NAVY DEPARTMENT
THE DAVID W. TAYLOR MODEL BASIN
WASHINGTON 7, D.C.

THE WEAKENING EFFECT OF INITIAL TILT AND LATERAL BUCKLING
OF RING STIFFENERS ON CYLINDRICAL PRESSURE VESSELS

by

E. Wenk, Jr. and E.H. Kennard

RESEARCH AND DEVELOPMENT REPORT

December 1956

Report 1073
From: Commanding Officer and Director
To: Chief, Bureau of Ships (312)

Subj: NS731-038, Weakening effect of initial tilt of stiffeners; forwarding of report on

Encl: (1) TMB Report 1073 entitled "The Weakening Effect of Initial Tilt and Lateral Buckling of Ring Stiffeners on Cylindrical Pressure Vessels" - 11 copies.

1. Although the general-instability collapse of ring-stiffened cylindrical shells under external pressure has frequently been accompanied by twisting of the stiffener, it has not been determined whether failure was actually precipitated by twisting weakness of the stiffener. Also, there has been no acceptable theory for the twisting strength of rings. While twisting strongly suggests a form of lateral instability of the ring, the same mode of failure might result from yielding in the stiffener induced by initial axisymmetric tilt. A preliminary analysis confirmed the possibility of this behavior. These studies were subsequently refined and extended to include both axisymmetric and nonsymmetric buckling of the nontilted stiffener. Results of the symmetrical case and a discussion of their practical application are contained in enclosure (1). Results of the nonsymmetrical case will be published in TMB Report 1079 which is now in preparation.

E. E. JOHNSON
By direction

Copy to:
BUSHIPS (420)
(421)
(423)
(440)
(442)
(525)
Chief, BuAer (with encl (1))
Chief, OPNAV, New Dev & Op Eval, OP37 (with encl (1))
Chief, BuOrd (with encl (1))
Chief, BuDocks (with encl (1))
CHONR, Mech Br (438) (with encl (1))
CDR, USNOL (with encl (1))
Supt, USNGF (with encl (1))
DIR, USNRL, Sci Info Div (with encl (1))
DIR, USNEES, Annapolis, Md. (with encl (1))
DIR, USNAES, NAMC, Philadelphia, Pa. Attn: Head, Aero Materials Lab (with encl (1))
CO, USNAMTC, Port Mugu, Calif. (with encl (1))
Manager, USN Aircraft Factory, NAMC, Philadelphia, Pa. (with encl (1))
0-in-C, USN Civ Engin Res & Eval Lab, Port Hueneme, Calif. (with encl (1))
DIR, USNEL, San Diego, Calif. (with encl (1))
CDR, USNOTS, China Lake, Calif. (with encl (1))
Supt, USN Post Grad School, Monterey, Calif. (with encl (1))
CDR, USN Provg Ground, Dahlgren, Va. (with encl (1))
CDR, Mare Island Naval Shipyard (with encl (1))
CDR, New York Naval Shipyard, Materials Lab (with encl (1))
CDR, Norfolk Naval Shipyard, Attn: Underwater Explosion Res (270) (with encl (1))
CDR, Portsmouth Naval Shipyard (with encl (1))
SUPSHIPINSORD, Groton, Conn., Genl Dynamics Corp, Elec Boat Div (with encl (1))
Asst Sec of Air Force (Res & Dev) (with encl (1))
CDR, USAF Inst of Tech, Wright Patterson AFB, Dayton, O. Attn: Chief Appl Mech Gr (with encl (1))
CDR, Hdq, Air Materiel Command, Wright-Patterson AFB, Dayton, O. (with encl (1))
CDR, Hdq, Air Res & Dev Command, Baltimore, Md. Attn: RDMPE (with encl (1))
Chief, Res & Dev, Dept of Army (with encl (1))
CO, US Engr Res & Dev Lab, Fort Belvoir, Va. (with encl (1))
DIR, Tech Info Br, US Army Provg Gr, Aberdeen, Md. (with encl (1))
Chief, AFSWP, Washington, D.C. (with encl (1))
ASTIA, Dayton, O. (with 2 copies of encl (1))
Sec of Defense, Res & Dev, Tech Library (with encl (1))
Dir of Res, USAEC (with encl (1))
Office of Tech Services, Dept of Commerce (with encl (1))
DIR, Langley Aero Lab, Structures Div, Langley Field, Va.
(with encl (1))
NACA, Loads & Structures Div (with encl (1))
DIR, Natl BuStand, Attn: Dr. W.H. Ramberg (with encl (1))
Com on Undersea Warfare, NRC (with encl (1))
American Bureau of Shipping, New York, N.Y. (with encl (1))
Armour Research Fdtn, Chicago, Ill. (with encl (1))
Babcock & Wilcox Co., Res & Dev Dept, Alliance, O.
(with encl (1))
Engineering Societies Library, New York, N.Y. (with encl (1))
DIR, Forest Products Lab, Madison, Wisc. (with encl (1))
General Dynamics Corp, Electric Boat Div, Groton, Conn.
(with encl (1))
Gibbs & Cox, New York, N.Y. (with encl (1))
Applied Physics Lab, Johns Hopkins Univ, Silver Spring, Md.
(with encl (1))
CO, USN Admin Unit, MIT, Cambridge, Mass. (with encl (1))
Pressure Vessel Res Com, New York, N.Y. (with encl (1))
SNAME, New York, N.Y. (with encl (1))
DIR, ETT, STT, Hoboken, N.J. (with encl (1))
Admin, Webb Inst of Nav Arch, Long Island, N.Y. (with encl (1))
Prof. Lynn S. Beedle, Fritz Engin Lab, Lehigh Univ,
Bethlehem, Pa. (with encl (1))
Prof. P.P. Bijlaard, Cornell Univ, Ithaca, N.Y. (with encl (1))
Prof. R.L. Bisplinghoff, Dept. of Aero Engin, MIT,
Cambridge, Mass. (with encl (1))
Prof. H.H. Bleich, Dept. of Civ Engin, Columbia Univ,
New York, N.Y. (with encl (1))
Mr. L.P. Zick, Chicago Bridge & Iron Co., Chicago, Ill.
(with encl (1))
Mr. W.R. Burrows, Standard Oil Co. of Ind., Whiting, Indiana
(with encl (1))
Dr. F.H. Clauser, Dept. of Aero, Johns Hopkins Univ,
Baltimore, Md. (with encl (1))
Prof. Herbert Deresiewicz, Dept of Civ Engin, Columbia Univ,
New York, N.Y. (with encl (1))
Prof. T.J. Dolan, Dept. of Theoretical & Appl Mech,
Univ of Illinois, Urbana, Ill. (with encl (1))
Prof. Lloyd Donnell, Dept of Mech, Illinois Inst of Tech,
Chicago, Ill. (with encl (1))
Prof. A.C. Eringen, Div of Engin Sci, Purdue Univ,
Lafayette, Ind. (with encl (1))
Prof. J.H. Evans, Dept of Nav Arch & Mar Eng, MIT, Cambridge, Mass. (with encl (1))
Prof. W. Flugge, Dept of Mech Engin, Stanford Univ, Stanford, Calif. (with encl (1))
Mr. Martin Goland, Southwest Res. Inst, San Antonio, Texas (with encl (1))
Prof. J.N. Goodier, Dept of Mech Engin, Stanford Univ, Stanford, Calif. (with encl (1))
Prof. L.E. Goodman, EES, Univ of Minnesota, Minneapolis, Minn. (with encl (1))
Mr. F.V. Hartman, Aluminum Co. of America, Pittsburg, Pa. (with encl (1))
Prof. R.M. Hermes, Univ of Santa Clara, Santa Clara, Calif. (with encl (1))
Mr. Harold O. Hill, Fab Steel Const, Bethlehem Steel Co, Bethlehem, Pa. (with encl (1))
Prof. P.G. Hodge, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y. (with encl (1))
Prof. N.J. Hoff, Head, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y. (with encl (1))
Dr. Marshall Holt, Aluminum Res Lab, New Kensington, Pa. (with encl (1))
Prof. W.H. Hoppmann, II, Dept of Mech Engin, Johns Hopkins Univ, Baltimore, Md. (with encl (1))
Prof. Bruce G. Johnston, Univ of Michigan, Ann Arbor, Mich. (with encl (1))
Prof. J. Kempner, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y. (with encl (1))
Prof. H.L. Langhaar, Dept of Theoretical & Appl Mech, Univ of Ill, Urbana, Ill. (with encl (1))
Prof. George H. Lee, Dir of Res, Rensselaer Polytechnic Inst, Troy, N.Y. (with encl (1))
Prof. Aris Phillips, Dept of Civ Engin, Yale Univ, New Haven, Conn. (with encl (1))
Mr. Henry Liessenberg, Stress Res Eng, Combustion Engin, Inc., New York, N.Y. (with encl (1))
Mr. Frank L. Maker, Engin Specialist, Concord, Calif. (with encl (1))
Prof. R.D. Mindlin, Dept of Civil Engin, Columbia Univ, New York, N.Y. (with encl (1))
Mr. James J. Murphy, Sec Eng, Dev Div, M.W. Kellogg Co, New York, N.Y. (with encl (1))
Dr. William A. Nash, Dept of Engin Mech, Univ of Fla,
Gainesville, Fla. (with encl (1))
Prof. N.M. Newmark, Dept of Civ Engin, Univ of Ill,
Urbana, Ill. (with encl (1))
Prof. W. Prager, Chairman, Phys Sci Council, Brown Univ,
Providence, R.I. (with encl (1))
(with encl (1))
Dr. R.P. Petersen, Dir, Appl Phy Div, Sandia Lab,
Albuquerque, New Mex. (with encl (1))
Mr. Cyril O. Rhys, Sr., Independent Consultant, Hampton Hall,
Cranford, N.J. (with encl (1))
Mr. G.J. Schoessow, Babcock & Wilcox Co, Atomic Energy Div,
Akron, O. (with encl (1))
Mr. W. Spraragen, Dir, Welding Res Council, New York, N.Y.
(with encl (1))
Prof. R.J. Sturm, Alabama Polytech Inst, Auburn Res Found &
Engin Exp Sta, Auburn, Ala. (with encl (1))
Dr. F.K. Teichmann, Dept of Aero Engin, New York, N.Y.
(with encl (1))
Prof. S.P. Timoshenko, School of Engin, Stanford Univ,
Stanford, Calif. (with encl (1))
Prof. Enrico Volterra, Dept of Mech, Rensselaer Polytech Inst,
Troy, N.Y. (with encl (1))
Prof. E.O. Waters, Yale Univ, New Haven, Conn. (with encl (1))
Mr. D.B. Wesstrom, Des Div, Engin Dept, E.I. du Pont de Nemours
& Co., Wilmington, Del. (with encl (1))
Prof. Dana Young, Yale Univ, New Haven, Conn. (with encl (1))
Dr. E. Wenk, Jr., Dept Engin Mech, Southwest Res Inst,
San Antonio, Tex. (with encl (1))
ALUSNA, London, England (with encl (1))
BJSM (NS) (IEP B47) (with 3 copies and 9 copies of encl (1))
CJS (with 3 copies of encl (1))
THE WEAKENING EFFECT OF INITIAL TILT AND LATERAL BUCKLING OF RING STIFFENERS ON CYLINDRICAL PRESSURE VESSELS

