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NOTATION

Acceleration

Drag coefficient for segment of cable between stations
jandj +1

Resistance coefficient for horizontal motion of suspended
prism

Resistance coefficient for vertical motion of suspended
prism

Velocity of uniform horizontal current

Drag

Diameter of segment of cable between stations j and j + 1
Virtual mass of entrained fluid between stations j and j + 1
Resultant force

= D
Drag factor for cable = (p/2) Cy, 1/2 Y, 1/2 d]. +1/2
Horizontal drag factor for suspended prism = (p/2) C? Si(

Vertical drag factor for suspended prism = (p/2) C;( S;(
Acceleration due to gravity

Component of inertia tensor

Imaginary unit

Component of inertia tensor

Subscript denoting station number along line
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Component of inertia tensor

Virtual inertia coefficient for segment of cable between

stations j and j + 1

Length of line between stations j and j + 1

Mean mass of segments of cable adjoining station j
Mass of prism suspended from station j

Effective horizontal mass of suspended prism
Effective vertical mass of suspended prism
Superscript denoting time-step number

Superscript denoting initial state (origin in time), or
subscript denoting anchor end of line

Tangential component of velocity of cable (relative to
medium)

Normal component of velocity of cable (relative to
medium)

Projected area of suspended prism along x-axis
Projected area of suspended prism along y-axis
Subscript denoting surface end of line

Tension

Time

Time-step interval

Magnitude of velocity of cable (relative to medium)

Volume of prism suspended from station j

Equivalent volume of horizontal virtual mass of suspended

prism
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% +1/2

Equivalent volume of vertical virtual mass of suspended
prism

Mean net weight of segments of cable adjoining station j
Net weight of prism suspended from station j
Horizontal component of resultant external force

Horizontal component of damping force on suspended
prism

Horizontal coordinate of cable
Vertical component of resultant external force

Vertical component of damping force on suspended
prism

Vertical coordinate of cable

Damping coefficient of the perturbation functions
Dimensionless frequency of the perturbation functions
The variation of

Angle between horizontal and tangent to cable
Eigenvalue (root of characteristic equation)

Linear density of segment of cable between stations
jandj +1

Density of fluid medium

Cross-section area of segment of cable between stations
jandj + 1

Dot signifies differentiation with respect to time

Tilde signifies tentative value of a variable
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ABSTRACT

The system of partial differential equations governing the nonlinear
transient motion of a cable immersed in a fluid is solved by finite difference
methods. This problem may be considered a generalization of the classical
vibrating string problem in the foliowing respects: a) the motion is two
dimensional, b) large displacements are permitted, c) forces due to the
weight of the cable, buoyancy, virtual inertia of the medium and damping
or drag are included, and d) the cable is assumed to be nonuniform. The
numerical solution of this system of equations presented a number of interesting
mathematical problems related to: a) the nonlinear nature of the equations,
b) the determination of a stable numerical procedure, and c) the determi-
nation of an effective computational method. The computation is programmed
for a high-speed calculator (UNIVAC system). The solution of this problem
is of practical significance in the calculation of the transient forces acting
on mooring lines due to the pobping up and down of ships during the period
preceding large scale explosion tests, as well as in many other applications

involving mooring or towing operations.



1. INTRODUCTION

This problem arose as a result of an urgent requirement by the Navy
in connection with a series of nuclear explosion tests which were conducted
in the Pacific. In preparation for these tests a number of ships were
instrumented and moored at specified locations from the explosion point.
These positions had to be maintained intact during the period preceding the
explosion. However, the bobbing up and down of the ships due to ocean waves
during this period could excite sizeable transient forces in the mooring lines
which might break these lines and thus result in the loss of information from
the tests. Several months prior to these tests a request was made to the
Applied Mathematics Laboratory to calculate the magnitude of the forces
acting on the mooring lines, for waves of varying amplitude and frequency.
It is gratifying to report that in spite of the theoretical complexities of this
problem and the absence of any known solutions, the Applied Mathematics
Laboratory was able to obtain the required results in time for use during
the scheduled tests. The two factors which made a theoretical solution
feasible at this time, whereas it would not have been possible several
years ago, were: a) the availability of a high-speed computer and b) the
recent progress made in the understanding and development of numerical
methods for the solution of systems of partial differential equations.

Whereas the solution to this problem was carried out as a result of
one specific requirement, it is more useful to regard it as the general

problem of the two-dimensional motion of a cable or rope immersed in a
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fluid. From this point of view it may be considered as a rather broad
generalization of the classical vibrating string problem, and it becomes
immediately apparent that its solution is applicable to a wide class of
engineering problems involving the motion of cables, such as a) the

laying of intercontinental telegraph cables, b) the towing of a ship or

other object in water, or c) the snapping of telephone wires as a result

of transient forces caused by storm. This problem may be stated abstractly
as follows: Given the initial conditions (i.e., position and velocity at any
time, tg) and boundary conditions (positions of end points at all times) of

a cable immersed in a fluid, determine its subsequent motions. The motions
are assumed to take place in two dimensions.

Forces that are assumed acting on the cable are: a) forced motion of
the extremities (end points) of the cable, b) damping or drag as it moves
through the fluid, c) virtual inertia due to the motion imparted to the fluid
d) weight of the cable, and e) buoyancy. Variations in the mass as well as
other physical properties of the cable along its length are allowed. The
displacements may be large and the motions rapid. In the present solution
it is assumed that the cable is inextensible (cannot be stretched). In
subsequent work the authors have carried out solutions for cables with
elastic properties. The motions are not restricted in any manner (except
that these take place in two dimensions).

The solution was carried out by the method of finite differences.

This method consists simply in replacing the derivatives of various order
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in the differential system of equations by equivalent ratios of finite increments.
This substitution results in a system of difference equations, which are
algebraic in form, and hence more easily tractable. However, in order to
represent a valid solution, the system of finite difference equations so derived
must possess certain mathematical stability (and convergence) properties.

It must have the property that its solution progressively increases in accuracy
as the size of the time increment used in the above representation is gradually
decreased. Unfortunately, the system of finite difference equations initially
proposed for the solution of this problem did not satisfy these stability
requirements. A search for a stable finite difference system as well as for
an effective method for solving the resulting system of finite difference
equations, which was nonlinear in character, added to the complexity of

the problem.




2. DERIVATION OF EQUATIONS OF MOTION

The problem under consideration is a generalization of the classical
problem of the motion of a vibrating string. In at least one respect the
formulation of the problem given here will not differ from that of the original.
Specifically,. we wish to deduce the approximate motion o.f a steel cable
without having to involve ourselves in the explicit computation of the elastic
forces which act on the cable. However, the formulation will depart from
the original in a number of respects, namely:

a) Longituainal as well as transverse motions of the line must be
taken into consiaeration.

