 m3- Mt Zq

Tom 3 (zT cos Yo - XTsin yo)

S1 =

Z

8 m3

M w

8+-
M; 1i [461

[511

[52]

[53]

,11110111



To M, sin Yo
2 =

m3 J- M*Z-
Sw q

and for the s-dependent functions,

D(s) = (8s-o) (8-a2) (8-a3)

Sw
N 1 (s) = s - -

" 3

N 2 (s) = s +

Substituting Equations [51] through [57] into Fquation [381, the solution

0 (t) expressed by Equation [50],lies in evaluating the inversion integrals

1
0(t) = -

2 ri

c+i 0o no

c -i on 0

c+i T (S

+R 2 0 ID f(s)

e-ST T () d

e- s T T (T) dr1

C+i_ 'c+S c- N s) fo
+ SI e

- s " 
y (r)+ S-- Loo o 7r

i 00SLS
c 

N2 (S)

D+ o o(s) 
5a

+ , oo o

dr]

e-ST y () dr]

est ds

est ds

est ds

est ds

for the pitch,

[58]

where r has been used as a dummy variable of integration.

Assuming that the transforms of T(t) and y(t) exist and that each of the bracketed

expressions in Equation [58], e.g.,

N1 (s) T(s)
T (r) dr =

S(8)

Nl (s) "

D (s)

[541

[551

[56]

[571

_I ___ _III
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satisfy the following conditions:

N (s) T (s)
1. ( is a rational, well-behaved function in s,

D (s)

2. D(s) is of higher degree in s than the numerator Nl(s) T(s),

3. N (s) T (s) and D (s) are polynomials having no common factors, and

4. the zeros of the denominator D (s) are distinct,

the inverse transform of the pitch response can be easily accomplished by the classical method

of residues. 10 T he complete pitch response in the t-plane following Equation [58] can be

summarized in the following form:

RIZ Res

+R2" ? Res

0(t) =

+ S 2  Res
i

N (s) T(s)
est

D (s) S=O.

N2 (s) T(8)
est

est
N 1 (s) y(s)

D (8) s=or

est N 2 (s) ( (S)

D (s) S--O.

For a given towed body, R1, R1 2' S1 S2' N 1 (s), N 2 (s), and D(s) are fixed. These are

related to the specific design of the body in terms of the various hydrodynamic derivatives

and the loading conditions.

The generalized solution for the pitch response in the s-plane has been derived in

Equation [381. To obtain the inversion in the t or real plane for the pitch 0(t), it is interest-

ing to consider two towing analogies as the two extreme cases in the first towing quadrant.

With these, several types of inputs are investigated.

THE SPECIAL CASE FOR A HEAVY LOW-SPEED TOWED BODY

For a heavy low-speed body having a very high weight compared to drag, the conditions

of towing equilibrium can be approximated by

00 =0

Yo = 0

To = W-B

[60a]

[60b]

[60c]

[591
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In addition, it is convenient in this case to assume that the perturbation angle* y(t),

measured with respect to the vertical space axis, is approximately zero. This is tantamount

to saying that the cable element adjacent to the body will always stay perpendicular in space

(while the body is still free to pitch and heave);

y(t) = jIY e i t = 0 [60d]

With these assumptions, the pitch response Equation [381 takes on the following special-

ized form:

m 3xT

m J-M.Z.3 wq

£O(t) =

(' -

eT (t) [61a]

M.w

m 3J - MwZ

Using the abbreviated notation of Appendix D, Equation [61a] can be rewritten in the

form

SO(t) = [KT1GT1(s) + KT 2 T2(s)] eT(t) [61b]

where KT1 and KT 2 are the components of the gain function attributable to tension. These

components can be obtained from Equation [471 on the basis of the initial conditions listed

in Equation [601 so that

T
K = [62a]T1 (W -B) (os - ZT)

w
KT 2 = Z w (W-B) (zS - T) [62b]

The s-dependent part of the transfer functions can be obtained as

*See Figure 2.