by

E. Wenk, Jr. and E.H. Kennard

December 1956

Report 1073
NS731-038
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>FIRST PRINCIPLES</td>
<td>2</td>
</tr>
<tr>
<td>LOADS ON THE T-STIFFENER</td>
<td>4</td>
</tr>
<tr>
<td>TWISTING FROM INITIAL TILT, FIRST APPROXIMATION</td>
<td>6</td>
</tr>
<tr>
<td>SIMPLIFIED FORMULAS, FIRST APPROXIMATION</td>
<td>9</td>
</tr>
<tr>
<td>STIFFENING RINGS ON THE OUTSIDE OR OF OTHER SHAPES</td>
<td>10</td>
</tr>
<tr>
<td>WEAKENING EFFECTS OF INITIAL TILT</td>
<td>11</td>
</tr>
<tr>
<td>TWISTING FROM INITIAL TILT, SECOND APPROXIMATION</td>
<td>12</td>
</tr>
<tr>
<td>AXISYMMETRIC ELASTIC BUCKLING</td>
<td>14</td>
</tr>
<tr>
<td>STRENGTH OF CYLINDERS WITH INSIDE VERSUS OUTSIDE STIFFENERS</td>
<td>15</td>
</tr>
<tr>
<td>APPLICATION TO STIFFENERS ON CONICAL SHELLS</td>
<td>16</td>
</tr>
<tr>
<td>EVALUATION</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX - VALIDITY OF FIRST APPROXIMATION</td>
<td>20</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
</tbody>
</table>
NOTATION

A_f Area of T-stiffener flange
A_w Area of T-stiffener web
A_b Area of faying flange of H- or I-stiffener
A, B, C, D Arbitrary constants
b Faying width of stiffener (length of contact between shell and stiffener)
d Depth of web
e Eccentricity of radial loads on stiffener, due to initial tilt
E Young's modulus
E_s Effective modulus
F Radial force per unit circumference imposed on stiffener and associated shell plating, positive inward
F Radial force per unit circumference imposed on T-stiffener alone
F Radial force per unit circumference acting in web at distance z from shell
F_{cr} Value of F that causes buckling of internal stiffener
h Thickness of shell
I_w Moment of inertia of web per unit circumferential length about axis normal to radius and to cylinder axis
I_{xx} Moment of inertia of stiffener cross section about radial axis
I_f Moment of inertia of flange of T about radial axis
m See Equation [39]
$M(z), M_t$ Twisting moment per unit circumference tending to rotate elements of stiffener
M_d Twisting moment per unit circumference at juncture of web and flange
M_0 Twisting moment per unit circumference at juncture of web and shell
p Pressure acting on cylindrical shell
p_{cr} Pressure at which axisymmetric buckling occurs in internal stiffeners
Q_0 Radial shear force at stiffener per unit pressure
\(r \)
Stiffness ratio, defined in Equation [48]

\(R \)
Radius of cylinder measured to median of plating

\(R_f \)
Radial distance of flange; see figure

\(t \)
Thickness of web

\(u(s) \)
Additional elastic axial displacement of web

\(u_0(s) \)
Initial axial displacement of web

\(w \)
Width of outstanding flange

\(y \)
Distance from \(xx \) (radial) axis to any circumferential fiber in stiffener

\(z \)
Radial distance, positive inward, measured from inner surface of shell

\(\alpha, \beta, \gamma, \delta \)
Functions of \(A_f, A_w, bh, \) etc.