1) The occurrence of large displacements from the equilibrium
configuration of the line must be permitted.

c) The weight of the cable must be taxen into account because the line
may stretch from one level to another. Thus, even when the line is in static
equilibrium, the tension will not be uniform nor will the line be straight.

d) Since the cable is submerged, the static forces must include the
buoyancy of the medium and the dynamic forces must allow for the virtual
inertia of the medium. Furthermore, it is desired to make provision for
damping forces due to the drag on the line whenever lateral motion is
occurring.

e) Finally, it is desired to suspend concentrated loads at one or more
points along the line and to change the linear density of the cable at specified

points.



The best approach to the solution of a problem with such general
specifications appears to be a numerical method based on finite difference
approximations. Inasmuch as we are committing ourselves to the eventual
use of differences in both the time and space dimensions, it will be simpler
to introduce the spacewise discreteness into the original formulation of the
problem. We therefore proceed at once to the derivation of the equation of
motion of a simplified model in which the distributed mass of the cable has
been replaced by a series of discrete masses m; attached to a weightless,
inextensible line. This leads to a system of ordinary differential equations.
It may be shown that, in the limit, the resulting equations pass over into
the corresponding partial differential equations for the motion of a sub-

merged cable.
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Figure 1 shows a typical configuration of the system with the cable
attached to a float at the surface and anchored to the bottom. Also, a
heavy load is suspended from a point near one end of the cable. Other
boundary conditions are possible, but the equations of motion will be the
same in any case. The horizontal and vertical coordinates of a point on
the line are called x and y, respectively, and the angle betwzen the
horizontal and the tangent to the line is designated by 6. Figure 2
illustrates the corresponding discrete model for which the equations will
actually be derived. The line is divided into segments in such a way that
there will always be an integral number of them between any points where
an abrupt change occurs in some parameter. The junctions between the
segments are numbered according to the subscript index j, which runs
from 0 at the anchor to s at the surface.

Before we can properly invoke Newton's law of motion, it is necessary
to consider the inertial properties of the fluid in which the cable is immersed.
We shall assume that the kinetic energy of the surrounding medium is
independent of the component of velocity parallel to the line, whereas it
varies as the square -of the component of velocity at right angles to the line.
Thus, when an element of the cable is accelerated longitudinally, no hydro-
dynamic reaction occurs, but when the cable is accelerated laterally, it
behaves as though it possessed additional inertia. The component of
acceleration normal to the line is

ghormal - _ % sin 6 +§ cos 0



The accompanying inertial reaction can be resolved into horizontal and
vertical components. Each of these will oe proportional to the corresponding
component of aormal panely

HORZ. COMP: - alormal gy 9 - % gin29 - § sin 6 cos 0

VERT. COMP: anormal .o g - 5 c0s29 - % sin 8 cos 8
Thus, each component of the hydrodynamic reaction depends on both components
of acceleration. In general, the reaction force is not parallel to the acceleration
vector (except when the tangential component is zero), so that it is necessary
to regard the inertial parameters of the system as tensors rather than simple
scalars.

The differential equations governing the motion of the j'th station on the

line (see Fig. 2) can be written in matrix notation as follows:

1 : | FHORZ
LK p |
3‘ - _— 2.1)
VERT
5 f ) Yj | Fj I
1 ) .2 X
where: .=m; += (e;,1 sin® 6. .1 +e, 1 sin“@, 1) +m;
Jj=my + (e]+l cos29]+l te. 1 cos"el_}r) +ij
2 2 2 2




1
and mi==|m., 1 1 1 + | ) 1]
! 2[ 1t3 1+3 i-3 Y-
e.. 1 = pk 1.1 g 1
I*t3 It3  i+3g itg
mX = mj"+ VX
Y - .t Y
mj mJ + ij

cos 8. .1 = (x; - x)/%. 1
]+_2. j+1 j ]+.2,

sin 9j+% = Gj+1 - y]')/lj+.]2;

Each lumped mass, m.-, has been expressed as the average mass of the two
segments of cable which lie on either side of station j. Also, one-half the
equivalent transverse mass, e;j, of the entrained fluid associated with each of
these segments has been included in the inertia tensor. Furthermore, at
those stations from which a weight is suspended, the effective horizontal and
vertical masses, mX and m.Y

] ]’

in allowing for virtual inertia, we have assumed that any such weights possess

of the weight are to be added. For simplicity

a certain degree of symmetry and remain upright as the line moves about.
The force vector, F;, on the right side of eq. (2.1) can be expressed

as the sum of internal forces (the tensions acting between adjacent mass

elements) plus whatever external forces are present. Thus, in expanded

form the equations of motion can be written



Ijxj - ijj = Tj+1/2 cost+1/2 -Tj_1/2 cosej_l/2 +Xj

_K]X]+JJ¥I = TJ+1/2 Sm91+1/2 - TJ_l/ZSInGJ_l/z +Y]
where Tj +1/2 = tension in segment of line between stations j and j +1

Xj = horizontal component of resultant external force at station j
Yj = vertical component of resultant external force at station j
There are two sources of external force, namely: 1) gravity, which gives
rise to the weight minus the buoyancy and acts only in the vertical, and
2) fluid resistance, which gives rise to the damping forces. Thus, we write

— 1 [ . . 3 *
Xs=-2|D, 1 sinB8, 1 + D, 1 sin®. 1 + XJ
] 9 J+—2— ]+§ -5 -3l

1 -
Y-=—[D.1cose.l 1 . * W,
Tooa Uy i+g i-3 j- j j

where Wj= mjg-lpg (l-+1 g:. 1 + 1. 1 od. 1)
2 "3 3

*
Wy = mj*g - Png*

and Dj +1 = drag on segment of line between stations j and j + 1
Xj* = horizontal component of damping force on weight at station j
Yj* = vertical component of damping force on weight at station j

Again, in order to get the best approximation to the continuous case, the net
effect of the drag at station j has been expressed as one-half of each component
of the drag on the segments which lie on either side of this station. The

buoyant force oi the displaced fluid has been treated likewise.
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We have assumed that the drag, D +%, on a segment of the line acts in a
direction at right angles to the line. This is a good approximation whenever
the velocity is high enpugh to produce significant forces, since at all but the
lowest Reynolds numbers the tangential component of the hydrodynamic force
is very small compared to the normal component. Furthermore, we assume
that the drag is proportional to the square of the component of relative

velocity normal to the line:

