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NOTATION

a

Dj + 1/2CF

i

Jyj

c

D

dj + 1/2

ej + 1/2

F

3

i

j

Acceleration

Drag coefficient for segment of cable between stations
j and j + 1

Resistance coefficient for horizontal motion of suspended
prism

Resistance coefficient for vertical motion of suspended
prism

Velocity of uniform horizontal current

Drag

Diameter of segment of cable between stations j and j + 1

Virtual mass of entrained fluid between stations j and j + 1

Resultant force

Drag factor for cable = (p/2) CD+ 1/ 2 kj 1/2 dj + 1/2

Horizontal drag factor for suspended prism = (p/2) C? SX

Vertical drag factor for suspended prism = (p/2) CY Sy

Acceleration due to gravity

Component of inertia tensor

Imaginary unit

Component of inertia tensor

Subscript denoting station number along line
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K. Component of inertia tensor

kj + 1/2 Virtual inertia coefficient for segment of cable between
stations j and j + 1

j + 1/2 Length of line between stations j and j + 1

mj Mean mass of segments of cable adjoining station j

mj Iviass of prism suspended from station j

xEffective horizontal mass of suspended prism
mj Effective vertical mass of suspended prism

n Superscript denoting time-step number

o Superscript denoting initial state (origin in time), or
subscript denoting anchor end of line

p Tangential component of velocity of cable (relative to
medium)

q Normal component of velocity of cable (relative to
medium)

S X  Projected area of suspended prism along x-axis

SY Projected area of suspended prism along y-axis

s Subscript denoting surface end of line

T Tension

t Time

At Time-step interval

u Magnitude of velocity of cable (relative to medium)

Vj Volume of prism suspended from station j

VX Equivalent volume of horizontal virtual mass of suspended
prism
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V Equivalent volume of vertical virtual mass of suspended
prism

W. Mean net weight of segments of cable adjoining station j

Wj Net weight of prism suspended from station j

X Horizontal component of resultant external force

Xj Horizontal component of damping force on suspended
prism

x Horizontal coordinate of cable

Y Vertical component of resultant external force

Yj Vertical component of damping force on suspended
prism

y Vertical coordinate of cable

ra Damping coefficient of the perturbation functions

B Dimensionless frequency of the perturbation functions

The variation of

9 Angle between horizontal and tangent to cable

A Eigenvalue (root of characteristic equation)

P j + 1/2 Linear density of segment of cable between stations
j and j + 1

P Density of fluid medium

dj +1/2 Cross-section area of segment of cable between stations
j and j + 1

Dot signifies differentiation with respect to time

Tilde signifies tentative value of a variable
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ABSTRACT

The system of partial differential equations governing the nonlinear

transient motion of a cable immersed in a fluid is solved by finite difference

methods. This problem may be considered a generalization of the classical

vibrating string problem in the following respects: a) the motion is two

dimensional, b) large displacements are permitted, c) forces due to the

weight of the cable, buoyancy, virtual inertia of the medium and damping

or drag are included, and d) the cable is assumed to be nonuniform. The

numerical solution of this system of equations presented a number of interesting

mathematical problems related to: a) the nonlinear nature of the equations,

b) the determination of a stable numerical procedure, and c) the determi-

nation of an effective computational method. The computation is programmed

for a high-speed calculator (UNIVAC system). The solution of this problem

is of practical significance in the calculation of the transient forces acting

on mooring lines due to the Doboing up and down of ships during the period

preceding large scale explosion tests, as well as in many other applications

involving.mooring or towing operations.



1. INTRODUCTION

This problem arose as a result of an urgent requirement by the Navy

in connection with a series of nuclear explosion tests which were conducted

in the Pacific. In preparation for these tests a number of ships were

instrumented and moored at specified locations from the explosion point.

These positions had to be maintained intact during the period preceding the

explosion. However, the bobbing up and down of the ships due to ocean waves

during this period could excite sizeable transient forces in the mooring lines

which might break these lines and thus result in the loss of information from

the tests. Several months prior to these tests a request was made to the

Applied Mathematics Laboratory to calculate the magnitude of the forces

acting on the mooring lines, for waves of varying amplitude and frequency.

It is gratifying to report that in spite of the theoretical complexities of this

problem and the absence of any known solutions, the Applied Mathematics

Laboratory was able to obtain the required results in time for use during

the scheduled tests. The two factors which made a theoretical solution

feasible at this time, whereas it would not have been possible several

years ago, were: a) the availability of a high-speed computer and b) the

recent progress made in the understanding and development of numerical

methods for the solution of systems of partial differential equations.

Whereas the solution to this problem was carried out as a result of

one specific requirement, it is more useful to regard it as the general

problem of the two-dimensional motion of a cable or rope immersed in a

2



fluid. From this point of view it may be considered as a rather broad

generalization of the classical vibrating string problem, and it becomes

immediately apparent that its solution is applicable to a wide class of

engineering problems involving the motion of cables, such as a) the

laying of intercontinental telegraph cables, b) the towing of a ship or

other object in water, or c) the snapping of telephone wires as a result

of transient forces caused by storm. This problem may be stated abstractly

as follows: Given the initial conditions (i. e., position and velocity at any

time, tO) and boundary conditions (positions of end points at all times) of

a cable immersed in a fluid, determine its subsequent motions. The motions

are assumed to take place in two dimensions.

Forces that are assumed acting on the cable are: a) forced motion of

the extremities (end points) of the cable, b) damping or drag as it moves

through the fluid, c) virtual inertia due to the motion imparted to the fluid

d) weight of the cable, and e) buoyancy. Variations in the mass as well as

other physical properties of the cable along its length are allowed. The

displacements may be large and the motions rapid. In the present solution

it is assumed that the cable is inextensible (cannot be stretched). In

subsequent work the authors have carried out solutions for cables with

elastic properties. The motions are not restricted in any manner (except

that these take place in two dimensions).

The solution was carried out by the method of finite differences.

This method consists simply in replacing the derivatives of various order

, l111111 11



in the differential system of equations by equivalent ratios of finite increments.

This substitution results in a system of difference equations, which are

algebraic in form, and hence more easily tractable. However, in order to

represent a valid solution, the system of finite difference equations so derived

must possess certain mathematical stability (and convergence) properties.

It must have the property that its solution progressively increases in accuracy

as the size of the time increment used in the above representation is gradually

decreased. Unfortunately, the system of finite difference equations initially

proposed for the solution of this problem did not satisfy these stability

requirements. A search for a stable finite difference system as well as for

an effective method for solving the resulting system of finite difference

equations, which was nonlinear in character, added to the complexity of

the problem.