11111

.1P. II. I I I II _ -~-~------- ~1~L~--ll~

i l IMMU 41fillI II



w

S --
M3m 3  1 (7 2  3  L

GT1 (s) - ws

m3 (W-B) (aS-zT)

m3J - Mo Z*

Z
wzw

8--

m
3

[63a]

and similarly

M-Z (W - B ) (Zs - T)

Mw (m3J- M Z)

ML

S- 1 )(S 2 ) ( - 3
[63b]

Response to a Unit Step Input

Consider a perturbation input at the towpoint in the form of a unit step as follows:

T (t) = 1(t-t o) = 0 for t < t o

I for t 2 t o

[641

where T (t) is the perturbation tension force above that of the equilibrium tension. The La-

place transform of the unit step input can be shown as

oo -s t0

S1(t-t o ) = e-S t dt =
Jt S

[65]

Substituting Equation [651 for eT (t) in Equation [61b], the resulting pitch response

can be written

-s t

O(t) = [KT 1 GT (s) + KT2 GT 2 (s)]

Where the inverse problem of design is predicated on the basis of the steady-state

condition, the transient part of the solution is disregarded. The steady-state solution can

then be readily accomplished by means of the "final-value" theorem14 if there are no poles

in the right-half s-plane.* Assuming that the body design has satisfied the Routh criteria

*The provision of "no poles in the right-half s-plane" is equivalent to requiring that the real part of all the

characteristic roots remain negative in order that the body be stable.

IYI IIIII -

GT2 (s) = -

[66]



outlined in Appendix C, then the final-value theorem can be safely applied in the inversion of

Equation [661 to determine O(t) for a large lapse time after the initiation of the step disturbance.

The final-value theorem, in this case, is stated as

li 0(t) = lima s0(s) [671
t- oo s 0

where O(s) = 10(t) specified in Equation [661. Since lim GT 1 (s) = 1 and Gim 2(s) = 1
s+O s+O

from Equations [63a] and [63b], respectively, and KT1 and KT 2 are both independent of s, the

final value of 0(t) as the inversion of [66] can readily be obtained as

. T Z w + Mw
lim 0(t) = KT1 + KT2 = MW [681

t - Do Z (W - B) (as - T)

Response to a Unit Impulse

It may be useful, if not trivial, to look into the response of the towed body when the

input is taken as a unit impulse. Where the transient part of the response is of little concern,

examination of the steady-state or asymptotic response is merely an adjunct to the Routh cri-

teria which must be met if a body is to be stable. For this purpose, let the impulsive force

input of unit magnitude be represented by

d
T(t) = 8(t - t o ) = -11 (t - t o ) t > t o  [69]1

where 6 (t - to0 ) is the Dirac delta function. It is to be noted that 8 (t - to) is not a function in

the usual mathematical sense. However, its formal use here leads to results that can be

physically interpreted.

Employing the theorem for taking the transform of derivatives, the Laplace transform

of Equation [69] is related to that of the step function by

S& (t - t o ) = s !1(t - t o)

Then using the transform of the unit step function from Equation [65], the above equation

becomes

-s t
s (t - t o ) = e-s to = iT(t) [701

Substituting Equation [70] for the input, the pitch response analogous to Equation [661

becomes
0(t)[K (s)+KT-s t

1(t) = [KT1GT1 (s) + KT2 GT2 (s)] e = (s) [71]

N "i
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Since the portion of interest is the steady-state response, the final-value theorem can
again be used in the inversion of Equation [71]. The pitch response, after a long interval of
time, is obtained from Equation [71] as

lim 0(t)= lim s (s) -, 0 [72]

which is just as expected. The result given by Equation [721, although somewhat trivial and

academic, serves to verify the dynamic stability requirements without having to qualify the
degree of stability.

Response to a Sinusoidal Input

For a better representation of the perturbation input to the body, consider a sinusoidal

tension input given by

T(t) = ITI sinot t > 0 [731

The Laplace transform of Equation [73] can be shown to be

ST(t) = ITI "O
82 + 2  [74

Substituting £T(t) from Equation [741 into Equation [61a], restricting the discussion

to the case of the heavy low-speed body, the pitch response to the sinusoidal input can be
written as

a + s+2 1
(s-Ol) (8s-2) (a3) (a) (-a 2 ) (sa 3) 82 + 2

where the following are specializations of Equations [51], [521, [561, and [571:

m3 xT

R1 = m3J - MZ [76a]

M.