\(\theta \)
Angle of initial tilt

\(\phi \)
Rotation of flange

\(\nu \)
Poisson's ratio

\(\sigma_b \)
Circumferential stress in stiffener due to in-plane bending

\(\sigma_c \)
Membrane stress in stiffener

\(\sigma_f \)
Maximum circumferential bending stress in flange

\(\sigma_r \)
Uniform radial stress in web

\(\sigma_w \)
Maximum radial bending stress in web

\(\sigma_y \)
Yield stress of material
ABSTRACT

The lateral stability of a T stiffening ring on a cylinder under external pressure is investigated analytically for the case of axisymmetric deformation only. Both failure by yield due to initial tilt of the T and lateral buckling of the ideal T are considered. The practical application of the results is discussed.

INTRODUCTION

Although the general-instability collapse of ring-stiffened cylindrical shells under external pressure has frequently been accompanied by a twisting or tripping action of the stiffener, it has not been possible to determine whether the failure was actually precipitated by twisting weakness of the stiffener. Moreover, any such evaluation has thus far been without benefit of an acceptable theory for the twisting strength of rings. It was suggested by the senior author that, while the tripping strongly suggested a form of lateral instability of the ring, the same mode of failure might possibly result from yielding in the stiffener induced by initial, axisymmetric tilt. A preliminary analysis following a general line of inquiry into weakening effects of imperfect shape of submarine hulls confirmed the possibility of this behavior. These studies have subsequently been refined and extended to include both axisymmetric and nonsymmetric buckling of the nontilted stiffener. Results of the symmetrical case are presented in this report; results of the nonsymmetrical case will be presented in Reference 1.*

From these analyses, it appears that tripping of stiffeners by purely elastic action is unlikely in practical cases because prior failure of the structure in some other mode would intervene at lower pressures. However, the initial tilt can definitely introduce additional circumferential stresses in the flange of T-stiffeners and radial stresses in the web at its attachment to the cylinder. Thus, if these stresses combined with membrane stresses and with local effects of initial out-of-roundness became excessive, the yielding which results may serve as a trigger for ring tripping accompanied by a general-instability mode of collapse of the entire cylinder.

It has also been found by this analysis that the resistance of rings to such premature tripping failure can be improved most effectively by increasing the web thickness or flange breadth.

*References are listed on page 21.
FIRST PRINCIPLES

We shall consider first the manner in which ring stiffeners on cylindrical pressure vessels are loaded and how initial tilt may influence their behavior. Under external hydrostatic pressure a perfect cylindrical shell develops a membrane deformation homogeneous along its length. Ring stiffeners used to improve the buckling strength interrupt this uniform deformation and develop local bending and shear stresses in the shell, by which, through mutual interaction, the stiffener itself is loaded radially by the shell.

If the stiffener is perfectly symmetrical, the radial load squeezes it uniformly to a smaller radius, with no bending in or out of its plane. If, however, the ring stiffener is initially tilted, the plane of action of the radial load forces does not pass through the centroids of the ring cross sections. Since the load force F^* on an element is balanced by a component of the compressive circumferential force in the curved ring and since this latter force may, to a first approximation, be assumed to act at the centroid, by virtue of this eccentricity e (as shown in Figure 1) there will be a twisting moment M_t per circumferential inch tending to rotate the elements of the ring. The forces F can be determined directly from von Sanden and Gunther’s analysis of ring-stiffened cylinders.\(^3\)

If the ring were simply supported at its junction with the shell, its elements would rotate through an angle ϕ without appreciable distortion under the action of the moment M_t^*.

*\(F\) in this report is the same as \(q\) in Equation [8a] in Reference 2.
Also, circumferential stresses σ_f are induced which are proportional to the distance from the centroid and which may be tensile or compressive depending on whether the fiber is displaced by the rotation to a larger or smaller radius; see Figure 2.

This behavior is described by Timoshenko4 as:

$$\phi = \frac{M_t R^2}{EI_{xx}} \quad \text{and} \quad \sigma_f = \frac{M_t R y}{I_{xx}}$$

where R is the centroidal radius of the ring,
E is Young's modulus,
I_{xx} is the areal moment of inertia of the cross-section of the ring about a radial axis (or the axis of symmetry of the cross section), and
y is the distance from the xx-axis to any circumferential fiber.

The analysis shows that the torsional rigidity of the ring plays no role; the elements of the ring are actually bent in planes parallel to the axis of the cylinder.

Because the stiffener is attached to the shell, however, free rotation is obviously prevented. Analytical estimates indicate that the cylinder is relatively very stiff; hence, to a first approximation, the web may be considered to be clamped at its junction with the shell. The web must therefore bend somewhat as a cantilever, and significant bending stresses are thereby produced in the web; see Figure 3. An adequate analysis must include analysis of the bending of the web.

Figure 2 - Elastic Behavior of Circular Rings Subjected to Uniform Symmetrical Twisting Moments

Under action of moment M_t, the ring cross section rotates through angle ϕ and circumferential fibers undergo tensile or compressive strains as indicated by letters T and $C.$

3
Only axisymmetric deformations will be treated in this report. If the web were thin enough, it could buckle "locally" under sufficient load, with only a relatively small rotation of the flange. It will be assumed that such local buckling is prevented by giving sufficient thickness to the web and, also, that a similar local buckling of the flange itself is prevented by sufficient thickness of the flange.

Quite apart from the rotation imparted by initial imperfections, a similar twisting action can occur even in a perfect ring by a quasi-torsional instability of the stiffener. In some respects, this is similar to torsional or lateral buckling of laterally loaded beams. It is important, incidentally, not only as a mode of failure by itself but also with respect to the initial tilt problem, because the approach to buckling pressure \(P_{cr} \) may give rise to an amplification of tilt-induced stresses somewhat according to the relationship

\[
\frac{1}{1 - \frac{P}{P_{cr}}} \quad [2]
\]

This buckling of the entire ring may be either in a symmetric or nonsymmetric mode, although with outside stiffeners only the nonsymmetric may occur.

