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NOTATICN

Constant
Inner radius of the surface tube
Constant
Outer radius of the surface tube

Constant

Local shearing stress coefficient
External diameter of the tube

Shape parameter

Constant

Computed constants

Constant

Pressure recorded by the surface tube

Static pressure at the wall

2-Reynolds number
6-Reynolds number
Thickness ratio of the tube

Velocity outside the boundary layer

Velocity at the throat of divergent test section for adverse
pressure gradient

Undisturbed velocity for zero pressure gradient

Mean longitudinal velocity at a point in the boundary layer

Frictional velocity

Distance along the boundary
Normal distance from the boundary
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Boundary-layer thickness

Displacement thickness

Momentum thickness
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ABSTRACT

The surface pitot tube technique for the determination of local skin fric-
tion has been extended for boundary-layer flow with adverse pressure gradients.
The calibration of round tubes on flat surfaces with zero pressure gradient and
with adverse pressure gradient gave results which check almost identically with
those obtained in Preston’s pipe experiments. It was concluded that the perform-
ance of the surface pitot tubes can be calculated by using simplified assumptions.
In addition, the ratio of the inner to outer diameter of the tube was shown analyti-

cally and experimentally to have a negligible effect on the results.

INTRODUCTION

Knowledge of the skin friction in turbulent motion is of paramount importance not only
in the field of resistance predictions for ships and for aircraft at subsonic speeds but also
in the field of fluid mechanics for a better understanding of the law governing shear flows.
Since the law governing laminar flow is known, local shearing stresses can be computed on
a strictly theoretical basis from any known velocity distribution. However, because present
knowledge of turbulence is inadequate, the same procedure cannot be applied to turbulent
flow. The shearing stresses due to turbulent exchange are still unknown, and information
concerning the shearing stresses in turbulent flow must still depend on experimental investi-
gations.

The measurement of local skin friction or wall-shearing stress is a very difficult tech-
nique, except for some special cases such as fully developed flow in pipes or channels where
it can be evaluated accurately from the pressure drop. The measurement of shearing forces
on an isolated floating surface element would be a direct approach in obtaining the local skin
friction, although this technique requires complicated instrumentation. In fact, at least three
successful attempts have been made for flat surfaces. In 1929, Kempf! measured the surface
friction on the flat bottom of a ship model in his towing test; his results are the only existing
direct skin-friction measurements at high Reynolds numbers (107 < B, < 3 x 108). Schultz-
Grunow 2 later used a similar technique to measure the frictional force on a wind-tunnel wall.
More recently, Dhawan3 has obtained further skin-friction data on a flat plate by a floating
isolated element inthe region of lower Reynolds numbers (2 x 105 < B, <6 x 10%). TUnfortu-
nately this technique is very difficult for general or even laboratory use. Fage and Falkner4
usea a calibrated half-pitot tube embedded in the laminar sublayer. The difference in pres-
sure between the pitot tube and the local static pressure is correlated with the local skin
friction. Because of the extremely small size of the half-pitot tube, the difficulty in handling

and the extreme sensitivity of the test probe have been serious obstacles.

1References are listed on page 14.



Local turbulent skin friction can also be obtained indirectly from a velocity traverse
together with the momentum equation. This method is both tedious and inaccurate since a
differentiation process is necessary in evaluating the local skin friction. In addition, the
Reynolds normal-stress term cannot be neglected by the usual Prandtl thin boundary-layer
assumption, especially near separation; it has been shown by experimentS that the normal-
stress terms are comparatively large near the surface. Ludwieg® developed the hot-spot tech-
nique and obtained the local skin friction by measuring the heat loss from a heated spot into
the flow medium. Great care must be taken to allow for the imperfect heat insolation between
the hot spot and its surroundings since an unknown amount of heat is transferred to the wall.

In view of the previous discussions, it is clear that simple and yet accurate means
for determining local turbulent skin friction would still be a valuable addition to the existing
experimental technique.

Preston’ has successfully developed a simple method of determining local skin fric-
tion on smooth surfaces. The method is based upon the existence of the inner law relating
the local skin friction to the velocity profile in pipe flows and utilizes a round total head
tube resting on the surface. His calibrations give an empirical relationship for the difference
between the total pressure recorded by the tube and the static pressure at the wall, in terms
of the local skin friction. More recently, Ludwieg and Tillmann® have established the
inner law for boundary-layer flow on flat plates with pressure gradient by use of the hot-spot
technique. Therefore, by proper use of the inner law, it is possible to extend Preston’s meth-
od to determine the local skin friction for boundary flows with pressure gradients.