R 2 = 3- [76b]

Z

S= - [76c]
m 3

Mw

2 - [76d]
Mw
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On the basis that the poles a1, a2, a3, are not repeated and do not lie in the right-half

s.plane, it would be convenient to break down each of the two additive components of Equation

[751 into partial fractions. This will expedite the use of the method of residues in evaluating

the inverse transforms. Assuming that the mathematical conditions specified in Appendix D

are satisfied, consider the generalized partial-fraction expansion of the first rational fractional

function in s of Equation [751,

+ A B C D E
---- + --- + + +

(s-ol)(S-o2_)(8-a3)( 2+ 2) 8--1 8-2 8--a3 8+iO 8-ico

where A, B, C, D, and E are as yet unknown constants. By letting s = al, 8 =

s = io, s = -ice, respectively, in Equation [771, it can be shown by the method

coefficients that

a) (o1 +)

A
(a -o2 ) (a1 -a3) (a2 +a2)

W (02 + 1

(a 2a3) (a2 -a) (a 2 +0)2)

0 (03 + 1 )

(03o-a) (3-02) (o32 + 2 )

2 i (a 1 + io) (a 2 + io) (03+ io)

[771

a2, 8 = a3'

of undetermined

[78a]

[78b]

[78c]

[78d]

[78e]

Substituting the coefficients A, B, C, D, and E back into Equation [77] and using the

method of residues, it can be seen that

~lllillVil~

- 2 i (al - i) (a2- id) (a3- io)
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f-1 o (s + 1) )
(8-a) (s8-0 2 ) (8- 3 ) (8 2 + 2)

t1lt)(a1 + 1 ) e

(0-0a 2 ) (0-al 3 ) (a 2 +a 2)
12 1 3 12 2

6 (02 + el) et

(023-a) (02 -a2) (a2 +o 2 )

(0, a ) (o3 -02) (02 +02)

i

2

i
+-

2

(6 1 - i) e- i (t

(a + i) (2 + i ) (a3 + i))

(e1 + ia)) e i)t

(az -ia) (0'2 3 i) (a 3- iWa

Equation [791 was written to show the transient part of the solution as well as the part

that remains after the transients have faded away.

Since the roots 01, 02,' 3, of the cubic characteristic equation, without writing them

specifically, all have negative real parts, the first three terms will drop out as t -* 0o. (For a

stable body, this can be shown by means of the test using the Routh criteria given in Appen-

dix C.) The remaining two oscillatory, nonvanishing terms make up the steady-state response

that is of concern for the moment. Combining these latter two terins of Equation [79] and

using Euler's relationships

e i wt = cos )t + isin )t

e - i 6 t = cos t - isin wt,

the steady-state solution of the first half of Equation [75], after some algebraic manipulation,

can be given as

ITI R1
01 (t)] =steady state (o 2 + 02) ( 2 +2) 2 + &2)1 2 3

- o1 2 o3 [o COS wt + 61 sin at ]

- ) (a1 o22 2 03 +03 0 1) [e 1 Cos wt- w sin t]

+ 2 (a 1 + 2 + 03) [O cos t + 1 sin ot ]

+ 3 [e 1 cos t-o sin ot]

[801

[79]
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From the theory of equations, certain relationships have been established for relating

the roots a1 , a2, a3 of the cubic Equation [391 in terms of its coefficients a0 ' al, a 2 , a 3 .

These are given as

[81a]-(a 1 + a 2 + a3 ) -

a
1

(a 1 2 2+ a 2 a 3 + a 3 1 =

- (o 1 2 3 ) = --

a3

[81b]

[81c]

Substituting Equations [81] into Equation [801 and employing simple trigonometric re-

lationships, it can be shown that

ITI R?1(2 + 02)

,(t)] steady state a3(a 2 + j2) (a2 +2) (2 +0) 2 )
3 1 2 3)a2+ 2 (3+ 2

S(a - a2 02) cos (o t - 1)

oj(a 1 - a3 02) sin (cat - 1 )

ITI R [1 2 +o 2L [(a0-a 2 o) +)2 (al- a 3a2) 2 ]

a3(a 
2 +) (a 2 +)2) (a2 +02)

sin (act - 41 + E2)

ITI RI[ + 02] a
a3

G 2 + 1 2 2 2

a0 0 1a2 a3)2)( 32
-sin(wt - 771)

(2 + & 2) (a2 + G2) (a3
2 + 02)

[82]

where

-1 a0 -a 2o2
7 1 = 1 -2 = tan -- tan- 1

W 0 (al - a3
2 )