It is also possible for the flange or web to undergo purely local buckling with or without axial symmetry. For purposes of engineering analysis, these elements may be considered as straight plates of length \(2\pi R \), carrying axial compressive thrust of magnitudes given by Equations [8a, b]. The half flange could be treated approximately by assuming its long edges respectively clamped and free, and the web treated with both edges clamped. No further elaboration of this mode of buckling is given here, except in the numerical examples at the end of the paper.

LOADS ON THE T-STIFFENER

We first determine the radial loads on the T-stiffener and the distribution of internal thrust and radial loads which are correspondingly evoked. Consider a T-shaped stiffening ring on the inside of a cylindrical shell of inside radius \(R \); see Figure 3. External pressure
on the shell will give rise to a radial load on the ring at the point of attachment to the shell of F pounds per circumferential inch. Here

$$F = (2Q_0 + b)p$$ \[3\]

where Q_0 is the radial shear force per unit circumferential length per unit pressure and b is the faying width of the stiffener. The quantity F may be computed directly from equations of von Sanden and Gunther.3

Note, however, that the cross section considered here includes both the stiffener and a portion of the shell plating of a width equal to the faying width, which for the tee is the web thickness t, i.e., $b = t$. Assuming that the radial force is resisted by circumferential thrust RF developed uniformly over the cross section, that portion \bar{F} of radial load taken by the T-stiffener alone is

$$\bar{F} = \delta F$$ \[4\]

where

$$\delta = \frac{A_f + A_w}{A_f + A_w + bh}$$ \[5\]

A_f is the area of the T-stiffener flange,
A_w is the cross-sectional area of the web, and
h is the thickness of the shell.

This assumption regarding uniform distribution of circumferential thrust over the cross section is believed valid if the analysis is confined to relatively thin rings where the curvature of all circumferential fibers is approximately the same. By equilibrium considerations, this requires a uniform rate of decrease of the radial force along the web, from cylinder to flange.

The total circumferential thrust on the web and flange, respectively, can then be written as

$$\alpha RF \text{ and } (1-\alpha) RF$$ \[6a, b\]

where

$$\alpha = \frac{A_w}{A_f + A_w}$$ \[7\]

Further calculation is simplified by relating the thrust to the quantity F rather than \bar{F}, the components in web and flange then being respectively

$$\beta RF \text{ and } \gamma RF$$ \[8a, b\]
where
\[\beta = \frac{A_w}{A_f + A_w + bh} \]
\[[9a] \]

and
\[\gamma = \frac{A_f}{A_f + A_w + bh} \]
\[[9b] \]

At any point on the web at distance \(z \) from the shell, the thrust on the entire portion of the ring that lies beyond this point can be regarded as evoked by a radial force, of magnitude \(F(z) \) pounds per circumferential inch, that acts at that point in the web. \(F \) must be approximately a linear function of \(z \), and from equilibrium considerations \(F \) then varies from a value of \(\delta F \) at \(z = 0 \) to \(\gamma F \) at \(z = d \) at the flange; or from the relationships [5] and [9]
\[\overline{F} = F(\delta - \beta \frac{z}{d}) \]
\[[10] \]

TWISTING FROM INITIAL TILT, FIRST APPROXIMATION

If the T-ring is assumed to be "perfect," true buckling instability may occur. If it is imperfect, however, the radial loading \(F \) develops through the initial tilt a deformation of the sort shown in Figure 3. Because of the simplicity of an approximate analysis we treat the imperfect case first; this case is incidentally found to be of the greater practical significance. The initial tilt of the web is assumed to be through an axisymmetric angle \(\theta \); other imperfections of shape are neglected. For purposes of analysis, the ring is taken of T-section, on the inside of the cylinder, but modifications required for other shapes, or when it is on the outside, will be indicated.

Referring to a single typical transverse cross section, Figure 3, let \(u_0 \) be the initial axial displacement and \(u \) an additional elastic displacement at any point in the web, both \(u_0 \) and \(u \) being functions of \(z \). In addition to the radial force \(\overline{F} (z) \), there will be a moment of \(M \) inch-pounds per inch circumference. The assumed positive senses of \(M, \overline{F}, u_0, \) and \(u \) are shown in the figure.

From rotational equilibrium of an element \(ds \)
\[dM + \overline{F} \frac{d}{ds} (u_0 + u) ds = 0 \]
\[[11a] \]
or
\[\frac{dM}{dz} + \overline{F} \frac{d}{dz} (u_0 + u) = 0 \]
\[[11b] \]
Here

\[M = E_s l_w \frac{d^2 u}{ds^2} \tag{12} \]

\[E_s = \frac{E}{1 - \nu^2} \tag{13} \]

\[l_w = \frac{t^3}{12} \tag{14} \]

where \(E \) is Young's modulus,
\(\nu \) is Poisson's ratio, and
\(t \) is the web thickness.

Equation \([12]\) implies a treatment of the web by the theory of thin plates, an assumption believed of sufficient accuracy.

If desired, equilibrium of the differential element in a radial direction may be supposed to be preserved by fictitious radial load forces distributed over the element.

From Equations \([10]\), \([11]\), and \([12]\), we obtain a differential equation for \(u \):

\[E_s l_w \frac{d^3 u}{ds^3} + F \left(\delta - \rho \frac{u}{d} \right) \left(\frac{du_0}{ds} + \frac{du}{ds^2} \right) = 0 \tag{15} \]

This equation for \(u \) can be integrated, at least numerically, when the initial deflection \(u_0 \) is known. In this report, however, only the simple case will be considered in which the web is straight and initially inclined to the radius by the small angle \(\theta \) so that

\[u_0 = \theta s \tag{16a} \]

\[\frac{du_0}{ds} = \theta \tag{16b} \]

In practical cases, the result should be conservative if \(\theta \) is taken large enough to include all points in the web.

Two boundary conditions are that, at \(s = 0 \) where the web is clamped to the shell,

\[u = \frac{du}{ds} = 0 \tag{17} \]
A third condition is furnished by the continuity of web and flange. Let \(M_d \) denote the value of \(M \) at \(z = d \). Then a moment equal to \(-M_d\) will act symmetrically on the flange and must suffice to rotate the flange through an angle equal to \(du/ds \) at \(z = d \). (In Figure 3 the positive direction for \(M_d \) is indicated; the actual direction is opposite.) Recalling Equation [1] for the twisting of rings subjected to uniformly distributed couples, we have at the boundary

\[
\left(\frac{du}{ds}\right)_{z = d} = -\frac{M_d R_f^2}{E I_f}
\]

[18]

Here \(I_f \) is the moment of inertia of the flange cross section about a radial axis.