_ D
Divi/2 = -~fh1/2 9+1/2 ‘qj+1/2‘ (2. 4)
D _ 1 D
where  fih1/2 = 5 PCiiy/a Hiy2 Ger2
QG1/9 = - 1 [('. -c) + (% - c)] sin 6; +1 [y +y] cos 8,
j+1/27 3 1%j+1 i~ ¢ j+1/27 5 Pj+17Y] j+1/2

The positive normal to the line has been arbitrarily taken to be directed upward
when 8 equals zero. The introduction of the minus sign and the use of the
absolute value of one of the velocity factors ensures that the drag will always
be opposed to the direction of q%G+1/2 and thus act as a dissipative force to
remove energy from the system. Since the velocities of the two endpoints of
each segment will, in general, differ slightly, their mean value (which for a
straight line segment is exactly equal to the velocity of the midpoint) is taken
as a representative value in the definition of qj41/2- In addition, the

definition allows for the presence of a uniform horizontal current, c, to
incorporate the ability to treat towing lines as well as mooring lines (or

mooring lines subjected to ocean currents).
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In addition to the arag on the line itself, there will also be resistance
to the motion of any concentrated loads which may be suspended from the line.
These additional damping forces will vary with the velocity but will not, in
general, be directed exactly opposite to the motion of each weight. However,
on account of the assumed orientation and symmetry of any such weights, the
resistance force will be parallel to the velocity vector whenever the relative
motion is either purely horizontal or purely vertical. Accordingly, the two

components of resistance may be written

* .

=- X . -
XJ* = - ij U ij c) 5
Y =47y,
where: ij = _;. ;OC]-X SjX
ij = % o CjY SjY
w o= [G-02eyp] V2
Up to this point an explicit formula has been given for the evaluation
of every term in the equations of motion (2. 2) with the exception of the
tensions. To determine these we must invoke the inextensibility condition
which was assumed at the outset. This takes the form of a constraint on the
motion of the line. It requires that the separation between adjacent stations
must not change with time. Thus, we write
(xj - X5 1)2 + (yj - ¥j- 1)2 = l?_ 1/2 = const. (2. 6)

This holds for each segment of the line, and we require that the corresponding

set of tensions, Tj - 1/2 take on values such that the resulting solution of
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the equations of motion will be consistent with eq. (2. 6. Because of the
implicit nature of this condition, we are led to a system of algebraic
equations for the determination of the proper tencions. At the extremities
of the line G =0andj = s) Xj and Y must be obtained from the bounadary

conditions, namely:

xg = Xp (t)
yo = Yo
Xg = Xg(t)
vys = Yslt)

These are given as functions of time, and permit the introduction of any
desired types of driving motions.

Finally, to complete the formulation of the problem a set of initial
conditions must be given for each station on the line. Since the equations
of motion are of the second order, it is necessary to specify both the

coordinates and the velocities at t = 0. That is,

xj(0)=x]-0 0<j<s
yj (0) = on "

" = ‘.O "

Xj ©0) X

y; ©0) =3P "

where the superscript index "0" is used to designate a value at the origin

in time.

(2.7)

(2. 8)



3. SOLUTION OF EQUATIONS BY FINITE DIFFERENCES

A. General Description of Computational Procedure

The equations governing the motion of a cable, as derived in the
last section, are summarized here. The basic equations of motion, equations

(2. 2), are repeated for convenience,

(A4 o

Lx-Kiy;=T;,1 cos8; 1 -T. 1 cos8;_1+X, i=1,2,...8-1
U e B R I+ i-= 1-3 %

) (2. 2)
-Kx; +J;y.=T;,1 sin9;,1 - T;_1 sin6; _1 +Yj, j=1,2...8-1
Kjxj +Jj v; j+3 i1 T -1 Y ;

where

a) S is the number of junction points

b) L, Kj, Jj are given in equation (2. 1) and are functions of the physical
properties of the cable and of position only

c) Xj, Yj are given by equations (2. 3), (2. 4),and (2. 5) and are functions
of the physical properties of the cable and of position and velocity.
In addition the motion is governed by the condition of inextensibility of the
cable, equation (2. 6),

2
(xj-xj_1)2+(yj-yj_1)2=lj_% =const, j=1, 2,...8. (2. 6)

The differentiated (with respect to time) forms of this relation

(Xj'Xj_l)().ij')'(j_l)‘*(yl"Yj-l)(ifj‘}.’j_l):O, j=1,2...8 (5.1)
(- %5 - 1) &-%5- 1) + 05-y5-0) G-+ & - I.ij_l)z
+(5’j'}"j-1)2=0 j=1,2...8

are also used in the computation.
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For numerical solution by finite difference methods the following finite

difference equivalents are used,

] n+l - . n+l_ .
XJ‘”‘IZ S il jntz = A j=1, 2...8-1;  (3.3)
At At

y_n+1 _ 1

.n =
j 2y;" +yj
(at)?

. xa+l - 2% 4+ x0-1
x.n = J J an =

! (at)2

’ J =1’29--S‘1- (3.4)

It is assumed that the boundary and initial conditions are known. These are
given in equations (2. 7) and (%. 8), respectively. The system of equations
summarized above, consisting of equations (2. 2), (2.6), (2.7), (2.8), (3.1),
(3.2), (3.3), (3.4) with the auxiliary equations (2. 1), (2.3), (2.4), (=.5)
completely describe the motion of the cable.

The computational procedure, as developed in detail in the remainder

of this section, consists of an algorithm to determine the values Xjn+1,
n +.1 . +1 . +-Z:r 1 n + 1 n A t
¥j ,,xjn 2, " Zz (at timet=t"*l =" + Atandt 2 =t 5
n n « N - l . N - l . — 4N n- l
from known values Xi, ¥y, Xj 2 Vj g (attimet=tlandt ~ 2).

It is convenient to divide this algorithm in two phases, or steps. Inlthe first
1

n+1 .‘n+1 o.n+_ . n+§
s Yj

step tentative (or starting) values for X X 2, Y are

obtained. In the second step improved solutions are obtained.

Step 1. Using equations (2. 2) and (3. 2) (3S-2 equations) we compute
the (3S-2) unknown variables ﬁjn, §jn G=1, 2,...8-1) and T;l_l G=1,2,...9).
We now use equations (3. 3) and (3. 4) (4S-4 equations) to corrllputezthe (4S-4)
variables at the next time step xjn+1, yjn+1, )-{jn+% , {,jn+§ G=1,2...8-1).