[83]

The denominator of Equation [82] can be expanded and then simplified as

)2  I 2 2
a \ ao a 1

a a3

[84](aI + 02) (a 2+(2) (a 2 _2)
a3)

__W, ,
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Substituting Equation [841 into Equation [82], the following is obtained:

a 3  - /2

ITr - 71 1 + 2

1 s (t)] sa
steady state 2 2 2 2 2 V

- +

2 1 3

sin (ot - 77 1) [85]

In a similar manner, 02 (t) can readily be determined after replacing R 1 and e1 by R 2
and e2 given by Equations [76],

a3IT '

02 (t)
steady state

R0 2 2 2]

R2e2 + e22

sin (ot - 772) [86]
2 2 2 21- + -

ao  ao  al
0 0 1

2 81 3

where

62
72 =tan

- 1 - tan- 1 ao - a2 2

W (a1 - a 02)

Combining the results of Equations [85] and [861, the inverse transform of the pitch

response formulated in Equation [751 can be given as

sin (&t- 1!

sin (.t-2)

[88]

In order to simplify Equation [881, the part of the expression contained in brackets can

be represented as

R1 1 1 + sin (wt - 71) + R 2 e2

9n1 sin ()t - 771
) + 72 si

+in t - in( -72) =

in (-t - 772) [89]

[87]

0 (t)
steady state W2 2

2a2

a3  0 ) V2

ITI - R 1  1+ -
ao

O2 3 2 2] 1/ 2
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in which

{ 29/1TO 2 [COS (1 92
Expanding the right-hand side of Equation [89] and then collecting terms in sin ot and

cos ct, it can be shown that

' 1 in sin (t-i9 1 ) + 9n2 sin (t- 72 ) = (" l +n2) 1+ sin (t- ) [911

('n1 +9n2) 2

where the phase lag is written as

311 I sin 71 + l 2 Sin 2
X = tan- 1  [92]

nin cos771 +9f2 COS 7 2

The square-root term in Equation [911 can be readily expanded into a convergent power

series, providing that

29n 1 9 2 [COS (7 1 - 2)-1]
<1 [93]

1  2±n2

To do this, consider the following argument which is to be proven

(9 n2 +n) + 1 '2 >>  
1 '2 cos (-1 - - 2 19n 2

For9nl andl 2 both positive on the basis of an examination of Equations [76a] to [76d] in-

clusive, it can readily be seen through substitution into Equations [90a] and [90b] that

9n192 >> 1 2

9 12  12 21 2 cos (71 - 72)

Hence, as a result of the foregoing, only the first term in the convergent series ex-

pansion need be retained for the present purposes, so that Equation [91] becomes

?n1 sin (ot - 71) +9n'2 sin (Ot - 72) = (9n1 +9' 2 ) sin (cot - X) [94]

N II1
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Using Equations [94] and [891, the pitch response in the time domain given by Equation

[881 can then be obtained as

0 (t)]
steady state

|TI (- nI +9n2)
a
o

1- +
ao ao  1

2 1 3

sin (aot - X)

Substituting '1l and 942 from [90a] and [90b] in terms of R 1, R2, e, and e2 from Equa-

tions [76]1, and then simplifying, Equation [951 becomes

IT 2-% Ca 2- /
xTZ 1 + + M W +

-GOw wu
a 7m M WM3 )_ ' _

2 2 2 2 2

1-- + 1
o ao alO 0 1

a , aa2 ) 3

sin ('t - X)0 (t)]
steady state

[961

Since this is for the special case of a heavy body of high weight-drag ratio, a0o is spe-

cifically obtained from Equation [40a] by recalling the conditions imposed by Equations [60a],

[60b], and [60c].

Yo = 0

To = (W - B)

Substituting the resulting ao

pitch equation can be written as

in the numerator of Equation [961 and rearranging, the

S(t)] = ITI
steady state

(W -

T 
Z

B) (Zs-ZT) 1- a0o

a
2

sin (ot - X) [971

w, w

2 2
W CO

+ - 1M I
ao a

1 3

[951

~'"~c



where

a o = - Z(W-B ) (s -ZT)

al = m 3 (W-B) (as-zT ) + MqZ - M(m+Zq)

a 2 -[(m 3 Mq + JZw) + M, (m+Zq) + Mw Zq]

a 3 = m 3 J - MI Zq

[98a]

[98b]

[98c]

[98d]

are the coefficients of the characteristic equation specialized from the Equations [401 throl

the use of the initial conditions given by the Equations [60].