To simplify analysis, the elastic deflection \(u \) will be assumed in this section to be small compared with \(u_0 \). This is shown in Appendix A to be valid if \(6d^2F /Et^3 \) is small relative to unity. Then \(du/ds \) can be dropped from [15] in comparison with \(du_0/ds \) or \(\theta \), and the equation can be readily integrated. Integrating twice,

\[
E_s I_w \frac{d^2u}{ds^2} + \theta F \left(\frac{\delta \beta}{2} - \frac{\beta a^2}{6d} \right) = M_0 z + \bar{M}_0
\]

[19]

where \(M_0 \) and \(\bar{M}_0 \) represent the first and second constants of integration.

From the conditions [12] and [17] at the boundary \(z = 0 \) we find

\[
\bar{M}_0 = 0 \text{ and } M_0 = M |_{z = 0}
\]

[20]

Actually, from [12]

\[
M = E_s I_w \frac{d^2u}{ds^2} = M_0 - \theta F \left(\frac{\delta \beta}{2} - \frac{a^2}{d} \right)
\]

[21]

which at the flange \(z = d \) has the value \(M_d \) such that

\[
M_d = M_0 - \theta dF \left(\delta - \frac{\beta}{2} \right)
\]

[22]

By substituting this expression for \(M_d \) in [18] and using [19] with \(z = d \), it is found that

\[
M_0 = \frac{1}{2} \theta dF \frac{2(\delta - \beta/2) R_f^2 I_w + (\delta - \beta/3)(1 - \nu^2) dI_f}{R_f^2 I_w + (1 - \nu^2) dI_f}
\]

[23]
and

\[M_d = -\frac{1}{2} \theta d^2 F \left(\delta - \frac{2B}{3} \right) \frac{(1 - \nu^2)}{R_f^2 I_w + (1 - \nu^2) dl_f} I_f \quad [24] \]

From Equation [21] we note that

\[\frac{dM}{dz} = -\theta F \left(\delta - \frac{\beta z}{d} \right) \quad [25] \]

so that with \(\delta > \beta \) and \(z < d \), \(dM/dz \) is always negative. Hence, the variation of \(M \) with \(z \) is monotonic and the greater numerical bending moment \(M_{\text{max}} \) is the greater of \(|M_0| \) and \(|M_d| \).

The maximum radial bending stress in the web is thus

\[\sigma_w = \frac{t}{2} \frac{M_{\text{max}}}{I_w} = \frac{6M_{\text{max}}}{t^2} \quad [26] \]

The maximum circumferential bending stress at one corner of the flange, \(\sigma_f \), is

\[\sigma_f = \frac{1}{2} \frac{w}{I_f} R_f |M_d| \quad [27] \]

where \(w \) is the flange width.

SIMPLIFIED FORMULAS, FIRST APPROXIMATION

For an engineering type of analysis, simplified formulas may be obtained by noting that in [23] and [24] \((1 - \nu^2)\) differs only slightly from unity and that in most cases \(\delta \) is almost unity and considerably larger than \(\beta \), so that \((1 - \nu^2)\), \((\delta - 2\beta/3)\), \((\delta - \beta/3)\), and \((\delta - \beta/3)\) may be replaced by unity. Then, for simple T-stiffeners,

\[M_0 = \frac{1}{2} \theta d^2 F \frac{2R_f^2 I_w + dl_f}{R_f^2 I_w + dl_f} = \theta d^2 F \frac{R_f^2 t^3 + 6 dl_f}{R_f^2 t^3 + 12 dl_f} \quad [23a] \]

and

\[M_d = -\frac{1}{2} \theta d^2 F \frac{I_f}{R_f^2 I_w + dl_f} = -\theta d^2 F \frac{6 I_f}{R_f^2 t^3 + 12 dl_f} \quad [24a] \]
By inspection, \(|M_0| > |M_d|\); thus the maximum radial bending stress in the web, Equation [26], becomes

\[
\sigma_w = \frac{6\theta d F}{t^2} \frac{R_f^2 t^3 + 6f I_d}{R_f^2 t^3 + 12d I_f}
\]

[26a]

and the maximum circumferential stress in the flange becomes

\[
\sigma_f = \frac{3\theta d^2 F}{R_f^2 t^3 + 12d I_f} R_f^2 t^3 + 12d I_f
\]

[27a]

These expressions agree closely with the results of preliminary analysis used up to now in the evaluation of submarine model strength at the Taylor Model Basin.

STIFFENING RINGS ON THE OUTSIDE OR OF OTHER SHAPES

For rings outside of the cylinder, the derivation may remain unchanged except that \(F\) is replaced by \(-F\) in all equations where it occurs. The actual directions of \(M_0\) and \(M_d\) are thereby reversed from their directions with inside rings, the assumed positive directions of these moments remaining as for inside rings.

For rings of rectangular cross section without flanges, the equations can be used with sufficient accuracy by substituting \(A_f = 0\) and \(I_f = 0\). Then, from Equations [5], [9a], and [23],

\[
M_0 = \frac{\theta d F}{2} \frac{A_w}{A_w + h}
\]

[28]

A certain error, however, is present in this formula because rectangular rings are relatively much thicker than the web of a T. The change of the \(R\) of outer fibers, which is the cause of the resisting moment in the flange, has a similar effect in the web; this is negligible in ordinary webs but considerably larger in a rectangular ring.

For rings of H or I cross section, the results of Equations [23], [24], [26], and [27] may be applied to the outstanding flange and web, regarded together as a T-section. In this case, however, the faying flange participates in resisting the thrust produced by the radial forces \(F\); this action, for obvious reasons, may be accommodated simply by defining, instead of with Equations [5] and [9a]

\[
\delta = \frac{A_f + A_w}{A_f + A_w + A_b + bh}
\]

[29]
and

\[
\beta = \frac{A_w}{A_f + A_w + A_b + bh} \tag{30}
\]

where \(A_b\) is the area of the faying flange.

The simplified formulas \([26a]\) and \([27a]\) may be adapted to this case by adding a factor \(\delta\) on the right side of those equations.

WEAKENING EFFECTS OF INITIAL TILT

In practical cases, the stresses computed by the foregoing analysis are seldom found to be very high, even at the design collapse pressure of the stiffened cylinder. Nevertheless they may play an important role in the failure process.

The senior author and S. Kendrick at the Naval Construction Research Establishment, Rosyth, Scotland, independently had pointed out that the combination of stresses in the ring might be important in considering the weakening effects of out-of-roundness in cylinders because the yield stress would thus be reached sooner in the stiffener. Similar effects will occur in tripping.

The total stress at any point in the flange can be written

\[
\sigma = \sigma_c + \sigma_b + \sigma_f \tag{31}
\]

where \(\sigma_c\) is membrane stress, \(\sigma_b\) is in-plane bending stress, and \(\sigma_f\) is tilt-induced stress; all are in the circumferential direction computed for the stiffener flange, at pressure \(p\). As a failure criterion for the stiffener flange, it is suggested that at \(p = p_{\text{design max}}\)

\[
\sigma \leq \sigma_y \tag{32}
\]

where \(\sigma_y\) is the yield strength of the material. Here, \(\sigma_f\) is computed from Equation \([27]\) and

\[
\sigma_c = \frac{RF}{A_f + A_w + A_b + bh} \tag{33}
\]

neglecting the Lamé thick-ring effects. This latter quantity is readily computed in terms of geometry alone, whereas both \(\sigma_f\) and \(\sigma_b\) depend on the magnitude of initial imperfections either actually present or assumed to exist to the degree permitted by pressure vessel codes.