4
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2. DERIVATION OF EQUATIONS OF MOTION

The problem under consideration is a generalization of the classical

problem of the motion of a vibrating string. In at least one respect the

formulation of the problem given here will not differ from that of the original.

Specifically,. we wish to deduce the approximate motion of a steel cable

without having to involve ourselves in the explicit computation of the elastic

forces which act on the cable. However, the formulation will depart from

the original in a number of respects, namely:

a) Longitudinal as well as transverse motions of the line must be

taken into consideration.

b) The occurrence of large displacements from the equilibrium

configuration of the line must be permitted.

c) The weight of the cable must be taken into account because the line

may stretch from one level to another. Thus, even when the line is in static

equilibrium, the tension will not be uniform nor will the line be straight.

d) Since the cable is submerged, the static forces must include the

buoyancy of the medium and the dynamic forces must allow for the virtual

inertia of the medium. Furthermore, it is desired to make provision for

damping forces due to the drag on the line whenever lateral motion is

occurring.

e) Finally, it is desired to suspend concentrated loads at one or more

points along the line and to change the linear density of the cable at specified

points.



The best approach to the solution of a problem with such general

specifications appears to be a numerical method based on finite difference

approximations. Inasmuch as we are committing ourselves to the eventual

use of differences in both the time and space dimensions, it will be simpler

to introduce the spacewise discreteness into the original formulation of the

problem. We therefore proceed at once to the derivation of the equation of

motion of a simplified model in which the distributed mass of the cable has

been replaced by a series of discrete masses mj attached to a weightless,

inextensible line. This leads to a system of ordinary differential equations.

It may be shown that,- in the limit, the resulting equations pass over into

the corresponding partial differential equations for the motion of a sub-

merged cable.

FLOAT
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Figure 1 shows a typical configuration of the system with the cable

attached to a float at the surface and anchored to the bottom. Also, a

heavy load is suspended from a point near one end of the cable. Other

boundary conditions are possible, but the equations of motion will be the

same in any case. The horizontal and vertical coordinates of a point on

the line are called x and y, respectively, and the angle between the

horizontal and the tangent to the line is designated by 0. Figure 2

illustrates the corresponding discrete model for which the equations will

actually be derived. The line is divided into segments in such a way that

there will always be an integral number of them between any points where

an abrupt change occurs in some parameter. The junctions between the

segments are numbered according to the subscript index j, which runs

from 0 at the anchor to s at the surface.

Before we can properly invoke Newton's law of motion, it is necessary

to consider the inertial properties of the fluid in which the cable is immersed.

We shall assume that the kinetic energy of the surrounding medium is

independent of the component of velocity parallel to the line, whereas it

varies as the square -of the component of velocity at right angles to the line.

Thus, when an element of the cable is accelerated longitudinally, no hydro-

dynamic reaction occurs, but when the cable is accelerated laterally, it

behaves as though it possessed additional inertia. The component of

acceleration normal to the line is

anormal = -, isin 9 + y cos



The accompanying inertial reaction can be resolved into horizontal and

vertical components. Each of these will oe proportional to the corresponding

component of anormal, namely,

HORZ. COMP: - anormal sin 9 = x sin2  - y sin 0 cos 9

VERT. COMP: anormal cos 9 = y cos 2 9 - " sin 9 cos 0

Thus, each component of the hydrodynamic reaction depends on both components

of acceleration. In general, the reaction force is not parallel to the acceleration

vector (except when the tangential component is zero), so that it is necessary

to regard the inertial parameters of the system as tensors rather than simple

scalars.

The differential equations governing the motion of the j'th station on the

line (see Fig. 2) can be written in matrix notation as follows:

-K. IHORZ

where: =m + (e 1 sin 2 j+1 + e _ 1 sin2 _ )

2 e j

(2.1)

+ mjX

Jj = mj + 1
S2

(ej 1 cos2 Oj1
2 2

Kj (e 1 sin . 1 cosO.
2 2

+e. 1 cos 2 . 1)
2 -

1 +e. 1 sin . 1
2 2 2 J-

+ mj

cos . 1)
3 -Z
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and mj = [ 1 1 j + j1 1

e. k 1 = p 1 d 1

my = mj* + pvX

2 2

Each lumped mass, mj, has been expressed as the average mass of the two

segments of cable which lie on either side of station j. Also, one-half the

equivalent transverse mass, ej, of the entrained fluid associated with each of

these segments has been included in the inertia tensor. Furthermore, at

those stations from which a weight is suspended, the effective horizontal and

vertical masses, mjX and m Y , of the weight are to be added. For simplicity

in allowing for virtual inertia, we have assumed that any such weights possess

a certain degree of symmetry and remain upright as the line moves about.

The force vector, Fj, on the right side of eq. (2. 1) can be expressed

as the sum of internal forces (the tensions acting between adjacent mass

elements) plus whatever external forces are present. Thus, in expanded

form the equations of motion can be written

-- I _MliiYL



xj - I-yj = Tj/2 cos j+1/2 - Tj_1/2 osjl - 1/2 +Xj

(2.2)

- xj + Jj = Tj+ 1 /2 sin 9j+l/ 2  Tj - 1/ 2 sin j - 1/ 2 
+ Yj

where Tj + 1/2 = tension in segment of line between stations j and j + 1

Xj = horizontal component of resultant external force at station j

Yj = vertical component of resultant external force at station j

There are two sources of external force, namely: 1) gravity, which gives

rise to the weight minus the buoyancy and acts only in the vertical, and

2) fluid resistance, which gives rise to the damping forces. Thus, we write

Xi=- [D. 1 sin9. 1 + D. 1 sin. 1] +X

(2.3)

S_ [D D 1 cos 0. 1 + D. 1 cos . + Yj- W - W
S2 2 + 2 2J J

1
where Wj= mjg-- pg (1p1 d 1 + 1. 1 d. 1 )

2 2 2

Wj = mjg - pgV

and Dj. 1 = drag on segment of line between stations j and j + 1
2

Xj* = horizontal component of damping force on weight at station j

Yj* = vertical component of damping force on weight at station j

Again, in order to get the best approximation to the continuous case, the net

effect of the drag at station j has been expressed as one-half of each component

of the drag on the segments which lie on either side of this station. The

buoyant force of the displaced fluid has been treated likewise.