To isolate the terms which affect the magnitude of pitch it is convenient to consider

the pitch equation given by Equation [971 in the form

0 (t)
steady state

= 101 Im e i( a -y)]

where the amplitude 101 is

Mw
+ --

Z w

101 =1 ITI

(W-B)(zs-Z T)
I2

ao

a2)

c2 2

a 1ao al

1 a.

and the phase lag y

)( = tan-1

-Z w

2 m 3  
a 0 - a 2 a0 2

xT 1 - sin tan - tanLZw  a w(ala3:2]

-M 
ctan (a, - a3 2)

S -
-Z

xT 1 + COS tan tan-

E - o (al a 3 2 )

+ CO - 1tan

. Mw (ai-a W2)

igh

[99]

[1001

I
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THE SPECIAL CASE FOR A LIGHT HIGH-SPEED TOWED BODY

For a light high-speed towed body, it is convenient to take the weight or down-force

as small compared to the drag. The initial conditions of towing equilibrium for this case are

assumed as

00 = 0

Yo= 22

T =

[101a]

[101b]

[101c]

In addition, as in the heavy low-speed towing case, the perturbation cable-angle input

y(t) is also zero. This condition is the result of a very high speed of advance compared to

the perturbation surge velocity with the tension vector acting predominantly in the horizontal

plane. This again fixes the angular perturbation as

ly(t)l =0 [101d]

Introducing the above conditions into Equation [381, the pitch response equation for

this case can be seen to be

so(t) =
m3 J - M.Z.

3wq

Z
8--

m 3
SeT (t) [102]

Response to a Sinusoidal Input

For this case, the body is excited with a sinusoidal tension input, since this type of

input is more appropriate and useful than some of the other inputs previously considered.

Using Equation [741 for the transform of the sinusoidal input, Equation [102] may be rewritten

as

s+ 1
OW(t) = ITI R 1

(s-al) (s-u2) (8 -3)

(a

2 + 2
[103]

where R 1 can be seen as

m 3 zT
R1

m 3J - M. Z
3Wq

[1041
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and
Z

w
1 =[1051
3

Following the mathematical steps as in the previous case, the inversion of Equation

[1031 can easily be shown to be similar in form to that given by Equation [881 neglecting the

R 2 component.

I - 3  R 1 ea + &2 sin (&t - 77)ITt -T

0(t)] s
steady state 2 2 2 2 

a o  2 [1061

Using the particular initial condition given by Equation [101b], ao is obtained from

Equation [40a] as

ao = {Z w [z S (W-B) + XT] + Mw D [1071

and with a3 unchanged in Equation [40d], the steady-state pitch equation for this case is

obtained after substituting R 1 and , into Equation [1061 as

ITI ZZ 1+ -Z sin (wt - /1)

0 (t)steady state = 3 - [1081

[zs [(w-sB) D] + MD 1 - C2 2 ( 2 2

where the coefficients of the characteristic equation are now

ao as stated in Equation [1071

a = {m 3 [zs(W-B) + TD] + Mq Z - MD Mw(m +Zq)} [109a]

a 2 = - {(M3 Mq +JZ W) + M (m + Z ) + M Z [109b]

a3 = {m J - Mg Z; [109c]

I I I a - I - e~-----



The phase lag 71, follows the form of Equation [831 but with the specialized coefficients

of the characteristic equation specified in Equations [1071 and [109a] to [109c], inclusive.

The amplitude is obtained from Equation [1081 as

ITI a 1 +

101 3 - [1101

(W-B)as +D QT + + ( 1- -Z ao o al
a 2 (a,)1 a 3

THE GENERALIZED CASE

The two cases previously discussed, simplified as they appear to be, cover only the

two opposite extremes of a body towed in the first quadrant. These cases serve as an ex-

pedient for design guidance once a given body can be classified as one of these two extremes.