It may be argued that the design criterion proposed above, \([31]\) and \([32]\), is unduly conservative in that failure is implied as occurring at the pressure at which the stress at one corner of the flange reaches yield. Probably no such extreme consequence would develop.
At only slightly higher pressures, however, the area of yielding would propagate into the flange until plastic buckling of the flange as a plate would precipitate stiffener tripping. No further elaboration on this aspect of failure is believed warranted until some experimental verification is obtained of the purely elastic phenomena associated with initial tilt. Application is left to the judgment of the designer.

For the stiffener web, consideration must be given to both radial and circumferential stress. In the radial direction, there is a bending stress σ_w given by Equation [26] and a compressive stress σ_r, due to axisymmetric deformation from effects of pressure where

$$\sigma_r = \frac{F}{t}$$

[34]

The compressive circumferential stress σ_c is given by [33].

With this biaxial state of stress, for the side of the web on which the bending stress is tensile, the von Mises criterion for yielding becomes

$$(\sigma_w - \sigma_r)^2 + \sigma_c^2 + \sigma_c (\sigma_w - \sigma_r) \leq \sigma_y^2$$

[35]

As before, this expression only defines the condition when yielding first begins; it is thus a crude device for predicting failure pressure and is certainly subject to refinement.

TWISTING FROM INITIAL TILT, SECOND APPROXIMATION

To investigate purely elastic buckling, the assumption that u can be neglected compared with u_0 must be discarded and a better approximation made. If u is not omitted, Equation [15] can only be solved numerically because of the term $\beta z/d$. To obtain an approximate solution in terms of ordinary functions, but keeping u, the factor $(\delta - \beta z/d)$ will be replaced by a constant. As z increases in value from 0 to d, the term $\beta z/d$ averages $\beta/2$; this will be taken as a satisfactory effective value.

Equation [15] is then replaced by

$$E_s I_w \frac{d^3 u}{dz^3} + F(\delta - \beta/2) \left(\frac{du_0}{dz} + \frac{du}{dz} \right) = 0$$

[36]

As before, it will be assumed that $u_0 = \theta z$. Then the differential equation takes the form

$$B \frac{d^3 u}{dz^3} + C \frac{du}{dz} + D = 0$$

[37]
where \(B = E_s I_w, \ C = F (\delta - \beta/2), \ D = F \theta (\delta - \beta/2). \) The solution takes the form

\[
 u = a_1 + a_2 \cos mz + a_3 \sin mz + a_4 z
\]

where \(a_1, a_2, \) and \(a_3 \) are arbitrary constants of integration, \(a_4 = -D/C, \) and

\[
m = \sqrt{\frac{C}{B}} = \sqrt{\frac{F (\delta - \beta/2)}{E_s I_w}}
\]

After satisfying the two boundary conditions at \(z = 0, \) the solution takes the form:

\[
 u = -\theta (z - \frac{\sin mz}{m}) - a_1 (\cos mz - 1)
\]

Then

\[
 \frac{du}{dz} = -\theta (1 - \cos mz) + a_1 (m \sin mz)
\]

and

\[
 M = E_s I_w \frac{d^2 u}{dz^2} = -E_s I_w m (\theta \sin mz - ma_1 \cos mz)
\]

Proceeding with the use of [18] and [41], we find

\[
a_1 = \frac{\theta - \theta \cos md - M_d R_f^2 / EI_f}{m \sin md}
\]

Then

\[
 M_d = -\theta EI_w m \frac{(1 - \cos md) I_f}{(1 - v^2) I_f \sin md + mR_f^2 I_w \cos md}
\]

and

\[
 M_0 = \theta E_s I_w m \frac{(1 - v^2) I_f (1 - \cos md) + mR_f^2 I_w \sin md}{(1 - v^2) I_f \sin md + mR_f^2 I_w \cos md}
\]

Values of \(\sigma_{\text{max}} \) can be calculated as before from these values of \(M_0 \) and \(M_d. \)

For rings on the outside of the cylinder, \(F \) is replaced by \(-F\) in Equation [36].

It is convenient, however, to let \(F \) continue to stand for the numerical value of \(F \) in Equation [39], so that \(m \) still represents a real number. Then in the solution, \(\sin md \) and
\(\cos m \theta \) are found to be replaced by corresponding hyperbolic functions so that

\[
M_d = \frac{\theta E I_w m}{(1 - \nu^2) I_f \sinh m \theta + m R_f^2 I_w \cosh m \theta} \frac{(\cosh m \theta - 1) I_f}{(1 - \nu^2) I_f \sinh m \theta + m R_f^2 I_w \cosh m \theta}
\]

[46]

and

\[
M_o = -\frac{\theta E_s I_w m}{(1 - \nu^2) I_f (\cosh m \theta - 1) + m R_f^2 I_w \sinh m \theta}{(1 - \nu^2) I_f \sinh m \theta + m R_f^2 I_w \cosh m \theta}
\]

[47]

It will be noted that for inside rings \(M_d \) is negative and \(M_o \) is positive, whereas for outside rings the signs are reversed.

More accurate values for the effects of initial tilt can be obtained by using Equations [44] to [47] for the moments \(M_d \) and \(M_o \) instead of Equations [23] and [24]. Possible nonlinear effects are thereby included.

AXISYMMETRIC ELASTIC BUCKLING

According to Equations [44] and [45] \(M_d \) and \(M_o \) became infinite when

\[
-\frac{\tan m \theta}{m \theta} = \frac{R_f^2 I_w}{(1 - \nu^2) I_f} = r
\]

[48]

This is the axisymmetric buckling condition for a perfect ring where \(\theta = 0 \). Having solved Equation [48] for \(m \theta \), the critical value of \(F \), i.e. \(F_{cr} \), may be found by substituting this value of \(m \theta \) in Equation [39], or

\[
F_{cr} = \frac{m^2 E_s I_w}{(\delta - \beta/2)} = \frac{E_s I_w (m \theta)^2}{(\delta - \beta/2) d^2}
\]

[49]

*Equations [46] and [47] can be obtained either by repeating the analysis with the rings outside or by assuming \(F \) to be negative and substituting in Equations [44] and [45] \(m = i|m| \) where \(i = \sqrt{-1} \) and

\[
|m| = \sqrt{\frac{|F| (\delta - \beta/2)}{E_s I_w}}
\]

Note that \(\sin i|m|d = i \sinh|m|d \), \(\cos i|m|d = \cosh m \theta \). Then, for simplicity, \(|m| \) and \(|F| \) are replaced by \(m \) and \(F \) with the understanding that these symbols stand for numerical values in all formulas.
For convenience in obtaining quick solutions, md is plotted as a function of the quantity r in Figure 4.