These are considered only tentative values (denoted in subsequent text by

use of the tilde).
15



Step 2. To obtain the improved values of the tensions Tr-l_l G=1,2,...8)

J
" " .+l Ll
and the quantities xjn. , yjn , xjn+1, yjn+1, xjn+'2', yjn+ 2 (a total of (7S-6)

quantities) we use the system of equations (2. 2), (2.6) and (3. 3), (3.4),
consisting of (7S-6) equations. However, since equations (2. 6) are not linear

but quadratic in the unknowns Xj yjan explicit solution is impractical to obtain.
For this reason a computation algorithm based on the Newton-Raphson method
of successive approximations is developed. A detailed discussion of the compu-

tation procedure used in this problem is given in the sections which follow.

B. Determination of Tentative Values of Tensions

In summary, the method of solution at each time step involves in the
first phase, 1) the determination of a tentative (but consistent) set of tensions
Tj—l /2 for all segments, and 2) numerical integration of the equations of
motion to predict X; and yj one step ahead; in the second phase 3) evaluation
of the discrepancies in the constraint equations from which a set of first
order corrections to the tensions can be obtained, and 4) integration of the
equations a second time to obtain corrected values of the coordinates.

The system of equations (2. 2) may be regarded as a set of (2S-2)
linear equations in the variables X;, y] (accelerations) and may be solved
directly for these variables. If we designate
?)

)23 /05 35 - K2

L = (00215 /(5 3 - K

M

N; = (002 K5 /(I 3j - K;2);

then the equations of motion (2. 2) can be reduced to:
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[Rj Tj+1/2 - PiTj-1/2 + Uj] / (692
§i = I8 Tj1/2 - Q Tj-1/2 + V5] / (D)%

where: Pj = Mj cos 9j-1/2 + Nj sin Gj_l/z

23
|

Qj = Nj cos 9j—1/2 + Lj sin 9]-_1/2

s}
I

= M;j cos 8j+1/2 + Nj sin Bj+1/2

Sj = Nj cos 8j+1/2 + Ljsin 8j+1/2
Uj = M X] + Nj Yj

~
|

= Nj X]- + Lj Yj

We observe that equation (3. 2) involves positions, velocities, and
accelerations. As is often the case with finite difference procedures, it
proves to be convenient to compute positions and accelerations at the mesh
points while velocities are found at the mid-points in time. For this reason
we shall use a modified form obtained by evaluating this equation at t = t0

and t = t"~1 and then adding the two results together, namely,

Wl . n n .n .n n-1 n-1 .n-1 n-1
(Xjn - X?-l) &5 - %19 + (55 - vi-1) 05 - ¥5-1) + & - x50 ) & - Fyoq)
-1 n-1, .n-1 .n-1 - - ~1.12
o - 67 D v 207 6 - Y - edly - D ]
2972 [6F -y - o H1% = o
+2(at) 6j -v5 - 0j-1 - y5-1)] =0 (3. 6)

in which we have used the approximaltions,1 )

.0 .n .n-1 _.n-1 n-= n-v 2
(xj - 3-1)2 + (Xj - j-l)z = Z(Xj 2 - xj_lz)
n p-1 n n-1 2
52[(Xj1— X]- }/At- (Xj—l - Xj-l ) /At]
.n . 2 .n-1 .n-1 - - 2
(v -y?_l) + (3 -yj_l)2 = 2(y; ’2-yj_{z)

- -1 2
2[5 - ¥} H)/at - Gilq- vig ) /at]” .

Q




Note that equations (3. 6) are linear in the accelerations. Likewise equations
(3. 5) are linear in the tensions. Consequently, when these expressions are
suostituted for the acceleration components in the constraint equations (3. 6),

we optain a set of conditions which are linear in the tensions, namely,

n ~N n ~n n ~n n-1 n-1
Ei_1/2Tj-3/2 - Fj-1/2 Tj-1/2 * Gj-1/2 Tj+1/2 +Ej_1/2 T 32

_ -1 n-1 n-1 n-1 n-1 n n-1 n n-1.12
F;l_l/g Tj-1/2 +C‘j-1/2 Tj+1/z+ H?-I/Z +Hj-—1/2"’ 2[(xj = Xj ) - (Xj-l - Xj_l)]

+2 [(yfl - y}l'l) - (yj-1- y?_'ll)]z =0 | (3.7

n n n n n
where: E}l_l/z = (Xj 'Xj-l) P?-l + (yj 'Yj-l) Qj'l
Fi1/2 = &5 - %-1) (B + Riop) + O - ¥j.0) (§ + 1)
n n _n n n_n
Gj-1/2 =& - x_1) Rj + (v 'Yj-l)S?

n n n n n n n n
Hj-1/2 =& - -1 (U - ULy + 67 - vj-p) (V] - Vi_p)

Now assume that the solution is correct up to t = t". Then all quantities
in (3. 7) can be evaluated at once except for 'f?_ 3/2, ’f‘?_ 1/2 and "i‘;l,r 3/2-
The tentative values of the tensions ~ signified by the tildes — are

determined by the following system of equations:

n n \ n N
(- Fo.5  Go.s (1.5 ) [~¥o.5
n n _ n
Els - Fl.5 OL5 T1.5 ¥i5
n n n n ¥ 2
{ E3.5 - Fz.5 G2.5 » (Tes 3= Y25 L
ooooooooooooooooooooooooo % o e e s 0 s 0 :n :
ES.1.5- Fs-1.5 Gg-1.5 Ts-1.5 -¥ s-1.5
n
\ Eg-0.5 - Pg-o. 5/ \Ts-0.5) \~ ¥ 5-0.5)

18




- -1 - _ _ -
n-1 n n-1 -1 +GI.11 -1 +H¥11

n
where ¥ 4/ = Bj_y/z Tjs/e - Fioyz Tjor2 T O Sjer/2 Tisr/z T Ti-v/2

n . n n-1 n n-142 n n-1 n n-112
+Hy g + 206 -9 - 6]+ 2659 - 61 )]

In general, we can write: (for 1 < j < s)

n ~1N ~1 n ~n n
Eji_1/2 Tj-3/2 - F?-1/2 Ti-1/2 + Gjo1/2 Tjr1/2 + ¥ joq72 = 0 (3.9)

n
with the conditions: Eg 5 = Gg-1/2 = Ofor alln

n n n
Also Pg, Qg, Rg, Sp and Pg, Qg, Rg, Srsl = 0 for all n.
and U3= (at)“ xg and UJ; = (At)2 xrs1 for all n.

i ¢ .
vy = (12§ and Vg = (at)?jg for all n.