I I I



We have assumed that the drag, Dj + on a segment of the line acts in a

direction at right angles to the line. This is a good approximation whenever

the velocity is high enough to produce significant forces, since at all but the

lowest Reynolds numbers the tangential component of the hydrodynamic force

is very small compared to the normal component. Furthermore, we assume

that the drag is proportional to the square of the component of relative

velocity normal to the line:

Dj + 1/2 =  + 1/2 j + 1/ 2  qj+ 1/ 2 1 (2.4)

D 1 p CD Dj djwhere ff+ 1/ 2 = 2 C+ 1/ 2  j+ 1/2 d+ 1/2

qj + 1/ 2  - - c) + ( - c) sin 9j +1/2 2 [ij+1+ j ] cos Ej+1/2

The positive normal to the line has been arbitrarily taken to be directed upward

when 9 equals zero. The introduction of the minus sign and the use of the

absolute value of one of the velocity factors ensures that the drag will always

be opposed to the direction of qj + 1/2 and thus act as a dissipative force to

remove energy from the system. Since the velocities of the two endpoints of

each segment will, in general, differ slightly, their mean value (which for a

straight line segment is exactly equal to the velocity of the midpoint) is taken

as a representative value in the definition of qj + 1/2- In addition, the

definition allows for the presence of a uniform horizontal current, c, to

incorporate the ability to treat towing lines as well as mooring lines (or

mooring lines subjected to ocean currents).

- II



In addition to the drag on the line itself, there will also be resistance

to the motion of any concentrated loads which may be Suspended from the line.

These additional damping forces will vary with the velocity but will not, in

general, be directed exactly opposite to the motion of each weight. However,

on account of the assumed orientation and symmetry of any such weights, the

resistance force will be parallel to the velocity vector whenever the relative

motion is either purely horizontal or purely vertical. Accordingly, the two

components of resistance may be written

X =f Xuij -c) (2.5)
(2. 5)

Yj =- fjY uj uj

where: fjX PC S

Y 1 
fjY P CjY S Y

uj = [(ij- c) 2 + j2 1 / 2

Up to this point an explicit formula has been given for the evaluation

of every term in the equations of motion (2. 2) with the exception of the

tensions. To determine these we must invoke the inextensibility condition

which was assumed at the outset. This takes the form of a constraint on the

motion of the line. It requires that the separation between adjacent stations

must not change with time. Thus, we write

2 2
(x - xj 2 + ( yj - 1 ) = 1/2 = const. (2.6)

This holds for each segment of the line, and we require that the corresponding

set of tensions, Tj - 1/2, take on values such that the resulting solution of

I- ~--- -------I------~-~ - 'I - I - - - - ----~-~"^~L-312~.-~~~~



the equations of motion will be consistent with eq. (2. 6). Because of the

implicit nature of this condition, we are led to a system of algebraic

equations for the determination of the proper tensions. At the extremities

of the line (j = 0 and j = s) xj and yj must be obtained from the boundary

conditions, namely:

x0 = x0 (t)

Y0 = Y0 (t) (2.7)
(2. 7)

xs = x s t)

Ys = Ys(t)

These are given as functions of time, and permit the introduction of any

desired types of driving motions.

Finally, to complete the formulation of the problem a set of initial

conditions must be given for each station on the line. Since the equations

of motion are of the second order, it is necessary to specify both the

coordinates and the velocities at t = 0. That is,

x (0) =x j 0  0 <j<s

yj (0) = y 0  (2.8)

Tj (0) = j0

where the superscript index "0" is used to designate a value at the origin

in time.



3. SOLUTION OF EQUATIONS BY FINITE DIFFERENCES

A. General Description of Computational Procedure

The equations governing the motion of a cable, as derived

last section, are summarized here. The basic equations of motion,

(2. 2), are repeated for convenience,

I xj - Kj yj = T +1 cos j+.- T 1 cos 8j 1 + j  =i
26 2

-cxj +Jj yj = Tj+I sin j+1
2 2

sin j _ +Y, j=1

in the

equations

1, 2,...S-1

(2. 2)
, 2,...S-1

a) S is the number of junction points

b) Ij, Kj, Jj are given in equation (2. 1) and are functions of the physical

properties of the cable and of position only

c) Xj, Yj are given by equations (2. 3), (2. 4), and (2. 5) and are functions

of the physical properties of the cable and of position and velocity.

In addition the motion is governed by the condition of inextensibility of the

cable, equation (2. 6),
2

(x - xj - 1 2 )2= 1 1 = const, j = 1, 2, . .. S.

The differentiated (with respect to time) forms of this relation

(xj - xj1 ) (kj- j- 1) + (yj - Yj- 1) (Yj j-1) = 0, j =1, 2...S

(xj-xj-1) (x - xj I) + (YjYj-1) j j - ) j - xj-

+ ( j-_1)2 = 0 j = 1, 2... S

are also used in the computation.

where

(2.6)

(3.1)

(3.2)

- -- I I' I I II I I
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For numerical solution by finite difference methods the following finite

difference equivalents are used,
1 xn+l x .n yIn+l n

n+ xn+1 - xn n - y , j= 1, 2... S-1; (3.3)
At At

xn+1 - 2xj.n + x.jn-1 yn+ - 2yjn + y n-
n= I 23 3 Yn= J 2 , j= 1,2...S-1. (3.4)

(A t) (A t)

It is assumed that the boundary and initial conditions are knovm. These are

given in equations (2. 7) and (2. 8), respectively. The system of equations

summarized above, consisting of equations (2. 4), (2. 6), (2. 7), (2. 8), (3. 1),

(3. ), (3. 3), (3. 4) with the auxiliary equations (2. 1), (2. 3), (2. 4), (2. 5)

completely describe the motion of the cable.

The computational procedure, as developed in detail in the remainder

of this section, consists of an algorithm to determine the values xjn+l,

yn + 2 n+, jn +- (at time t = tn+1 = tn + At andtn + n + At

1 .n 1
from known values x, yj, xn- j (at time t = tn and t n -2).

It is convenient to divide this algorithm in two phases, or steps. In the first
1 1

n+1 n+1 n+- n +-2
step tentative (or starting) values for xj n + , yn+, , n2 are

obtained. In the second step improved solutions are obtained.

Step 1. Using equations (2. 2) and (3. 2) (3S-2 equations) we compute

the (3S-2) unknown variables j.n, y (j = 1, 2,... S-1) and T (j1,2, .. S)

We no-; use equations (3. 3) and (3. 4) (4S-4 equations) to compute the (4S-4)
1 1

variables at the next time step xjn+l yjn+ln + j, + (j = 1, 2... S-1).

These are considered only tentative values (denoted in subsequent text by

use of the tilde).

- 111111
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Step 2. To obtain the improved values of the tensions Tn (j = 1, 2, ... S)
1 1 2

and the quantities x , n , xn+ y n+, + , jn+ (a total of (7S-6)

quantities) we use the system of equations (2. 2), (2. 6) and (3. 3), (3. 4),

consisting of (7S-6) equations. However, since equations (2. 6) are not linear

but quadratic in the unknowns xj, yj an explicit solution is impractical to obtain.

