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DIGEST*

In view of the increasing demand for the design of structures which will

withstand dynamic loads of durations comparable with the natural periods of vibra-

tion of those structures, the need has arisen for a simple and quick means of esti-

mating equivalent static loads which can be used, in well-known ways and by personnel

skilled only in orthodox load calculations, to determine the adequacy of the struc-

tures. This report presents such a method, based upon the graphical analysis orig-

inated by Lord Kelvin (4)** and later developed

The types of structure for which

estimates can be made by this method are lim-

ited strictly to those which behave under

working conditions like elastic systems of

one degree of freedom, as shown in Figure 1,

although good first-order approximations can

be made for ship structures not fulfilling

all the conditions.

The behavior of systems of the type

illustrated in Figure 1, under certain types

of impact loads, has been investigated by J.M.

independently by E. Meissner (5).

/

f

m.

Figure 1 - An Ideal Simple Elastic
Structure with One Degree of Freedom

Frankland and the results are set down in TMB Report 481. Naturally, all possible

cases could not be treated in that report; for example, the case of a load applied

two or more times in rapid succession, or the case of a positive load followed rapid-

ly by a negative load. This latter is an important case in the design of ship struc-

tures to resist blast loads induced by the ship's own guns. Thus it is important for

a designer to have a supplementary means, as presented here, for the estimation of the

effects produced by such loads.

The equivalent static load P. of a dynamic load P, acting on a given struc-

ture, is defined as that static load which will produce a static deflection equal in

magnitude to the peak deflection caused by the dynamic load. It can be estimated by

a graphical construction, known as the phase graph of a load. This leads to a geo-

metrical interpretation of the ordinary dynamic load factor and static equivalent

ratio. By the simple relation holding between static deflections and static loads,

the peak deflection under a given dynamic loading is obtained. By an elementary

extension of the method, the times at which peak deflections are reached can be

estimated.

* This digest is a condensation of the text of the report, containing a description of all essential
features and giving the principal results. It is prepared and included for the benefit of those who can-
not spare the time to read the whole report.

Numbers in parentheses indicate references on page 16 of this report.
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(360f t,) P ,PS

2P (36ft (360ft)
M 00 

Direction of Direction of Direction of
p Initial Load Initial Load Initial Load

E

a. The load lasts so long that the b. The load lasts long c. The load is released
equivalent static load is 2P. This enough for the equivalent in a very short time so
is the classic case of the suddenly static load to be greater that the equivalent static
applied load, in which the dynamic than P but less than 2P. load is less than P.
load factor is 2.

Figure 2 - Phase Graphs of a Constant Load P Applied Suddenly
and Lasting for Varying Lengths of Time

The equivalent static load is indicated in each case by P,.

The graphical construction for a single constant load P, as shown in Figure

1, when applied instantaneously and held constant for a time ti is quite simple. The

duration ti of the load is converted into an angle by multiplying it by the constant

360f, characteristic of the structure. Here f is the natural frequency of vibration

of the elastic structure, which can be determined by the use of a vibration generator

or by other convenient means. This angle is laid off in degrees, as shown in Figure

2, and an arc is struck with the radius P, expressed in convenient units. The straight

line distance from 0 to the farthest point on the arc,* expressed in the same units as

P, is the equivalent static load.

For a varying load, such as that in Figure 11a, the load-time diagram is re-

placed by an equivalent diagram in which one or more constant loads are assumed to act

for selected times. Figure 11b shows how this is done for a curve of gun-blast load

on a ship structure.

Po Po

S 2 /

t Np P4 ti t2 t 14

Time t Time t-

Figure 11a - Load-Time Curve of a Typical Figure 11b - Step-Pulse Approximation to
Gun-Blast Record the Gun-Blast Record of Figure 11a

* The simple procedure of finding "the farthest point on the are" is not always applicable in the case
of varying loads; the general procedure is described in the body of the report.
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Figure 12 - Enlarged Phase Graph of the
Gun-Blast Load of Figure 11b

Here the graph has been drawn in four steps,
to illustrate the procedure more clearly.

The phase graph of the load is built up by a series of steps, one for each

of the loads P,, P,, P, and P, as shown in Figure 12, resulting in the complete

graph which appears in the lower right-hand corner of that figure and which is repro-

duced here. On this graph the line Ub represents the value of the maximum equivalent

static load P,.

In the simple cases shown in Figure 2, or in the more complicated case of

Figure 11, the greatest deflection of the system can be computed by the simple for-

mula, deflection = P/k, where k is the spring constant of the structure.

In the more complicated case shown in Figure 12, the instantaeous restor-

ing forces, indicated as a, b, c, d, and so forth in Figure 13, are used in the same

manner to find instantaneous deflections, substituting them in place of the equiv-

alent static load P,.

O
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/

0 0

a c

kx(t)
tM,

Time t

E

f /

e h / o /

Figure 13 - Restoring Force in the System of the Example
Acted on by the Blast Load of Figure 11b

The curves in the small figures are duplicates of the phase graph in Figure 12. Each shows how
the rule was applied to find a point on the curve for a series of times. The perpendicular dis-
tances from 0 to the dashed tangent give the restoring forces in the system at each of these times.
The indicated angles between the perpendiculars to the phase graph and the horizontal axis, divided
by 360f, give the times at which these restoring forces act.

Notice that the dashed tangent line of the figure rotates in a counterclockwise direction as we
trace out the phase graph. When the end-point E of the phase graph is reached the dashed tangent
line simply continues to rotate as if it were pivoted at the point E.