The matrix of coefficients of the system of equations for i‘]p_ 1/2 is a triple
diagonal one, and it can be easily reduced to a single linear equation by

elimination. Thus, we solve equation (3. 9) for 'f?+l /2.

n n

zn 512 ¥ 1/2
-1/2 T on— i-3/2 T Tgm

1/2 j-1/2 i-1/2

n
~n : Fj-l/
- n
j-

[ W]

(A

Now we express each tension as a linear function of 'Tg 5 (the tension in the

first link) as follows:

~

_ n ~N n
Tiv1/2 = %4172 To.s * Bjir/2

~1l n ~1 n
Ti-1/2 = %-1727To.5 * Bj_1/2 (3.11)

~1l n ~N

n
Tj-3/2 = @5-3/2 To.5 + Bj_3/9

and we arrive at the following recursion formulas for a?+1/2 and Bjxll/z, namely,
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o+1/2 = (Fjo1/2 @-1/2 - Ej1/2 95-3/2) /Gj_y/2
(3.12)

n _ n n - n
Bi+v1/2 = (Fj-1/2 B y/5- By 1/9 8_3/2-¥] 1/2)/G_1/5
n n
with the conditions: agp 5 = 1, a_g 5 =0 for alln.
n n
By 5 = 0 B_g 5 =0for all n.
Starting with j = 1, we evaluate a?ﬂ/z and B]pﬂ/z recursivelyuptoj=s- 1.
~N
We then find Tg 5 from the last equation of the system, (j = s), using the same

substitutions as before, that is,

To.3/2 = %-3/2 To.5 +Bi-3/2
Te.1/2 = %-1/2 To.5 +8-1/2
The final result is ( gh gD g _ 3 n )
'1"3.5 _ s-1/2 "s-1/2 s-1/2 "s-3/2 s-1/2 5.13)

n n n n
(Fg_1/2 as-1/2 -~ Bs_1/2@s-3/2)




C. Method of Determining Improved Tensions

In order to solve egs. (3.5) numerically, we replace %" and S’r? by

)
their simplest central difference approximations (equation 3. 4), namely,
.n +1 -1
K= -2 +x )/ (a2
3.14)
.n n+1 n  n-1 9 (
Jjp = 05 - 2y vy )/ (Y

Now we solve for x;Hl and y}Hl , considering these as tentative values subject

to a slight modification in order to satisfy a system of constraints. Thus we

write
_n+1 n n-1 n ~n n ~n n
X] = 2Xj - X] - PJ T]_l/z + R.J Tj+1/2 + U] (3 15)
n+1 n n-1 n ~n n-n n
Vi = Wj-¥ - G Toge T8 T, v Y

n n _n n n
The quantities Pj , Q;) Rj , S;l, Uj and Vj are the same as were used to

set up the coefficient matrix for the tensions, and the values for 'f‘?_ 1/2 and

~n
Tj+1/2 are obtained from egs. (3.11).

Next, we determine the set of corrections OT?_ 1/2 to be applied to the
, ~n , n+1 n+1 ,
tensions Tj—l /g in order that the values of Xj and Yj should also satisfy
the inextensibility condition (2. 6). For this purpose we define the function
n+1 1 n+l1 n+l1 n+1 n+1,2 2
7 L&

= 2
ﬂj—l/z = 'Xj-l) + (Yj - Yj-l) - 1]'_1/2

(3. 16)
which measures the discrepancy in the distance between the extrapolated
positions of pairs of adjacent stations. We observe from eqs. (3.15) —
+1 n+1
with the tildes suppressed — that x;l and Yj are functions of the tensions,

that is,
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n+1 n+l ; n n
i =% TRz Tyayye
n+1 n+1 n n
i 7] {Tj-l/z» Tj41/2
n+1
Consequently, j-1/2 may also be expressed as a function of the tensions.

This enanles us to write the system of constraints to which the tensions are

supbject as follows:

n+1 . n+l n n n .
Qj-l/z T tj-1/2 {Tj-3/2’ Tj-l/z’ Tj+1/2} =0 (1<ji<s) (3.17)

n+1
since (1 i-1/2 vanishes when the inextensibility condition is obeyed.

~

n
T]-_3/2 0 Tj-3/2

+

n
Now let Tj_3/2

n n

n ~N
Tiv1/2 = Tj+1/2

+

5
Ti+1/2

n+l ) R -1 ~ T )
and expand {1 j-1/g ina Taylor series about the point <tTj_3/2, Tj_1/2, Tj+1/2}.
Thus, we ootain .+l 0+l
ﬂn+1 ~ N+l 3151/ - 9{)j-1/2 -
i-1/2= {j-1/2 ¥ n j-3/2* n i-1/2
-1/ -1/ 3Tj_3/2 9Tj-1/2 .
. n+l (3.19)
3:.7 3
‘j-1/2 n
T 0 Tj41/2
j+1/2
+ higher order terms.
~ n+l n+l1 ~n ~n ~n 1
where: ). 179 = Q5 1/5{Tj-3/2> Tj_1/2> Ti1/2
J J
_ 17T .n+1 _.n+l12 n+l _.n+1,2 2 ]
- (@D - D - aly
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Provided that the tentative values Tn 1/2 are sufficiently close to the correct

values T]p_ 1/2, we may neglect the higher order terms in the expansion (3. 19),

and thereby obtain a system of s linear equations for the differential corrections
o TJn_ 1/2- These equations have the same form as the previous system (3. 8)

for determining 'f‘;l_ 1/2> namely,

I !

-Fo.5 Go.s - (Tos o -flos

f b Q | i

© .n+1  .n+l  _n+l { n ! D _n+l

1.5 ~F1.5 1.5 . 0T M5

9 !

; ~n+l -n+l  -n+l R | ; ; xn+l |
: Bs.5 “Fa5 Gos » o 9Tas = i-fp5 ,B.20)

e 1 ...... ; .1 | | ’ '

=n+1 =N+ ~n b n ; t ~n+l
E Es-1.5 'F'sl-l.s Gs_1.5 i ;5Ts-1.5§ - fls-1. 5

1 +1 ; : : § 1 "

~N+ = oo ' ~n+l !