For this reason a computation algorithm based on the Newton-Raphson method

of successive approximations is developed. A detailed discussion of the compu-

tation procedure used in this problem is given in the sections which follow.

B. Determination of Tentative Values of Tensions

In summary, the method of solution at each time step involves in the

first phase, 1) the determination of a tentative (but consistent) set of tensions

Tj-1/2 for all segments, and 2) numerical integration of the equations of

motion to predict xj and yj one step ahead; in the second phase 3) evaluation

of the discrepancies in the constraint equations from which a set of first

order corrections to the tensions can be obtained, and 4) integration of the

equations a second time to obtain corrected values of the coordinates.

The system of equations (2. 2) may be regarded as a set of (2S-2)

linear equations in the variables xj, (accelerations) and may be solved

directly for these variables. If we designate

S= (t) 2 Ij /(Ij Jj - Kj2 )

Mj = (t) 2 J j /(Ij Jj - Kj2 )

Nj = (A t) 2 Kj /(Ij J - Kj2);

then the equations of motion (2. 2) can be reduced to:

I II I - I Ill I I I



xj = [Rj Tj + 1/2 - PjTj-1/2 + Uj] / (At)2

j = [ Tj+ 1 / 2 - Qj Tj_-1/ 2 + Vj] / (At)2

where: Pj = Mj cos j_-/2 + Nj sin j-1/2

j = Nj cos Bj-1/2 + Lj sin 9j-1/2

Rj = Mj cos j+1/2 + Nj sin j+1/2

Sj = Nj cos 9j+1/2 + Ljsin 0j+1/2

Uj = M Xj + NjYj

Vj = NjXj + L Yj

We observe that equation (3. 2) involves positions, velocities, and

accelerations. As is often the case with finite difference procedures, it

proves to be convenient to compute positions and accelerations at the mesh

points while velocities are found at the mid-points in time. For this reason

we shall use a modified form obtained by evaluating this equation- at t = tn

and t = tn- 1, and then adding the two results together, namely,

n n 0*n - n n .. n n-i n-1 n-i ..n-i
(X x 1)(xj - xj1) ( yjn y j1) (yyj Yj-1) + (xj - xj 1 ) (ij - xj)

(yn-I n-l n-1 ..n-12 n n- n n- 2
S - yj-) ( - Yj- ) + 2(At) -2(x )x- (x-1 - x -1

+2 n n-1 n n-i n n2
+2(At) - 2 [(yp- y- )- (Y_- - j-1) = 0; (3.6)

in which we have used the approximations,
1 n1

.n n-1 .n-1 n- - .n- - 2
Sxj) + ( xjl )2 2( 2 - xj_ )

n n-i n n-1 2
-- 2 [(x - x - ) /At - (xj_ 1 - xj1 /At]

.ny .n 2 n-1 n-1 2 n-i n- 1
y -- j Yj-1 )  = 2(y -aj -j-_ )

n n-1 n n-1 2
- 2 [(y~- yj )/t- (yjn 1 - y1 )/ t]2

-, •. :
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Note that equations (3. 6) are linear in the accelerations. Likewise equations

(3. 5) are linear in the tensions. Consequently, when these expressions are

substituted for the acceleration components in the constraint equations (3. 6),

we obtain a set of conditions which are linear in the tensions, namely,

n n n -n n- n-iEj-1/2 Tj-3/2 - Fj -1/2 Tj-1/ 2 + Gj-1/ 2  j+1/2 + E-1/2 -3/2

F- 1 Tn-1 + Gn-1 n-i + Hn-1 n n) xn-1 2
j-1/2 j-i/2 + -1/2 T +/ + Hj-1/2 + Hjl/2 + 2[(x - x - xj_1 -j

+2 n n- 1 _yn n- y1 2
+ 2 (y - yj ) - (yj-1- Yj-1 = 0 (3.7)

where: E-1/2 = (x - xj-1) j1 + -Yjj) Qj-ji

Fj_1/2 =( xj-1) j-l

Gj -1/2 =(xj - xjn i) Rj

+ Rj-1) + (yj - yj 1 ) (Qj + Sj-1)

+ ( - yj 1)

n n n n Unn nlHj-1/2 = (x- xj1) (U - U_) + y-1-j) (Vj - Vji-1

Now assume that the solution is correct up to t = tn. Then all quantities

in (3. 7) can be evaluated at once except for Tj- 3/2, Tji-1/ 2 and Tj+3/2

The tentative values of the tensions - signified by the tildes - are

determined by the following system of equations:

n n
- F0 . 5 GO. 5

n n n  n

- F5 GG2.
2. 5 F5 2.

En-. 5- - 1. 5 Gs- 1. 5

En-0. 5 - -0. 5,)
18

T n
0.5

Sn
T2. 5

Tns- 1. 5

Ts-0.5,

n
0. 5
n
1.5
n
2. 5 (3.8)

s- 1.5

s-0. 5
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n-1
+ Hj- 1/ 2

n n-_ n n-li
S2[(y - yj )- (Yj-I Yj-]

In general, we can write:

E1/2
Ej-1/2

(for 1 _ j _ s)
-n ~n n -n

Tj_3/2 - 1/2 Tj-1/2 + Gj_1/ 2 Tj+ 1 /2

with the conditions:

n n n
Also P, Q0 ROn

and UO= (At)2 x
0

n
E0 .5

n
= Gs- 1 / 2 =

n n n
SO and Ps, Qs, R,

and = (t) 2 xs

1
3,

0 for all n

n
SS = 0 for all n.

for all n.

n 2 ..n n
V0 (at) 2y0 and V s

2 ..nAt) Ys for all n.

The matrix of coefficients of the system of equations for T j1/2 is a triple

diagonal one, and it can be easily reduced to a single linear equation by

elimination. Thus, we solve equation (3. 9) for Tj+1/2

Gnj-1/2

~n
j+1/2

n
Tj-1/2

_n
Tj-3/2

~fn
Tj- 1/2

Gn

j_ 1/ 2

-n
Tj-3/2

Now we express each tension as a linear function of TO. 5

first link) as follows:

n -n
j+1/2 T0 . 5

n
aj-1/2

n3/2
aj-3/2

-n
/ TO.