When the rings are outside, axisymmetric buckling cannot occur.

From numerical examples, it is found that F_{cr} is always considerably higher than the value of F associated with the design collapse pressure. However, as noted in Equation [2], the approach to a buckling condition causes in an imperfect structure an exaggeration of the tripping effect, with the concomitant nonlinear increase in twist-induced stresses. Thus, with the amplification of effect of either ring, web, or flange instability, the stresses given by earlier equations are likely to be low. In one regard though, this may be offset by the overly conservative nature of the failure criterion in terms of stress, the two errors possibly compensating.

STRENGTH OF CYLINDERS WITH INSIDE VERSUS OUTSIDE STIFFENERS

Where tests on cylindrical shells with external pressure have indicated some superiority of outside stiffening, there is a cogent question concerning relevant effects of initial tilt. The differences in analysis for the inside versus outside stiffeners have been noted where they occur in the report and, in general, would not seem to account for the observed differences in strength. It is seen, however, that with outside frames, the radial forces impart a twist that reduces initial tilt, whereas with inside frames the corresponding action increases the tilt. Furthermore, the nonlinear effects included in the second approximation serve to exaggerate the tilt for inside but not for outside stiffeners.
APPLICATION TO STIFFENERS ON CONICAL SHELLS

In the case of cylindrical shells, the discontinuity effects of shear and moment at the juncture of shell and stiffener are symmetrical so that no net twisting moment is developed if there is no initial tilt.

With conical shells, however, the symmetry disappears, and neither shear nor moments are the same on the two sides of the stiffener. A resultant moment thus acts to twist the stiffener in somewhat the same fashion as the tilt-induced moment M; its value may be readily computed using published results.⁶

EVALUATION

Without experimental verification, it may be premature to apply the results directly to stiffener design. However, it is believed that this derivation shows the relative significance of the web and flange dimensions which heretofore have been lumped into gross properties of area and moment of inertia as required by other considerations of strength. The numerical solutions of Tables 1, 2, and 3 show the level of stress which 3 degrees of tilt may induce in a stiffener designed by other considerations, not including effects of initial tilt. An example of failure in a stiffened cylinder due to inadequate stiffeners is shown in Figure 5.

Figure 5 - Inside View of Cylinder with Inside T-Stiffeners Showing Mode of Failure Probably Due to Effects of Initial Tilt
TABLE 1

Examples of Stresses in Internal T-Stiffeners Due to 3-Degree Initial Tilt

Dimensions are given in Figure 6a.

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>F'</th>
<th>M_0</th>
<th>M_d</th>
<th>σ_{w}</th>
<th>σ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi</td>
<td>lb/in.</td>
<td>in.-lb</td>
<td>in. lb</td>
<td>psi</td>
<td>psi</td>
</tr>
<tr>
<td>First Approximation</td>
<td>1</td>
<td>1.58</td>
<td>0.1041</td>
<td>-0.0322</td>
<td>39.34</td>
<td>-9.43</td>
</tr>
<tr>
<td>Simplified First</td>
<td>1</td>
<td>1.58</td>
<td>0.1321</td>
<td>-0.0489</td>
<td>49.93</td>
<td>-14.34</td>
</tr>
<tr>
<td>Second Approximation</td>
<td>1</td>
<td>1.58</td>
<td>0.1012</td>
<td>-0.0354</td>
<td>38.26</td>
<td>-10.37</td>
</tr>
<tr>
<td>First Approximation</td>
<td>241.7*</td>
<td>381.7</td>
<td>25.16</td>
<td>-7.78</td>
<td>9,508</td>
<td>-2,278</td>
</tr>
<tr>
<td>Simplified First</td>
<td>241.7</td>
<td>381.7</td>
<td>31.92</td>
<td>-11.82</td>
<td>12,065</td>
<td>-3,465</td>
</tr>
<tr>
<td>Second Approximation</td>
<td>241.7**</td>
<td>381.7</td>
<td>25.64</td>
<td>-9.07</td>
<td>9,691</td>
<td>-2,656</td>
</tr>
</tbody>
</table>

*Value computed to cause hoop yield in material with $\sigma_y = 36,000$ psi.

**$F_{cr} = 2,834$, i.e., $p_{cr} > 1,790$ psi.

Figure 6a - Dimensions of Internal T-Stiffeners
TABLE 2
Examples of Stresses in Internal H-Stiffeners Due to 3-Degree Initial Tilt
Dimensions are given in Figure 6b.

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(F)</th>
<th>(M_o)</th>
<th>(M_d)</th>
<th>(\sigma_w)</th>
<th>(\sigma_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi</td>
<td>lb/in.</td>
<td>in.-lb</td>
<td>in.-lb</td>
<td>psi</td>
<td>psi</td>
</tr>
<tr>
<td>First Approximation</td>
<td>1</td>
<td>9</td>
<td>0.5744</td>
<td>-0.1634</td>
<td>24.51</td>
<td>-6.53</td>
</tr>
<tr>
<td>Simplified First Approximation*</td>
<td>1</td>
<td>9</td>
<td>0.7139</td>
<td>-0.2485</td>
<td>30.46</td>
<td>-9.93</td>
</tr>
<tr>
<td>Second Approximation</td>
<td>1</td>
<td>9</td>
<td>0.5539</td>
<td>-0.1795</td>
<td>23.63</td>
<td>-7.18</td>
</tr>
<tr>
<td>First Approximation</td>
<td>376.3**</td>
<td>3386</td>
<td>216.12</td>
<td>-61.48</td>
<td>9,222</td>
<td>-2,457</td>
</tr>
<tr>
<td>Simplified First Approximation*</td>
<td>376.3</td>
<td>3386</td>
<td>268.61</td>
<td>-93.50</td>
<td>11,460</td>
<td>-3,738</td>
</tr>
<tr>
<td>Second Approximation</td>
<td>376.3</td>
<td>3386†</td>
<td>217.97</td>
<td>-72.09</td>
<td>9,300</td>
<td>-2,882</td>
</tr>
</tbody>
</table>

*Includes multiplication by \(\delta \).
**Value computed to cause hoop yield in material with \(\sigma_y = 42,000 \) psi.
†\(F_{cr} = 11,298 \), i.e. \(P_{cr} > 1255 \) psi.

Figure 6b - Dimensions of Internal H-Stiffeners
TABLE 3

Examples of Stresses in External H-Stiffeners Due to 3-Degree Initial Tilt

Dimensions are given in Figure 6c.