‘ Es-0.5 -Fer0.5. Ts-0. 5! - {l5-0. 5

the general expression being: (for 1 <j < s)

~n+1 ~n+1 n ~n+1 n ~ 1}+1 B
] 1/2 5TJ 3/2 - Fj-1/2 6Tj-1/2 + Gj-1/2 6Tj+1/2 + 1-1/2 =0 (3. 21)

where: -n+1 3 _n+l1 a),.(n+1
x- .
"':I,l-l'g,/ n]- 1/ 2 (";H'l_ ~n+l) ] _ il. 1
n+1 ~n+1
N ~n+1_ ~n+1) ay] _ ayj-l
b7 Y-1m

n
j-3/2  °Tj-3/2




~n+1 - . ~n+1 -n+l -
. 3
f,n+1 aQ] 1/2 .n+1  .n+1 ax] xj-l
2~ = & - xj-1) - n
1/ 3TD - Al !
j-1/2 Lo h-1/8 °tj-1/2
- .n+1 a~n+1
_-n+1 _ 'y yi_
+ (y;1 -y?jll) ‘ L -t
| *Tj-1/2 2Tj-1/2
~n+1 )
L. ~n+ ~n+1
~n+1 °l-1/2 _ et ~n+1 ax]p ax;l-l
“-1/2 = ord 1/2 % t) T oT
) L 9dj+1/2 j+1/2
n+1 n+1
G +1 S}n+1) ] ¥i-1 }
I 1 -
U2 2Ty

These simplify to:

~n+l  .n+l _n+l ph _n+1

Ej_1/2 = (xj j-1) Bj-1 + (YJ " Y- 1)QJ 1

~n+1 .n+1 -n+1 _.n+1

31/4-(x - &) B +R_p + G} - Fio1) @ + §j-1) (3. 22)

~n+1 n+l _n+l1 n _n+1

+1
Gj-1/2 = & - X-1)R + (; -y]-_l)S;1

~n+1 ~n+1
with the conditions: Eg 5 = Gg.1/2 = 0 for all n, and the quantities

n
P;l, Qp, R] and S;l being the same as before.
The system (3. 20) can be solved in a manner completely analogous to

the solution of the system (3.8). Thus, we write

n n )
GTJ 1/2 = “j-1/2 °To.5 * " -1/2 (3. 23)

and obtain the following recursion formulas:
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n ~n+1 n ~n+1 ~n+
)/ Gj-1/2

“i+1/2 = (Fj_1/2 #j-1/2 - Ej-1/2 <ji3/2
(3. 24)
n ~n+1 n ~-n+1 An+1
(Fi_1/3 N-1/2 - B1/2 N-s/2 - - 1/2) /G- 1/2

xj+1/2

with the conditions: KB. 5 =1, 'C?O. 5 =0 for all n.

" "o

n n
2.5 =9, 20.5=0

Finally, the last equation of the system (when j = s) enables us to solve for 6T, 5.

The result is

+1 n ~n+1 ~ n+1
(Fg _1/2 s- 1/2 - BT /9 X5o3/2 = 5179 (5. 25)
~Nn+l n .

(le/z Ks-1/2- Es-1/2 ®s-3/2)




D. Computation of New Coordinates.

We can now obtain the correctea values of the tensions in every

link. Thus,
n - ad) 9| 5 n
Tii172 " T2 v °Tyoyye
- n N n (3. 26)
=T + K 0T + A
j-1/2 j-1/2 "70.5 j-1/2
The corrected values of the coordinates are found using eqs. (3.15)— but
this time with the tildes suppressed —namely:
n+1 n n-1 n n_n n
X, = 2X, - X, -PPT, + R T + U,
j j j j Tj-1/2 i j+1/2 j
(3.27)
n+1 n n-1 n,.n n n
e AR A ~ i + st + V,
i i 7Y i i-1/2 j j+1/2 ]
For solution on an automatic computer it is more convenient to express
egs. (3.27) in terms of corrections to be added to the tentative values of
the coordinates. That is,
o x0*l = - ptooh + RM oTh
] i j-1/2 j j+1/2
n+1 n n g n (3. 28)
dy. = -Q. 0T + oT
Y G T i j+1/2
Then the corrected coordinates are given by:
<+l = in+1 + 0 Xn+1
J ] ] (3. 29)
el Logtly gt
] ] ]
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These values are now accepted as final. Moreover, as soon as the values

of ¥ n+11 . (to be used with eqs. (3.8) for the next time step) have been
]_

computed and stored, the cycle of computations is finished and there is

n

no further need to retain the values of P}‘, QY R;l, S;1 and T] L2

]
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E. Special Form of Equations for Computing First Time Step.

We assume that the velocity components are zero at each station,

and obtain the initial coordinates from the equations for static equilibrium

of the line. Since x? and 5719 = 0, eq. (3.2) reduces to

. (6] .0 . 0
(X;) - X(')-l) (X;) - x(')—l) + (YO - Yj_]_) (y] - yj-l) =0

J J J

and, on substituting the expressions (3.5), we find that the tensions are

subject to the constraint

o o 0 o o 70 0 _
Bio172 Tos/2 ~ Fo1/2 o172+ Giirys Terze * Hyogye 7 0

Comparing this with eq. (3.9), we see that

30 - HO
j-1/2 j-1/2

The system of equations (3. 8) is then solved in the usual way to get the

proper initial tensions 'i‘lﬁ)_ 1/3

To obtain tentative values for the coordinates at t = t1 , we make use of

their Taylor series expansions about the point t =t®, namely:

0 -0 1 2 .0
vo= X, . —=(A . e
x] x] + (At)x] + 2( t) xJ +

1 o -0 1 2-0
o= v, + (At)v. + = (At Do+ ...
¥j = Y ( )yJ 2( ) Yj

Taking x;) and y° = 0, and substituting egs. (3.5) for x;) ang y]?, we find
j
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(3.31)

(3.32)

(3. 34)




+R

-1 _ 1

XJ = XJ + E l- P r.[‘_]./2 ]+1/2
-1 _ .o 1 | ~0

R ‘ Q i Ty-1/2 7 Sy T]+1/2

The corrections to the tensions are then determined by the system of

equations (3. £0) in the usual manner. Finally, the corrections to the

coordinates are computed as follows:

5x,1=_1.[ P°6T°
i gL j-1/2

syl =
i

N

and the corrected coordinates are given by:
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+V

0]
+ R] T+1/

o)
[QGT 1/2+S]6T +1/2

U,
J

0
]

]
)|

3

|

(3. 34)

(3. 35)

(3.36)



4. ANALYSIS OF NUMERICAL STABILITY

In order to obtain a valid solution of the system of partial differentiai
equations (2. Z), (Z.6), governing the generalized motion of a cable it is
necessary to insure the staoility (in the sense discussed in References 1, 2, 3)x
of the equivalent finite difference system (2. 2), (2.6), (3.3), (3.4). I this
section we will derive the criteria for stabpility of this system of eguations.