~n
To. 5

n
T j-1/2

Gn
j-1/2

(the tension in the

+ B +I
nj+1/2

n+ j-1/2

" j-3/2

the following recursion formulas for an+1/ 2 and ]+l/

where +
n
j-1/2

n-1
= Ej-_l/2

n-i
j-3/2

n-1
Fj-1/2

+ Hj- 1/2

Tn -

j-1/2
n- 1

+ Gj-1/2

x; n-l) n-+ 2 (x - xj - (xj_ 1 - n-1 2
xj- I

n
+ j-1/2 = 0 (3. 9)

-~n
Tj+1/2 (3.10)

(3.11)
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n  n n n n
(Fj-1/2 aj-1/2 - Ej-1/2 aj-3/2) /Gj-1/2

n n
Bj+1/2 (FjI/2

(3. 12)

j-1/2 - Ej-1/2 j-3/2 - 1/2 -1/2

with the conditions: a0.5 = 1, a-0. 5 = 0 for all n.

n
13. 5 = 0

n
8-0. 5 = 0 for all n.

Starting with i = 1, we evaluate aj+1/2 and I+ 1/ 2 recursively up to j = s - 1.

~n
We then find TO. 5 from the last equation of the system, (j = s), using the same

substitutions as before, that is,

-n n

Ts_3/2 = aj-3/2
"n n
s-1/2 = j-1/2

The final result is

~n
To. 5 = 

-n n
To. 5 + Bj-3/2
~n n
TO. 5 +j-1/2

(F Bn  En  B ns-1/2 s-1/2 s-1/2 s-3/2 - -1/2)

n n n n
(Fs-1/2 as-1/2 - Es-1/2 as-3/2 )

n
Cj+ 1/2

(3. 13)
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C. Method of Determining Improved Tensions

..n ..n
In order to solve eqs. (3. 5) numerically, we replace x and y by

their simplest central difference approximations (equation 3. 4), namely,
n n+1 n n-1 2

Xj = (xj 2x + x / (t)

..n n+1 n n-1 2
Y = (yj - 2yj + yj )/ (t)

n+1 n+1
Now we solve for xj and yj , considering these as tentative values subjec

to a slight modification in order to satisfy a system of constraints. Thus we

write

n+ n n- I n -n n n n
xj 2x - x Pj Tj_ 1/2 +Rj Tj+/2  + Uj (

n+1 n n-I n ~n n-n n
Yj = 2 yi -Yj Qj Tj_1/ 2 + Si Tj+1 / 2 + Vj

n n n n n n
The quantities P n, Qj, Rj,' Uj and V. are the same as were used to

~n
set up the coefficient matrix for the tensions, and the values for Tj_1/2 and

-n
Tj+1/2 are obtained from eqs. (3. 11).

Next, we determine the set of corrections 6Tj-1/ 2 to be applied to the

-n n+1 n+1
tensions Tj_1/2 in order that the values of xj and yj should also satisfy

the inextensibility condition (2. 6). For this purpose we define the function
n+1 1 n+1 n+1 2 (n+ n+12 2 2 ]

l j-1/2 -2 x Xj-1) + j Yj-) - Ij-1/2

3. 14)

t

. 15)

.16)

which measures the discrepancy in the

positions of pairs of adjacent stations.

n+1
with the tildes suppressed - that xj

that is,

distance between the extrapolated

We observe from eqs. (3. 15) -

n+1
and yj are functions of the tensions,

"I- - - - '- Yi
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n+l
xj

n+l
Yj

Consequently,

n+l
= xj

n+l
= Yj

Sn

Tj-1/2,

n
rj+1/2

n
Tj+1/2

n+1
j_-1/2 may also be expressed as a function of the tensions.

This enaoles us to write the system of constraints to which the tensions are

subject as follows:

n
Tj-3/2,

n
Tj-1/2

n
Tj+1/2 = 0 (1 < j _ s)

n+1
since fl j- 1/ 2 vanishes when the inextensibility condition is obeyea.

Now let Tj3/2

n
Tj- 1 /s

and expand

~n
j-3/2

-n
= Tj-1/2

n ~n
Tj+ 1/ 2 =j+1/2

n+1

II j-1/2 in a Taylor

n+ 6Tj-3/ 2

+ 6T n
+ j-1/2

n
6 Tj+1/2

series about the point

Thus, we obtain n+1

a Tn
j-3/ 2

3/
6j-3/2+

n+1

j-1/2
+

j+1/2

(3.19)
n

6Tj+1/ 2

+ higher order terms.

n+1
-Qj-1/2

n+1
where: j-1/2

1 [ -n+12 R -n+1 2
- xj- 1 )

.n
Tj+1/2

-n+1 2
- Yj-1)+ (j+1 Ij-1/2]

n+1
j-1/2

n+l
"j-1/2 (3.17)

(3.18)

n+1
j-1/2

, n+1
-j-1/2 +

.. n .~n
Tj- 1/2, Tj+1/21.

n+1

a j - 1/2
a Tnj- 1/ 2

n
6Tj-1/2

-n
Tj-3/2,

-n1
Tj-1/2,

rl 11 11111 11 11 -1
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Provided that the tentative values TjI-1/2 are sufficiently close to the correct

values Tjn-1/2, we may neglect the higher order terms in the expansion (3. 19),

and thereby obtain a system of s linear equations for the differential corrections

Tj -1/2. These equations have the same form as the previous system (3. 8)

for determining T
for determining Tj-1/2, namely,

.n+l
G1 . 5

-n+l -n+l
-F2. 5  G2. 5

E"n+1 _+
s-1. 5 s-1. 5

gn+1
s-0. 5

-n+l
s-1. 5

-n+1
-Fs-0. 5

the general expression being: (for 1 < j _ s)

n+1 n n+1
Fj-1/2 6Tj-1/2 + Gj-l/

- n+l
=f J]-1/2aT

j-3/2

n - n + l

2 6Tj+1/2 + fj-1/2 = 0

- n+l n+l 1

-n+l a X ax - 1

xj-1) 32 Tn
j-3/2 j-3/2

n+1 -n+1
+ Yj l )

n+1 -V1
- 3/2

j-3/2J

23

~n+l
-Fo. 5

-n+l
El. 5

j

-n+l
GO. 5

~n+l
-Fl. 5

-n+l
2.5

5TnTO. 5

n
6T. 5

n
6T 2 . 5

s-.

Sn
6Ts-0.

- n+l
- 0. 5

S n+l

- n+l
~ 2. 5

n+1

- s-0.

(3. 20)

5;

5j

where:

-n+l
Ej-1/2

(3.21)
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-Rn+l
n+1 -n+1 j

(xj - xj-1) n
L j-1/2

n+1+ ( j

In+1ax.