<table>
<thead>
<tr>
<th>First Approximation</th>
<th>Simplified First Approximation*</th>
<th>Second Approximation</th>
<th>First Approximation</th>
<th>Simplified First Approximation*</th>
<th>Second Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>p psi</td>
<td>F lb/in.</td>
<td>M_0 in.-lb</td>
<td>M_d in.-lb</td>
<td>σ_w psi</td>
<td>σ_f psi</td>
</tr>
<tr>
<td>1</td>
<td>-9</td>
<td>0.5952</td>
<td>0.1426</td>
<td>-25.40</td>
<td>6.468</td>
</tr>
<tr>
<td>1</td>
<td>-9</td>
<td>0.7442</td>
<td>0.2182</td>
<td>-31.75</td>
<td>9.897</td>
</tr>
<tr>
<td>1</td>
<td>-9</td>
<td>0.5764</td>
<td>0.1565</td>
<td>-24.59</td>
<td>7.096</td>
</tr>
<tr>
<td>376.3**</td>
<td>-3386</td>
<td>-223.94</td>
<td>53.653</td>
<td>-9555.0</td>
<td>2433.6</td>
</tr>
<tr>
<td>376.3</td>
<td>-3386</td>
<td>-280.01</td>
<td>82.093</td>
<td>-11947.4</td>
<td>3723.6</td>
</tr>
<tr>
<td>376.3</td>
<td>-3386</td>
<td>-208.81</td>
<td>56.520</td>
<td>-8909.4</td>
<td>2563.6</td>
</tr>
</tbody>
</table>

*Includes multiplication by δ.

**Value computed to cause hoop yield in material with $\sigma_y = 42,000$ psi.

Figure 6c - Dimensions of External H-Stiffeners

Figure 6 - Dimensions of Stiffened Cylinders Used in Numerical Examples
APPENDIX A

VALIDITY OF FIRST APPROXIMATION

To compare the maximum value of the elastic tilt \(du/dz \) with the initial tilt \(du_0/dz \) or \(\theta \), note first that, by Equation [21], the derivative of \(du/dz \) or \(d^2u/dz^2 \) vanishes when \(z \) has such a value that

\[
M_0 = \theta F \left(\delta z - \frac{\beta z^2}{2d} \right)
\]

Substituting this value for \(M_0 \) in [19]

\[
E_s l_w \frac{du}{dz} = \theta F z^2 \left(\frac{\delta}{2} - \frac{1}{3} \frac{\beta z}{d} \right)
\]

This gives the maximum value of \(du/dz \), which starts from zero at \(z = 0 \). Since \(\beta < \delta < 1 \) and \(z \leq d \), it follows that

\[
\frac{\left(\frac{du}{dz} \right)_{\text{max}}}{\theta} < \frac{\theta F d^2}{2 E_s l_w}
\]

Inserting \(l_w = t^3/12 \) and substituting \(E \) for \(E_s \) for simplicity,

\[
\frac{1}{\theta} \left(\frac{du}{dz} \right)_{\text{max}} < \frac{6d^2 F}{E t^3}
\]

ACKNOWLEDGMENT

Special acknowledgment should be made to Miss Fern Stenwick for her accuracy and thoroughness in carrying out numerical solutions.
REFERENCES

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Chief, BuDocks (Code 438)</td>
<td>1 Chief, BuShips, Library (Code 312)</td>
<td>1 SEC of Defense, Res & Dev, Tech Library</td>
</tr>
<tr>
<td>1 CDR, Naval Shipyard, Materials Lab</td>
<td>1 CDR, Newport Navy Shipyard</td>
<td>1 Mr. Martin Golland, Southwest Res. Inst San Antonio, Texas</td>
</tr>
<tr>
<td>1 Attn: Dr. W.H. Ramberg</td>
<td>1 Attn: Undersea Warfare, NRC</td>
<td>1 Prof. L.E. Goodman, EES, Univ of Minnesota, Minneapolis, Minn.</td>
</tr>
<tr>
<td>1 Mr. F.V. Hartman, Aluminum Co. of America, Pittsburg, Pa.</td>
<td>1 Mr. Harold O. Hill, FAB Steel Const, Bethlehem Steel Co, Bethlehem, Pa.</td>
<td>1 Mr. R.M. Hermes, Univ of Santa Clara, Santa Clara, Calif.</td>
</tr>
<tr>
<td>1 Mr. P.G. Hodge, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y.</td>
<td>1 Mr. N.J. Hoff, Head, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y.</td>
<td>1 Mr. R.M. Hersmitz, Head, Dept of Aero Engin Johns Hopkins Univ, Baltimore, Md.</td>
</tr>
<tr>
<td>1 Prof. J. Kemper, Dept of Aero Engin & Appl Mech, PIB, Brooklyn, N.Y.</td>
<td>1 Prof. H.L. Langhaar, Dept of Theoretical & Appl Mech, Univ of Ill, Urbana, Ill.</td>
<td>1 Mr. R.E. Sanger, Dept of Civ Engin, Yale Univ, New Haven, Conn.</td>
</tr>
<tr>
<td>1 Mr. Frank L. Mather, Engin Specialist, Concord, Calif.</td>
<td>1 Prof. R.O. Mendel, Dept of Civ Engin, Columbia Univ, New York, N.Y.</td>
<td>1 Mr. James J. Murphy, Sec Eng, Dev Div, N.W. Kellogg Co, New York, N.Y.</td>
</tr>
<tr>
<td>1 Dr. William A. Nash, Head of Mechanical Engin, Univ of Ill, Urbana, Ill.</td>
<td>1 Dr. Paul M. Naghdi, Head of Mech Engin, Univ of Mich, Ann Arbor, Mich.</td>
<td>1 Prof. W. Prager, Chairman, Phys Sci Council, Brown Univ, Providence, R.I.</td>
</tr>
<tr>
<td>1 Dr. R.P. Petersen, Div, Appl Phy Div, Sandia Lab, Albuquerque, New Mex.</td>
<td>1 Dr. R.P. Petersen, Div, Appl Phy Div, Sandia Lab, Albuquerque, New Mex.</td>
<td>1 Attn: Dr. J.H. Reissner, Dept of Math, MIT, Cambridge, Mass.</td>
</tr>
</tbody>
</table>
Copies

1 Mr. Cyril O. Rhys, Sr., Independent Consultant, Hampton Hall, Cranford, N.J.
1 Mr. G.J. Schoessow, Babcock & Wilcox Co, Atomic Energy Div, Akron, O.
1 Mr. W. Spraragen, Dir, Welding Res Council, New York, N.Y.
1 Dr. F.K. Teichmann, Dept of Aero Engin, New York, N.Y.
1 Prof. S.P. Timoshenko, School of Engin, Stanford Univ, Stanford, Calif.
1 Prof. Enrico Volterra, Dept of Mech, Rensselaer Polytech Inst, Troy, N.Y.
1 Prof. E.O. Waters, Yale Univ, New Haven, Conn.
1 Prof. Dana Young, Yale Univ, New Haven, Conn.
1 Dr. E. Wenk, Jr., Dept Engin Mech, Southwest Res Inst, San Antonio, Tex.
1 ALUSNA, London, England
1 British Shipbdg Res, Curzon St, London, W.1, Eng.
9 BJSM (NS)
3 CJS