We wiil also show that whereas the system of finite difference equations

(2.2), (2.6), (3.3), (3.4) is stable for sufficiently smail time intervals At,

the system (2. 2), (3.2), (3.3), (3.4) is always unstaple. This characteristic
of the latter system has led to the abandonment of this simpler set of equations
in favor of the more difficult nonlinear system (2.2), (2.6), (3.3), (3.4).

In order to determiine the stability of a system of finite difference
equations we study the growth of a small disturbance or perturbation. The
conditions for stability are said to be satisfied if the amplitude of a small
disturbance, introduced at any time, t, in any of the dependent variables,
does not increase exponentially with successive time steps. This condition
may be stated as follows:

If 6F(s,t) and OF (s, t + At) are values of a variation (or perturbation)
in any of the dependent variables x, y, T in the systém, then it is said
to be stable provided Ié F(s, t+At)/O6F (s, t)] < 1. We introduce
perturbations 0x, 0y, OT in the independent variables x, y, T, respectively.
For the sake of the stability investigation we further assume that €j is
negligible compared to mj. Substituting in equations (2. 2), (2.6), (3. 3), .and (3. 4)

we obtain the variational system of equations

* References are listed on page 41.
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Jéx = ]+]/ﬁ 5(:05 0. +1/2 T] 1/2 dcos 9] 1/2 + COS 9]+1/2 6T]+1/2

1
cos 9] 1/2 6T] 1/2 - [J+1/25sm 8+1/2 + Dj-1/g 6sin 9i-1/2

+8in 85,1/ 0Dj,1/2 + sin 8;_1/26D; 1/2]

rﬁjéy] = Tj+1/2ésin 9j+1/2 - Tj_l/zﬁsin Qj_l/z + sin 9j+1/26Tj+1/2 @)

. 1
Sin 9]_1/2 5T]_1/2 + E [Dj+1/25COS 6]+1/2 + Dj_l/zﬁcOS 93_1/2

+ €08 85,1/20D;,1/9 + cos 8;_q/56D; 1/2]

cos 9j+1/zécos 9j+1/2 + sin 9_]-+1/zésin 9j+1/2 =0

where,
oDy, 1/2 = - 2531/2 | %ja1/2 09ja1/2
mj = m; + m]f*
69541/2 = %[‘xm - ¢) + (% - ©)] 6sin 8, /5 + (Yj+1 + ¥j)6c08 8,4 /9
; _;. sin 8),1 /5 (6%j,1 + 6%)) + 2 cos 85,1 /5 (65,9 + 6y);
and where,

5cos 8j,1/2 = (0%j41 - 0%)/%j,1/9, Osin 85,1/5 = (Oyj4q - 0y;)/ Y41/ 2
55%1-1/2 - (Gx?- 5x]¥"1)/At, 63};1'1/2 = (5y;1- Gy?'l)/At;

0% = (6xn+1 25x]+6 L2, o1 = (ay“ +1_ 26yJ +5y L /(at)2.
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We will assume in this analysis that within a small region in the (s, t)

plane the coefficients (T;l , COS 9;1, D}’, etc.) of the variational functions vary

only slightly and hence may be treated as constants. We will denote these
simply by T, cos 8, D, etc., omitting the subscripts. A solution of the

system of equations (4. 1) can then be obtained in the form,
5xN = aelBi+onAt

syl = beiBj+anAt

i
5T =
TJ

where, a, b, c are real constants and @ complex. Substituting in equation (4. 1)

c eiBj+anAt

we obtain a system of linear homogeneous equations for the quantities a, b and c
which has a non-trival solution provided the determinant of the coefficients is
identically zero. After some algebraic simplifications the determinant of the

coefficients may be written in the form

F- A sin®© D'+ Bsin 8 cos 0
-D' + Acos 9 F- Bcos#@ sin 9 =0 (4. 2)
cos 0 sin 0 0

where

A =flg |21 sin B - (t sin 8/At)(1 + cos B)(1 - )]

B = flq| [Zi(ic - ¢) sin B - ( cos 8/At)(1 + cos B)(1 - )\'1)}
D' =iD sin B

F=mtE/(At)2 +4T sinzg
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and where
A= eaAt, E=(\n-2+ rl).
Multiplying the elements of the determinant and simplifying we optain
Asin®+Bcos0-F=0 (4. 3)
But, Asin® +Bcos0-=
f|q, [(21 sin B)p - (/At)(1 + cos B)(1 - A'l)]
where p=(X-c)cosO +ysin0
i.e., the tangential component of the velocity of the cable (relative to the
medium).
Substituting in equation (4. 3) we finally obtain
mia2 +{f |q At[k(1 + cos B) - pAt (2i sin 8)]
+ 4T(At)2 sin2 g - Zrﬁk} A+ [ﬁll‘- fiqjtAat (1 + cos B)] = 0. (&4
Now, comparing the first and second terms of the coefficient of A we fina
that the second term is negligibly small provided 2p At << 1, i.e., the
tangential distance traversed by the cable in one time step is very small
compared with the length of the cable segment. Since this is usually the
case and, at any rate, can always be satisfied by taking the time step
sufficiently small,we will omit this term from our supsequent analysis.
For the case of negligible drag, i.e., f =0, approximately, we ootain
from equation (4. 4)
A2 + (4T (sin? 3)(a0)2%/@mi- 2]a+1=0. (4. 5)
In order for the solution to be stable, the conditions IAIE <1, }Azf <1

must both be satisfied. But if Aq is a solution of (4. 5) then A9 = 1 jsalso

A
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a solution. It follows that the conditions for stability can only be satisfied if

|hzl=1— =|x1|=1. Now, let Aq = cos y +1sin v, Ag=cosy—isiny=%-;
V] 1
i.e., le + AZI = VI2 cos yl < 2. Again from equation (4. 5)

4T (sin2 B)(at)2
Ap tAg = 2- ( 2)( ) .

mi

We thus obtain the inequality

2 - 4T (sin2 %)(At)z/rﬁ} < 2
or

T(sin2 g)(At)z/ﬁll < 1. (4. 6)

This requirement is tantamount to the condition,

At < mi 1

T

velocity of transverse wave °

In the more general case, allowing for finite drag, equation (4. 4) may

be reduced to (after neglecting the second term of the coefficient of a),
ﬁxlxz + [f|q|1At(1 + cos B) + 4T(At)2 sin2 g_ 2511] A

(4.7)
+ [1?11 - f|q|1At (1 + cos B)] =0
This equation is more difficult to analyze. However, it is possible to show
that both |x1| < 1 and 'Azl < 1 provided the slightly more stringent

conditions

A
2
[

At

and
2 b

-

;

At

IA

(4.8)

)
L}
)

are satisfied.