Tj-1/2

- n+1

-T -- 1/2

- a:n+l n+l
-n+l xa j-1

j T-+1/ 2 aTn+1/2

- n+1
n+l -n+1. "

+ jj- Yjl) a T!+

These simplify to:

n+1
+ (

n _n+ l
+ Rj-1) + (yj

-n+1 n
Yj-1 ) Qj-1

,n+1 n
Yj-I) (Qj

n+1
+ (¢j

with the conditions:
-n+l -n+1
E0 . 5 = Gs- 1 / 2 = 0 for all n, and the quantities

P , Qi, and S
j being the same as before.

The system (3. 20) can be solved in a manner completely analogous to

the solution of the system (3. 8).

n_ n
6T -1/2 j-1

Thus, we write

n n
/2 TO. 5 + j-1/2

and obtain the following recursion formulas:

- n+1
j-1/2

-n+1
af- 1/ 2

W'j-1/2

-n+l
G

- n+1

f. j -1/2

aj+1/2

n+1
Y-Yj-1

a 1/2aT-L1/2

n+1
(i j

an+1
yj-1

aT+1/2

.n+1
xj-1)

-n+1
- xj-l)

-n+1
j-1/2

-n+l
Fj- /2

-n+1
Gj_1/2

n
j- 1

n
(Pj

n+l
(ji

n+1
= (xj

n+1
= (xj

_n+1 n
- xj-I) Rj

n+ Sj-1) (3.22)

(3. 23)
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- n+1
= (Fj-1/2

-n+1
(Fj-1/2

n -n+l
1j-3/2)/Gj-1/2

(3.24)

n
kj+1/2

n
'j+1/2

with the conditions:
n
0. 5 = 1,

n
K-0. 5 = 0 for alln.

n
A0. 5

n
=0, X-0. 5 = " ? ?t

Finally, the last equation of the system (when j = s) enables us to solve for 6TO. 5.

The result is

s+1 n 
s-1/2 s-1/2 - E

+1 n
-1/2 "s-1/2-

n+1
s-1/2

~n+1i
Es-1/

n
s-3/2

n
2 K s-3/2)

-n+1
s- 1/2)

-n+l
- Ej-1/2

-n+l
- Ej-1/2

n
j-1/2

- 1/2
-n+1

- Rj-1/2)
nj-3/2

-n+l
/Gj-1/2

T = -n
0. 5

(3.25)
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D. Computation of New Coordinates.

W:e can now obtain the corrected values of the tensions in every

link. Thus,

Tn
j-1/2 6 Tn

j-1/2

n + n
j-1/2 j-1/2 6 Tn

0. 5

(3.26)
+ ,n

j-1/2

The corrected values of the coordinates are found using eqs. (3. 15)- but

this time with the tildes suppressed - namely:

xn+l= 2x n _ xn-1

n n-1
2yn -y y

2 21

- Tn

] j-1/2

_n Tn
j j-1/2

+ RnT n
j j+1/2

+ Sn Wn
j+1/2

For solution on an automatic computer it is more convenient to express

eqs. (3. 27) in terms of corrections to be added to the tentative values of

the coordinates. That is,

6 xn +

6 y+l 1
2

S-P 6 Tn

1 j+1/2

+ Rn 6Tn
j j+1/2

+ Sn 6Tn
j j+1/2

Then the corrected coordinates are given by:

n+1 - n+1 + 6 Xn+1

y = yn+ + yn+l
J J J

n+1
yJ

+ Un

+ v.
2

(3. 27)

(3. 28)

(3.29)
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These values are now accepted as final. Moreover, as soon as the values

of _ n+1 (to be used with eqs. (3. 8) for the next time step) have been
j-1/2

computed and stored, the cycle of computations is finished and there is

no further need to retain the values of Pn, Q., Rn, S and Tn
J J j j-1/2"

27
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E. Special Form of Equations for Computing First Time Step.

We assume that the velocity components are zero at each station,

and obtain the initial coordinates from the equations for static equilibrium

of the line. Since x9 and yo = 0, eq. (3. 2) reduces to
J j

(XO O 0 _O . O 0 0
(x - x i) i - xj-1) + y j- 1 ) (j j- 1) = 0 (3. 30)

and, on substituting the expressions (3. 5), we find that the tensions are

subject to the constraint

SF o  o G T. + Ho  0 (3 31)
j-1/2 j-3/2 j-1/2 j-1/2 -1/2 +1/2 j-1/ 2  (3.31)

Comparing this with eq. (3. 9), we see that

So = H0 (3.32)
j-1/2 j-1/2

The system of equations (3. 8) is then solved in the usual way to get the

proper initial tensions T~ 1/2

To obtain tentative values for the coordinates at t = t I , we make use of

their Taylor series expansions about the point t = to, namely:

1 o o 2 -.ox = x + (At)x. + !(At) 2 x. +
j J 2 (3. 34)

0 1 (At) o 2 o +yj y? + (At) yj + _t" +...
S j 2

Taking x? and jO = 0, and substituting eqs. (3. 5) for xO and y, we find
J J J '

28
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i 2 L i0 'o 1/2

1 = x o  1 0o T
j 2 _ 3 j-1/2

0 o
+ +U] j+1/2 Uii

+ j+1/2

(3. 31)
+ V

i

The corrections to the tensions are then determined by the system of

equations (3. 20) in the usual manner. Finally, the corrections to the

coordinates are computed as follows:

6x 1 P 6To_
S 2 L 3 j-1/2

+ Ro To
3 j+1/ 2 J

S 1 - Q6T + S 6T 1
j 2 3 j-1/2 j +1/2

and the corrected coordinates are given by:

11
]j ] j

y. = y. +6y
j 3 j

(3.35)

(3.36)
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4. ANALYSIS OF NUMERICAL STABILITY

In order to obtain a valid solution of the system of partial differential

equations (2. 2), (2. 6), governing the generalized motion of a cable it is

necessary to insure the staoility (in the sense discussed in References 1, 2, 3)*

of the equivalent finite difference system (2. 2), (2. 6), (3. 3), (3. 4). In this

section we will derive the criteria for stability of this system of equations.

We will also show that whereas the system of finite difference equations

(2. 2), (2. 6), (3. 3), (3. 4) is stable for sufficiently small time intervals At,

the system (2. 2), (3. 2), (3. 3), (3. 4) is always unstable. This characteristic

of the latter system has led to the abandonment of this simpler set of equations

in favor of the more difficult nonlinear system (2. 2), (2. 6), (3. 3), (3. 4).