For the "in-between" cases where these two extremes are not justifiable, it is neces-

sary to drop the simplified equilibrium conditions given by either Equations [601 or Equations

[101]. The intermediate case then becomes the generalized case. The initial conditions for

the generalized case are taken as

0o = 0 [111a]

D-1
Yo = tan- [111b]

W-B

To = [D2 + (W-B)2] [1llc]

Response to Sinusoidal Inputs T(t) and y(t) in Parallel

Let the perturbation inputs to the body be of the form

T(t) = TI sin ot

y(t) = 1lI sinot

With these inputs, the solution of the generalized pitch response Equation [381 can be
shown to follow the same form as Equation [881 by symmetry. In this case, the pitch equation

in the t plane can be stated as



0 (t)
steady state

a 3
ITI -

ao

22 2 22/

1- + 1

#2 1 3 -

2 2

ao
a2)a0

2

+ R 
2

+ 1?2 e2

I1+ - sin (wt - 71

Ssin

e2 - I11~

a3  (0 2- %

SS 1  + - sin (ot- l

0 12

( 2 2

where R1, R 2, S1, S2 are previously given as Equations [511 to [541,

the zeros of the equation, are given by Equations [76c] and [76d].

The phase angles are given by

1

77 =tan-

7/2 tan- 1

O)

[112]

inclusive, and e1 and e2'

S 02

- tan- 1

wo(al- a3 2)

2a0 - a2 o2

- tan- 1

o (a 1 - a 3 o2)

[113a]

[113b]

Again for convenience in notation, let

C'T 1 = R 1 1

nT = 2 R 2 2 +

2+

y 1 = S~1 + --

[114a]

[114b]

[114c]

[114d]9'y2 = 2 2

h HWi u NIAIYYI 101,11 .u I- -- - - 5 14
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Substituting in Equation [1121 and applying the argument of inequalities
used to lump the coefficients of the paired sine terms into a single coefficient
tension and cable angle components, it can be seen that

a 3

ITI -a T( 1 +%tT2 )
[ .sin 

(ot -YT)6)

0(t)] =
steady state

1-- + - I1-
ao ao a

2 a31
a a a1

a 3

Sa yi +9 y2

22 O 2 2
1- +- 1--

ao o a,

2 1 3

sin (ct - y)

previously
for each of the

[115]

Substitutingahl,"T2 , 9 , Iy 2 in terms of R 1, R 2 ,S 1, S2 from Equations [51] to [54],
and e1 and e2 from Equations [76c] and [76d], respectively, and simplifying, the steady-state
pitch equation in the time plane becomes:

- (sinyo+z cosy o) 1+-ao -o ZW

Sin 3

+ M. cos yO 1 +

L e

sin (ot - T)

-- , (aTcos yoT sin yo /
-o - ,

-asin (t - xy)

- M sin Yo I+

- + (&' 2-" %0W steady state

[1161

where ao, al, a2 , a3 are the characteristic coefficients given by
phase angles XT and Xy are specified as

q = ta , AT sin q,+ 9rT2 sin 172
XT1 T2tan-

'//Tl Cos /1 +*(T 2 cos q2

the Equations [401, and the

[117a]

~



9ny1 sin 771 +9ny 2 sin ['2

lylcos 771 +Tn y 2 COS 72

in which the 94 and 7 terms are given in Equations [1131 and [1141 which, in turn, depend on

the R and S terms of Fquations [51] to [541 and the characteristic coefficients given in

Equations [401.

For the general case, there are two amplitudes contributing to the total pitch. The

first amplitude attributed to tension input T(t) is

S ZW (zT sin y0o + xT COS yo + + W cos y0o +

10 [1181

- +

82 1 3'

The second attributed to the cable angle y(t)

Ilao ( T COS Yo- xTsin yo) L
,-( 2 2+ i 2

2

w

3

2sin
Mw sin yo +

-_ [1191

These component amplitudes may be combined to a single resultant amplitude of the

pitch angle magnification factor as follows:

Ill = 110T 2 + yl2i

111110

~na L~~ I

X = tan-1 [117b]

[120]



APPENDIX E

COMMENTS ON POSSIBLE EXTENSION TO MORE COMPLEX INPUTS



One question will probably arise with regard to the mathematical results obtained so

far, and that is the effect of the simplifying assumptions made with respect to the input. Al-

though these assumptions may appear simple, even to the extent of reductio ad absurdum, they

should not invalidate the results so far obtained. On the basis of the a priori considerations

of a linear system, the concept of linear superposition can be applied to render the more com-

plex inputs to an aggregate of simpler ones. These more complicated inputs are briefly dis-

cussed in order of increasing complexity.