34




We will now show that the replacement of equation (<. 6) by its
differentiated form (3. ) results in an unstable system; anad that furthermore,
the use of any time interval At no matter how small does not change the
unstable character of the equations. It will suffice to show tnat this condition
exists in the case when the drag is negligible, i.e., f = 0. The variational
equation corresponding to equation (3. 2) is,

(xj - xj_l)(ﬁiéj - Gij_l) + (x]- - }'ij_l)(éxj - éxj_l) + Z(Xj - Xj_l)(ékj - ij_l)
+ (v - ¥3-1003; - 85j-1) + Gj - y3-1)0yj - 0yj-1) + 205 - ¥;5-1)(03; - 8¥5-1) = 0.

Substituting appropriate values for 6x, 0y and neglecting terms containing £

the determinant equation (4. 2) is replaced by

F 0 cos 0
0 F sin@| =0
, 2 e ) (4. 2)
(& - xj-1)8 + (&5 - x_1)(A8) 5 - ¥j-1)¢ + G5 - ¥3-0(a0) 0
+ 20k - %5_7)(1 - a-1yat + 205 - 9300 - A1) at
Multiplying the elements of the determinant we obtain
F cos @ [(X]‘ - %518 + & - r"cj_l)(At)z + 2% - X - lyat wo)
+ F sin @ [(yj - ¥5-98 + 05 - S'f]-_l)(At)2 + 2075 - 93-1) - 7 hat! =0
X: = X, V. - V;_
Equating cos@=_d__i-1 , sin@g=21_"1"° 1 ;
4_1/2 L-1/2

and using the relation (first time derivative of equation (2. 6)),

(xj - Xj-l)(’.‘j - %-1) + (Yj - Yj-l)(yj - ij—l) =0
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as well as equation (3. 2) we obtain in place of equation (4. 9)
T SN
{2t -6~ %07+ 6 - 53.0%] @02} -o.

Thus, in order to satisfy the stability conditions the following two equations
must be satisfied
F=0
and
26 - (65 - .2+ 6 - 55-0%@v? = 0.
It can be shown that equation (4. 10) is equivalent to the criterion (4. 6) and is
satisfied provided
At < \/ET.*. :
However, equation (4. 11) can never be satisfied for any finite At, since it
requires that
e = [ty - 502+ G - §3-0%] @02,
a positive quantity. This conclusion follows as a result of the definition
E=2-2+ alox A1 is a root of equation (4.11), then Ag = ’1‘_1 is also a
root of this equation. As before, it follows that for stability lxll < 1land
lkzl = R_l' < 1. Hence ])«1! = I)\zi =1, Let Ay =cosy+1isiny,
Y9 = COS ¥ - siny=i—l; then £ = 2(cosy-1),or-4 < & < 0. Thus,
to satisfy the stability requirement & must lie between 0 and - 4, and
consequently is always negative or zero.

In Figure 3 the vertical velocity of the midpoint of a mooring line is

plotted as a function of time, both as obtained by the use of the stable (valid)
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system of equations (2. 2), (2.6), (3.3), (3.4) and as obtained on the basis

of the unstable (invalid) system (2. 2), (3.2), (3.3), (3.4). It will be

noticed that at approximately 18 seconds the unstable solution rapidly

increases beyond any reasonable limit.
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5. RESULTS AND CONCLUSIONS

A number of solutions ere carried out for varying vave heights and
periods. Several typical solutions are reproduced here for the information
of the reader. In Figures 4, 5, and 6, plot: are given of the maximum
tension attained along the cable as a function of time for vave heights of
6 feet and periods of 12.5 seconds, 7.5 seconds, and 5 seconds, respectively.
The periods of the variation in maximum tension correspond to the periods
of the forced vibration, as expected. The maximum tension, however,
increases in amplitude from 32, 250 lpb in the case of the 12. 5 sec period
waves to 38, 500 1b for 7.5 sec period waves to 49, 500 1b wvhen the period
is 5 seconds. In Figure 7 the maximum tension attained for .vave heights
of 9 ft and a period of 7.5 seconds is plotted. The maximum tension is
approximately 60, 000 1b as compared .vith 38, 500 1b for the case of 6-ft
waves with the same period.

As an experiment to aid in understanding the effect of the drag caused
by the presence of the fluid on the motion of the cable, one case was carried
out with zero drag (i.e., motion in vacuum). A very interesting motion
pattern was obtained which appears not to possess a periodic character.
This solution ic reproduced in Figure 8.

The successful solution of this problem, as well as a number of others,
involving complex nonlinear systems of partial differential equations by the
use of high-speed calculators and finite difference methods constitutes, in

the opinion of the authors, a major advance in applied mathematics.
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Until recently it has oeen considered unfeasiole to obtain numerical
solutions for general systems of partial differential equations with the
exception of a few isolated simple types of equations whose solutions are
known in analytic form. However, the solution of engineering problems,
in almost every major field of science, is expressible in terms of systems
of partial differential equations. Supersonic and subsonic aerodynamics,
nuclear reactor design theory, heat flow, propagation of electromagnetic
and acoustic waves are but a few areas which fall in this category. In the
past engineers have largely depended on experience and on simplified
linearized models of the phenomena under study. In the future, such
simplifiea theoretical models will become less valid - as speeds under
consideration increase, stresses become larger, temperatures higher.
It may also be expected that experimentation will become more costly,
more time consuming, and, at times, unfeasible. It is fortuitous that, at
the same time, a new approach appears to be unfolding for the solution of
many Gifficult engineering problems - based on the mathematical represen-
tation of the phenomenon and the numerical solution of the resulting
unabridged system of equations by the use of high-speed calculators and
finite difference methods.

The programming of the various phases of this problem was carried
out by Mr. Thomas McFee, of the Applied Mathematics Laboratory, in a
most effective manner. The speed and accuracy with which he accomplished

this phase of the solution were largely responsiole for the success in meeting
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the required time schedules. The authors would also lie to express their
gratitude to Mr. R. T. McGoladarick, of the Structural Mechanics Lavboratory,

for proposing this probiem and for a number of helpful discussions; to

Dr. R. Bart, Structural Mechanics Laooratory, for a numoer of ideas

used in setting up the numerical procecure; to Dr. E. H. Kennarc, Davia

Taylor Moael Basin, and Dr. R. M. Langer, Bureau of Ships, for helpful
discussions in connection with the definition of the problem; to Dr. Daniel Shanks,
Appliea Mathematics Laooratory, for valuable suggestions; and to

Miss Corinne Lundgren, Appliec Mathematics Laboratory, for assistance

in the preparation of the figures.
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