In order to determine the stability of a system of finite difference

equations we study the growth of a small disturbance or perturbation. The

conditions for stability are said to be satisfied if the amplitude of a small

disturbance, introduced at any time, t, in any of the dependent variables,

does not increase exponentially with successive time steps. This condition

may be stated as follows:

If 6F (s, t) and 5F (s, t + At) are values of a variation (or perturbation)

in any of the dependent variables x, y, T in the system, then it is said

to be stable provided 6 F (s, t + At)/ 6F (s, t)l < 1. We introduce

perturbations Ox, 5y, 6T in the independent variables x, y, T, respectively.

For the sake of the stability investigation we further assume that ej is

negligible compared to mj. Eubstituting in equations (2. 2), (2. 6), (3. 3), .and (3. 4)

we obtain the variational system of equations

* References are listed on page 41.
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-j 6x= Tj+1/2 6cos Gj+1/2 - Tj_ 1 / 2 6cos 9 j_-1/2 + cos 0j+1/2 6Tj+1/ 2

- os j-1/2 6 Tj- 1/ 2 - Dj+1/ 2 6sin 0j+1/2 + Dj- 1/2 6sin 0 j-1/2

+ sin 0 j+1/2 6Dj+ 1/ 2 + sin 0j-1/ 2 6Dj_ 1/ 2 ]

iijj6Yj = Tj+ 1 / 2 6sin 0 j+1/2 - Tj_ 1/ 2 6sin 0 j-1/2 + sin j+1/ 26Tj+1 / 2  (4.1)
(4. 1)

2 6Tj-1/ 2
+ [D+ 1/2 6cos 9j+l/ '2 + Dj- 1/ 26cos 9j-1/2

+ cos 0j+1/ 2 6Dj+ 1/ 2 + cos 0j-1/26Dj-1/ 2]

cos 9j+ 1 /26cos 9 j+1/2 + sin 9 j+1/2 6 sin 9 j+1/2 = 0

where,

D6Dj+1/2 =- 2fj+1/ 2 qj+1/21 6 qj+ 1 / 2

mj = mj + mj3 3 3

6Qj+1/2 l= -

5qJ M+1
- c) + ( - c)] 6sin 8j+1/2

1 I sin 9j+1/2 (6xj+1
2

21cos 9 j+1/2 (6j+1

and where,

6cos 9 j+1/2 = (6xj+ 1 - 6xj)/Ij+1/ 2, 6 sin 9j+1/2 = ( 6 yj+ 1 -

6 .- 1/ 2 = (6xn -
i 3

6x'- 1)/At,
y yn-l/2yj = (6y- 6 y- 1)/At;j j

5x.= (xn + 1- 2x n + 6 xn-1) 2 ,
i i i i

6 nj
=(y n +1- 2 6 yn

3j
+ yn- 1 2

+ 6y. NA .
3

- sin j-1/

+1 6j+1
2 + yj)6cos 0j+1/2

+ sj);

byj)/tj+1/2;



We will assume in this analysis that within a small region in the (s, t)

plane the coefficients (Tn, cos 9n, Dn, etc.) of the variational functions vary

only slightly and hence may be treated as constants. We will denote these

simply by T, cos 0, D, etc., omitting the subscripts. A solution of the

system of equations (4. 1) can then be obtained in the form,

6xn = aeij + a n At

6yn = eiBj+anAt
j

5TP = c eiij+anAt

where, a, b, c are real constants and a complex. Substituting in equation (4. 1)

we obtain a system of linear homogeneous equations for the quantities a, b and c

which has a non-trival solution provided the determinant of the coefficients is

identically zero. After some algebraic simplifications the determinant of the

coefficients may be written in the form

F - A sin 0 D' + B sin O cos 0

-D' +A cos 0 F- Bcos0 sin = 0 (4. 2)

cos O sin 9 0

where

A = fl q 2i sin B - (I sin O/At) (1 + cos 3) (1 - 1- 

B = f lqj 2i(k - c) sin B - (1 cos O/At)(1 + cos 3)(1 - 1 )

D' =iD sin B

F = ijhj/(At)2+ 4 T sin2
2
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and where

X= eat, = (.- 2 + -1).

Multiplying the elements of the determinant and simplifying we obtain

Asin9 + Bcos0- F= 0 (4.3)

But, Asin 0 + B cos0 =

f q (2 i sin 3) p - (/At)(1 + cos 8)(1- A-1

where p = (x - c) cos 0 + y sin 0

i. e., the tangential component of the velocity of the cable (relative to the

medium).

Substituting in equation (4. 3) we finally obtain

mi~ 2 +f Iq At [ (1 + cos 8) - pAt (2isin 8)
(4. 4)

+ 4T (At) 2 sin2 B- 2i t IA + Imti - ff i lIt (1 + cos ) =0.

Now, comparing the first and second terms of the coefficient of A we find

that the second term is negligibly small provided 2p At << 1, i. e., the

tangential distance traversed by the cable in one time step is very small

compared with the length of the cable segment. Since this is usually the

case and, at any rate, can always be satisfied by taking the time step

sufficiently small,we will omit this term from our suosequent analysis.

For the case of negligible drag, i. e., f = 0, approximately, we obtain

from equation (4. 4)

X2 + 14 T (sin2 13(At)2/m1 - 2 X + 1 = 0. (4.5)
L s 2

In order for the solution to be stable, the conditions li < 1, X2! < 1

must both be satisfied. But if X1 is a solution of (4. 5) then X2 = 1 is also
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a solution. It follows that the conditions for stability can only be satisfied if

I- 11= 1. Now, let A 1
= cosy + i sin y, 2

= cosy - i sin y =
1

;l

cos 'I

1A + X2
=

< 2. Again from equation (4. 5)

4 T (sin2 13 )(t) 2

2- 2iifi1

We thus obtain the inequality

2 - 4 T (sin2 T)(At)2 /in I2

(4.6)T(sin2 -)(At) 2/m < 1.
2

This requirement is tantamount to the condition,

At< ffT
T velocity of transverse wave

In the more general case, allowing for finite drag, equation (4. 4) may

be reduced to (after neglecting the second term of the coefficient of A),

Fi 1X2 + [f qlIAt(1 + cos B) + 4T(At) 2 sin2  - 2ffil 12]

+ [ii I- f ql At (1 + cos B)] = 0
(4.7)

This equation is more difficult to analyze. However, it is possible to show

that both

conditions

11 S1 and A 21

At <

At <

1 provided the slightly more stringent

2fl
2f ql

, and

(4.8)

are satisfied.