The present report is concerned with boundary-layer studies at the David Taylor Model
Basin where round total head tubes were calibrated in the low-turbulence wind tunnel for use
in local turbulent skin-friction measurements on a body of revolution. The total head tubes,
resting on the tunnel wall, were calibrated in a zero pressure gradient as well as in adverse
pressure gradients. The results are compared with those of Preston’s pipe experiments. In
addition, a formula for estimating the local skin friction is derived which is based upon the
inner law. As a more precise formulation, the ratio of the inner to outer diameter of the tube

is included in the new formula.

THEORETICAL CONSIDERATIONS
VELCCITY DISTRIBUTIONS NEAR SMOOTH SURFACES

The velocity distribution near a smooth surface depends only upon the density, the
viscosity of the fluid, and the shearing stress at the wall. It can be shown by dimensional
analysis that the velocity  at a distance y from the boundary may be expressed as

‘u=_ti= yu'r 1
To Yr f(") t




where p and v are the density and the kinematic viscosity of the fluid, respectively,

To is the wall-shearing stress, and

Up = —0 is the frictional velocity.
" P

Equation [1] has been established for pipe and channel flow. Ludwieg and Tillmann® have
shown experimentally that Equation [1] holds true in general and is independent of pressure

gradients.
In regions close to the boundary, there exists a laminar sublayer where the viscous

effect is predominant. Bere, Equation [1] takes the form

° ©
- va [2]
The upper limit for which the laminar sublayer exists is about yu._/v = 30, and the mean veloc-
ity curve in this region has been well defined by the recent data of Laufer® and Dhawan.3
Further out from the laminar sublayer are the transition region and, finally, the turbulent
part of the boundary layer. In a limited region beyond the transitional sublayer, the well-known
logarithmic velocity profile law holds. Millikan ! proved from pipe and channel flows that the
existence of the logarithmic law is a necessary mathematical consequence due to the over-
lapping of the inner law and the velocity-defect law. Ludwieg and Tillmann have further gen-
eralized the logarithmic law through their experimental evidence and have discovered its inde-

pendence of the pressure gradient also. The velocity profile may be expressed as

_"_=A+Blogyu’r [3]

v
u‘T

where 4 and B are empirical constants. For a small range of yu,_/v, the logarithmic represen-

tation can be approximated by a power law as

1/n
o)

where C and n are again empirical constants. Fquation [4] is simpler to use and will be em-
ployed later in deriving the relationship between the wall-shearing stresses and the dynamic
pressures of the surface pitot tubes.

RELATIONSHIP BETWEEN WALL-SHEARING STRESS AND
DYNAMIC PRESSURE OF SURFACE PITOT TUBES

It is assumed that the disturbances caused by the presence of the total head tube in the
boundary-layer flow may be neglected. Hence, if a round total head tube with internal and ex-
ternal radii a and 3, respectively, as shown in Figure 1, lies just in contact with a surface
in a flow field, the average dynamic pressure experienced by the tube would definitely be



y correlated to the local skin friction through
the frictional relationship of the velocity dis-
tribution near the surface. Such a relationship
will be evaluated as follows:

1. In laminar sublayer:
The velocity distribution in the laminar
sublayer, as mentioned previously in Equation

[2], can be expressed as
Uy
Y

Boundary.

U
Figure 1 - A Surface Pitot Tube Resting Ur
on a Surface in Boundary-Layer Flow

or 2
u.
. [2a]

Let P denote the pressure, as recorded by the tube, measured relative to the static pressure
P, at the wall. The total pressure acting in the tube opening may then be expressed as

o[ uldo
2" ‘o

(P"'po) = [5]

n a?

where o denotes the area of the tube opening. Substituting Equation [2a] and do (expressed
in terms of the geometry of the tube) into Equation [5] results in

b+ a 4
u
(P -p,) na? =..21_pf I y2 - 2ya? - (y-8)2 dy
14
b—a
[6]
4
=P%'1[2 2, at
7 g a‘ b“ + y

Denoting a/b equal to ¢, the thickness ratio of the tube, Equation [6] may be expressed in
terms of dimensionless parameters as suggested by Preston as follows:

T, d? RYAL (P-py) d*

= _ 7
4p1? 4+22 4pv? (7]

or

5]+ 1 103[“’ ~Pg) & ] (7]
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where d = 25 is the external diameter of the tube. Equation [7a] represents a straight line on
a logarithmic plot with a slope of one half.
2. In turbulent boundary layer:

If the surface pitot tube were of such a size that it extended beyond the laminar sub-
layer but was still within the region where the universal velocity function holds, a similar pro-
cedure could be used. To obtain the average pressure experienced by the surface tube by an
integration process, the simple power law of velocity distribution is used. In view of the
experimental results obtained by Preston,’ a good representation of the velocity distribution

for v _y/v < 3000 may be expressed as

u
log %= 0.935 +-L log Yir
U 7 v
or
1/7 1/7
i:&ﬂ(&y) =0(ﬁy) —Kyl7 8]
u.,. v v

With the laminar sublayer neglected owing to its thinness, the total pressure experienc-

ed by the tube may be expressed as

b+
%P S T K%Y o0a - (y- )2 dy

—a

(P-py) =
0 rra2

Since y-b = asin ¢, the above expression may be simplified to
u N2/
(P-pg)ma? = p O2u2 (.I) 2527 [(9) [9]
v

where /2
1(2) =j (1+zsing)?7cos2 ¢ dg
/2

Rearranging Equation [9] into a dimensionless form similar to Equation [7a] yields

76(12 _ . 7/8 (P—Po)dz 7/8_k[(P_po)d2:|7/8
2 [e21k) -

dpv 4pv? 4p12?
or
T d? (P-p,)d?
log —2— =log k +-% 1 [—0—— 10
8oz - logk g log |~ [10]



The thickness function I(?) represents the effect due to the relative proportion of the internal
and external diameters of the tube upon the local skin-friction measurements. The function
I(t) has been evaluated numerically and its tabulated values are as follows:

¢ 1(z) k . log &
0 %: 1.5706 0.04240 2.6274
0.1 1.5705 0.04241 2.6275
0.2 1.5693 0.04244 2.6278
0.3 1.5672 0.04249 2.6283
Ot 1.5644 0.04255 2.6289
0.5 1.5603 0.04264 7.6298
0.6 1.5553 0.04275 2.6309
0.7 1.5489 0.04291 2.6326
0.8 1.5407 0.04310 2.6345
0.9 1.5295 0.04337 2.6372
1.0 15161 0.04370 2.6405

For comparison with Equation [10], the empirical equation obtained by Preston in his pipe

experiment is stated as

sl

2 _ P-p,)d?
- =2.604 + L log P-pg)d
4pv 8 4p12

log (111

-

It can be seen from the above tabulation that the numerical values of log %4 vary only
slightly with thickness ratio although they differ a little with the constant in Preston’s formu-
la. It can be concluded that the relative proportion of the internal and external diameter of
the tube is not important here.

The previous analytical development seems to indicate from Equations [7a] and [10]
that an indirect measurement of the local skin friction may be obtained on smooth surfaces
simply by measuring the dynamic pressures acting on a surface pitot tube resting on the sur-

face. This technique, however, has also been verified experimentally.

APPARATUS AND EXPERIMENTS

The experiments were carried out in the newly constructed low-turbulence wind tunnel
at the Taylor Model Basin. A salient feature of this tunnel is the flexible wall in the test
section which allows the tunnel to be adapted to many kinds of research, particularly the
experimental investigation of the boundary layer in adverse pressure gradients.






pressure gradients. The precision in reading the scale which is attached to the manometer
was approximately 0.05 in.

The two-dimensional character of the flow in the test section had been checked by
velocity surveys fromthe top to bottom at several stations along the test section. The flow
was found to be two-dimensional over the region where the surface tubes were calibrated.

The experimental procedures were the same for the cases of zero pressure gradient
and for those of adverse pressure gradients. First, velocity profiles were measured by using
the boundary-layer survey rake in the tunnel wall at various stations along the test section at
selected tunnel speeds, U, , the undisturbed velocity, for zero pressure gradient and U,, the
velocity at the throat, for adverse pressure gradient. The surface pitot tubes were then in-
stalled at stations where the velocity profilé had been measured. The dynamic pressure of
the surface pitot tube with reference to the readings at static openings on the tunnel wall,
P-p,, were recorded for various tunnel speeds. Runs with the two tubes of different thick-
ness ratio were made at each station. A typical calibration curve of the surface pitot tube
is shown in Figure 3. In order to insure that the calibration did not suffer from the effect of
time lag, all readings of the surface pitot tube were taken both with increasing tunnel speeds
and then with decreasing tunnel speeds.