It is relatively simple to decompose inputs having higher-order harmonics into their

Fourier components, whether or not the extra refinement and work involved would result in a

more precise prediction. Using established results for the simple input and on the basis of

linearizing assumptions, the principle of superposition can be used to sum up the individual

contributions to the total pitch. For a periodic input which can be approximated by a few har-

monic components, a Fourier series expansion should suffice. An ordinary desk calculator

may be used, although automatic computing machines or special harmonic analyzers can be

utilized to expedite the work.

For an input not necessarily sinusoidal but still periodic, it may be simpler to forego

the laborious Fourier expansion. In its stead, for a periodic function where

T(t) = T(t +r)

then

eT(t) = e- s T (t) dt Re (s) > 0 [121]
1- e- T

The function T(t) in the time domain can be fitted with straight-line functions, etc.,

and subsequently substituted into Equation [1211. In a similar manner, Sy(t) can be obtained.

Then both the Laplace transforms of T(t) and y(t) can be substituted into Equation [381 to

formulate the pitch response in the transform plane. The ensuing inversion for 0 in the time

plane follows as before. Without elaborating further, it suffices to state that if the transform

exists the solution is merely a matter of some manipulations.

If the assumption of a sine wave or periodic input to the body is not readily acceptable

because of oversimplification, other approaches can be used to satisfy the purists who might

reject the simple input approach on the grounds that nature does not really behave in such a

convenient fashion.

In that case, the approach using the Duhamel integrall s may be used. This technique

is essentially that of breaking down the input into a series of impulses. To illustrate, let

the generalized output-input relationship in the s-plane be denoted by

q output .

= KG(s) = H(s)
q input

1_ 1111111
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The inverse problem of determining H (s) can be resolved in either of two ways. One is an
experimental approach through frequency response measurements in the real plane. The other

is a theoretical approach based on a study of the equations of motion, as discussed in this
report. However determined, assume now that H(s) is known. Then the direct problem is to
solve for

q0o = H (s) q [1221

in which p' is the input to be chosen. Assuming a simple impulse occurring at t = 0, then
the particular response for this input as previously obtained, can be written

q0 = - iH(s)I = h(t) [1231

With the response to an impulse known, consider now an arbitrary input which may not
be easily represented as simple harmonic nor as periodic. Denote the arbitrary transient input
as

q in(t) = T (t)

where T(t), for example, represents the perturbated tension. The response, say, for

qout = 0(t) following Equation [122], may be written

0(s) = H(s) T(s) [124]

where T(s) is the Laplace transform of the tension input. The inversion of 0(s) can be ob-
tained from the convolution theorem1 0 as

0(t) = -1' H(s) T(s)

= h (t) # T(t) =_ T (t) # h (t)

= h (t) T (t-r) dr [125]
0

The above integral implies that the input can be taken as a series of discrete pulses so that

the resulting response is no more than the result of summing up the individual responses.

Finally, the most complicated type of input that may be considered is that generated*

by a random seaway. The resulting platform motion, by way of the cable, produces a disturb-

ance input which is in general nonsinusoidal and characterised by no well-defined period.

Here the input will have to be considered in terms of either the two-sided Laplace transform

or the Fourier integral. The approach for this type of problem will require the use of more



sophisticated techniques based on Generalized Harmonic Analysis, the Fourier transform

operator, and the concepts of stationary random processes and probability.

More and more, recent papers can be found in the field of engineering which employ

the powerful tools of "spectral analysis" for handling problems of random nature. 16,17,18

Except for brief mention, no attempt will be made in this report to delve along these lines

for two reasons:

1. Brevity considerations. To include the effect of irregular seas here would exceed the

scope of this report.

2. Difficulty in reaching a simple design or evaluation guide. In the present study, the

primary concern is on trends rather than on prediction. The added refinements of a complex

input representing more realistic conditions at sea required for the latter would not be very

instructive for design purposes.

It will suffice to say that this study is concerned only with shedding some light on

what could be called a rational guide toward the design of a minimum-pitching body. The

underlying reasoning is that until the experience of actual measured values prove contrary,
some rational approach is needed to develop the trends of cause and effect rather than a pre-

cise prediction which borders on the vagaries of probability phenomena.

--- -II J III
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