34

12

i. e., 11 + 2 = 2

or

.r I II i 1 I1I I&-~-ICI_- l ~~,~s~-*~a*lr~ ~-.rr~ ~ mCII~- -r)-~-cm



We will now show that the replacement of equation (2. 6) by its

differentiated form (3. 2) results in an unstable system; and that furthermore,

the use of any time interval At no matter how small does not change the

unstable character of the equations. It will suffice to show that this condition

exists in the case when the drag is negligible, i. e., f = 0. The variational

equation corresponding to equation (3. 2) is,

(xj - xj - 1) ( j - 6xj - 1) + (x - j)(6xj - 6xj_-1) + 2 (xj - ij -I) (5j - 6 j - 1)

+ (yj - Yj_ 1)(6j - 6 j-1) + (j - Yj-1)(6 yj - 5yj-1) + 2(yj - yj_l)(6yj - 6yj1_)= 0.

Substituting appropriate values for 6x, 6y and neglecting terms containing f

the determinant equation (4. 2) is replaced by

F 0 cos 9

0 F sin =0

(xj - Xj-1) + ( - xj-1)(t) 2  (y j_l) + (j yj- 1)(At) 2  0 (4.2

+ 2(xj - kij - 1)(1 - A- 1 )At + 2 (yj - j _ 1 )(1 - A- 1 ) At

Multiplying the elements of the determinant we obtain

F cos (x - jl) + ij - _l)(t)2 + 2(Xj - xj-1)(1 - A-1 )At(

+ F sine (y - yj_ 1  +j - j_l)(At) 2 + 2 (Yj - jj-1)(1 - A-1 )At =0

Equating cos = - x sin 0 = Yj - .

kj-1/2 j-1/2

and using the relation (first time derivative of equation (2. 6)),

(xj - xj 1)( j - xi- 1) + (yj - yj 1)(Yj - Yj-1) = 0



as well as equation (3. 2) we obtain in place of equation (4. 9)

F {12t - [kj- xj1)2 + ( j-1) 2 ] (At) 2  = 0.

Thus, in order to satisfy the stability conditions the following two equations

must be satisfied

F = 0 (4. 10)

and

12 -[(j - j12 + (rij - j_1) 2 ](At) 2 = 0. (4.11)

It can be shown that equation (4. 10) is equivalent to the criterion (4. 6) and is

satisfied provided

However, equation (4. 11) can never be satisfied for any finite At, since it

requires that

= - x + (j 2  _ j_-1) 2 ](At)2 /12,

a positive quantity. This conclusion follows as a result of the definition

= A - 2 + -1. If X1 is a root of equation (4. 11), then 2 =  is also a

root of this equation. As before, it follows that for stability I 11 < 1 and

121 = 1 < 1. Hence 11 X2 = 1. Let X1 = cosy + i siny,
1

Y2 =cosy- sin y=r1; then = 2(cosy- 1),or- 4 < : < 0. Thus,

to satisfy the stability requirement $ must lie between 0 and - 4, and

consequently is always negative or zero.

In Figure 3 the vertical velocity of the midpoint of a mooring line is

plotted as a function of time, both as obtained by the use of the stable (valid)
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system of equations (2. 2), (2. 6), (3. 3), (3. 4) and as obtained on the basis

of the unstable (invalid) system (2. 2), (3. 2), (3. 3), (3. 4). It will be

noticed that at approximately 18 seconds the unstable solution rapidly

increases beyond any reasonable limit.

rYYII III I ,, ,IIY I ~ i il 1 "1 ll ldhi , U1 , , I I iiirlllYII llllr i



5. RESULTS AND CONCLUSIONS

A number of solutions \Iere carried out for varying ,ave heights and

periods. Several typical solutions are reproduced here for the information

of the reader. In Figures 4, 5, and 6, plotL are given of the maximum

tension attained along the cable as a function of time for r7ave heights of

6 feet and periods of 12. 5 seconds, 7. 5 seconds, and 5 seconds, respectively.

The periods of the variation in maximum tension correspond to the periods

of the forced vibration, as expected. The maximum tension, however,

increases in amplitude from 32, 250 lb in the case of the 12. 5 sec period

waves to 38, 500 lb for 7. 5 sec period waves to 49, 500 lb when the period

is 5 seconds. In Figure 7 the maximum tension attained for .;7ave heights

of 9 ft and a period of 7. 5 seconds is plotted. The maximum tension is

approximately 60, 000 lb as compared \with 38, 500 lb for the case of 6-ft

waves with the same period.

As an experiment to aid in understanding the effect of the drag caused

by the presence of the fluid on the motion of the cable, one case was carried

out with zero drag (i. e., motion in vacuum). A very interesting motion

pattern was obtained which appears not to possess a periodic character.

This solution is reproduced in Figure 8.

The successful solution of this problem, as well as a number of others,

involving complex nonlinear systems of partial differential equations by the

use of high-speed calculators and finite difference methods constitutes, in

the opinion of the authors, a major advance in applied mathematics.
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Until recently it has oeen considered unfeasiole to obtain numerical

solutions for general systems of partial differential equations with the

exception of a few isolated simple types of equations whose solutions are

known in analytic form. However, the solution of engineering problems,

in almost every major field of science, is expressible in terms of systems

of partial differential equations. Supersonic and subsonic aerodynamics,

nuclear reactor design theory, heat flow, propagation of electromagnetic

and acoustic waves are but a few areas which fall in this category. In the

past engineers have largely depended on experience and on simplified

linearized models of the phenomena under study. In the future, such

simplified theoretical models will oecome less valid - as speeds under

consideration increase, stresses become larger, temperatures higher.

It may also be expected that experimentation will become more costly,

more time consuming, and, at times, unfeasible. It is fortuitous that, at

the same time, a new approach appears to be unfolding for the solution of

many difficult engineering problems - based on the mathematical represen-

tation of the phenomenon and the numerical solution of the resulting

unabridged system of equations by the use of high-speed calculators and

finite difference methods.

The programming of the various phases of this problem was carried

out by Mr. Thomas Mc Fee, of the Applied Mathematics Laboratory, in a

most effective manner. The speed and accuracy with which he accomplished

this phase of the solution were largely responsiole for the success in meeting



the required time schedules. The authors would also Alie to express their

gratitude to Mr. R. T. McGoldrick, of the Structural Mechanics Laboratory,

for proposing this problem andi for a number of helpful discussions; to

Dr. R. Bart, Structural Mechanics Laboratory, for a numoer of ideas

used in setting up the numerical procedure; to Dr. E. H. Kennard, David

Taylor Model Basin, and Dr. R. M. Langer, Bureau of Ships, for helpful

discussions in connection with the definition of the problem; to Dr. Daniel Shanks,

Ap'lie& Mathematics Laooratory, for valuable suggestions; and to

Miss Corinne Lundgren, Applied Mathematics Laboratory, for assistance

in the preparation of the figures.
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