The configuration of the test section and the corresponding velocity distribution along
the tunnel wall for the case of adverse pressure gradient are shown in Figure 4. The velocity
distributions in the boundary layer were measured at four stations along the test section.
Figures 5a to 5d show the nondimensional velocity distributions w/U against the normal dis-
tances y from the wall, where U denotes the velocity outside of the boundary layer. From the
measured velocity profiles, the momentum thickness 6, the displacement thickness §* and
the shape parameter H can be evaluated.

The local skin-friction coefficients were obtained for the case of zero pressure gradient
by using Landweber’s numerical results!2 relating R g the Reynolds number based on the mo-
mentum thickness, to c». His analysis is based on ‘‘the law of the wall”* and the ‘‘velocity-
defect law,’’ and the numerical values of ¢+ are almost identical with those of Schoenherr for
Eg > 1000. In the case of adverse pressure gradients, the local skin-friction coefficient was
obtained from the empirical formula given by Ludwieg and Tillmann:8

0.246
CT= p0.678H Reo. 268

where H and R 4 can be calculated from the measured velocity profiles. The values of 5%
6, and c, along the test section with adverse pressure gradient for U, = 200 fps are shown in
Figure 4.

The validity of Equations [7a] and [10] may be verified experimentally from the calibra-
tion curves of the surface pitot tube and the calculated local skin-friction coefficient.
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Figure 3 - Typical Calibration Curve of a Surface Pitot Tube
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RESULTS AND DISCUSSION

As mentioned earlier, one of the typical calibration curves is given in Figure 3. It is
clearly indicated that the readings from two surface pitot tubes having thickness ratios of
0.896 and 0.676, respectively, yield essentially the same calibration curve. It is therefore
concluded that the wall thickness of the tube is not important insofar as the measurement of
local skin friction is concerned. The same conclusion* has also been drawn by the National
Physical Laboratory in England.

The dimensionless parameters T, d2/4 pv? and [(P -p,) d?1/4 pv? can be calculated
from the calibration curves and the local skin-friction coefficients. The experimental results
are plotted logarithmically in Figure 6. The experimental points for the conditions of zero
pressure gradient as well as for adverse pressure gradient are reduced to a single line which
has been suggested previously by Equation [10]. It is noteworthy that the results obtained
from a flat surface are in good agreement with the empirical equation obtained by the Preston
pipe experiments. This additional experimental evidence further substantiates the validity
of the inner law as suggested by Ludwieg and Tillmann. Equation [10] is also represented in
Figure 6 for the thickness ratios of 0.1 and 0.9, respectively, for the purpose of demonstrating
the fact that the relative dimensions of the surface pitot tube are not important.

An additional remark should be made concerning the assumption of a 1/7-power veloc-
ity distribution in the derivation of Equation [10]. It is well known that the logarithmic law
of velocity distribution replaces the power law when the Reynolds number is large. However,
the method of measuring an unknown local skin friction by surface pitot tubes may still be
used since one can always select a pitot-tube size such that the dimensionless parameter
[(P-p,) d21/4 p v? will lie in the range covered by the present calibrations. The maximum
value of the log, o [(P -p,) @?1/4 p v? obtained by Preston is about 6.5.

No additional data were obtained in the laminar-flow region since the original plan
was to calibrate the tube for the purpose of local friction measurements on a body of revolution
at relatively high Reynolds number where the thickness of laminar sublayer is negligible.

The investigations have been restricted to smooth surfaces. Additional research will
be necessary to extend this method to measuring skin friction in rough surfaces where the

dimensionless roughness parameters and Reynolds number may be equally important.

CONCLUSIONS

1. The surface pitot tube technique for determining the local skin friction can be used for
the boundary-layer flow with adverse pressure gradients.

2. The calibration curve of round surface pitot tubes on flat surfaces with zero pressure
gradient as well as with adverse pressure gradients checks almost identically with that
obtained by Preston in his pipe experiments.

*A private communication from Dr. Preston.
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3. Based upon the simplified assumption, the performance of the round surface pitot tubes
can be calculated either according to Equation [11] or Equation [10] if thickness correction is
desired. Performance of a tube of any shape can therefore be calculated and the need for cali-
bration thus eliminated.

4. Based upon the simplified analysis and the experimental results, the wall thickness

of the tube if not considered important for local skin-friction measurements.
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