The time from the instant of applying the load to the instant that the max-

imum deflection occurs may be computed by a simple process as explained on page 10 of

the report.

The application of a positive load of short duration, followed quickly by a
negative load, will cause the structure to deflect violently, first one way and then

the other. This will result in one or more peak deflections, on both sides of the

mean or original position of the structure. It is possible to determine the times at

which the various maxima occur by the procedure described on pages 10 and 11.

The small diagrams of Figure 13 show how to determine the magnitude of the

restoring forces acting on the structure at selected times. From these data the cor-
responding dePlection of the structure can be computed, permitting the construction
of a curve of deflection on a basis of time.

In the appendix the general method of approach to the problem is developed.

This leads to the graphical solution of the differential equation of motion of a sim-
ple elastic system of one degree of freedom.



NOTATION

f Frequency in cycles per second

k Spring stiffness of system

m Mass of.system

W, Circular frequency, equal to 2nrf, in radians per second

T Period of vibration, equal to 1/f

t Time

z or z(t) Displacement of system from equilibrium

P(t) or P Dynamic load

I Impulse of a dynamic load

S Spring or restoring force in system

7"  Phase angle, equal to wt

P1, P2, etc. Values.of step-pulse loads

t,, t2, etc. Times at which step pulses end

0, 0', etc. Initial points of phase-graph arcs

E, E', etc. End-points of phase-graph arcs

M Equivalent static load point of a phase graph

M', M", etc. Points at which tangents to the phase graph are perpendicular to
lines from the initial point to these points

P, Equivalent static load

XM Peak deflection

tM Time of peak deflection

My, Relative maximum deflection

tM,  Time of relative maximum deflection

a Angle between final radius of phase graph and OM•

SAngle between initial radius of arc on which M is situated and OM

t d  Total duration of load
te. Time at which P, begins to act

P, Step-pulse value during peak deflection

Po Peak value of gun-blast load

t, Time of rise of gun-blast load

a Time constant of gun-blast load

, 7 Rectangular coordinates in phase-graph plane

0
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A METHOD OF'ESTIMATING EQUIVALENT STATIC LOADS

IN SIMPLE ELASTIC STRUCTURES

CABSTRACT
A graphical method of estimating the static load which will produce a de-

flection of a simple structure equal to its peak deflection under a dynamic load is

presented. The method permits also an estimation of the peak deflection and the time

to reach this peak. Finally, a general means of finding graphically the motion of

such a linear elastic system under dynamic loading is presented as a simple extension

of the previous constructions.

INTRODUCTION

The need often arises in structural design for a simple and direct means of

estimating the equivalent static load for a structure acted upon by a dynamic load,

so that the adequacy of the structure may be determined by well-known methods of cal-

culation for static loads. By an equivalent static load is meant the static load

which will produce a deflection of the structure equal to its peak deflection under

the dynamic load (1).*

It is recognized intuitively that a large load acting over a very short in-

terval may produce less effect than a smaller load acting over a longer interval of

time. Moreover it has been pointed out (2) that under some conditions a load sudden-

ly applied and maintained for a time produces larger peak deflections than the same

load applied statically. In the latter case, the ratio of the equivalent static load

to the maximum actual load, called the dynamic load factor, may be as much as 2. In

the former case, for constant loads of duration less than one-sixth the natural period

of the system, the load factor, which is now less than 1 and has been renamed (3) the

static equivalent ratio, is approximately the product of the duration of the load ,and

the circular frequency w of natural vibration, i.e., 2r times the natural frequency of

the system.

These two factors have been of use in the design of structures intended to

withstand dynamic loads falling in one of the two important, but extreme, cases men-

tioned in the foregoing. However, the middle ground, in which the dynamic load is of

such a duration as not to fall clearly in either of these classes, or in which it does

not have the constant characteristics necessary for a simple derivation of the factors,

constitutes a more difficult problem.

It is the purpose of this report to present a unified procedure whereby a

S designer can estimate equivalent static loads. This procedure is applicable only if

the structure behaves, under working conditions, like a simple elastic system of one

degree of freedom. The discussion of such systems and the evaluation of their dynamic

* Numbers in parentheses indicate references on page 16 of this report.
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load factors has previously been carried out analytically for certain types of impact

loading (2). The following method, based upon the method of Kelvin (4) and Meissner

(5) for graphical integration covers any case of dynamic loading.

The operations in the construction of the phase graph of a load for a given

system and the estimation from it of equivalent static loads and other important quan-

tities are elementary. The necessary implements are a scale, protractor, straight

edge, and compass, although if only rough estimates are required, even these instru-

ments are often not needed. It is suggested that the reader learning the method fol-

low for himself, on a separate paper, the simple constructions as presented in the

report. This will demonstrate the sequence of operations and the elementary nature

of the constructions.

DETERMINATION OF EQUIVALENT STATIC LOADS FOR FORCE ABRUPTLY APPLIED
AND CONSTANT OVER AN INTERVAL

Consider a simple elastic structure, represented schematically by the model

shown in Figure 1, which has one predominant natural or resonant frequency f,* excited

to some extent under a dynamic load. Let us

suppose for the present that this load has

some constant value P, and is applied suddenly

at the time t = 0, after which it lasts for a
m duration tI. At the time t = ti it ceases to

act. What can the frequency and the dynamic

load tell us about the equivalent static

load?

To answer this, we draw an arc** OE
Figure 1 - An Ideal Simple Elastic from an origin O, as in Figure 2a, of radius
Structure with One Degree of Freedom P units and subtending an angle 360f.tj de-

grees. This will be called the phase graph of the load. We now measure the distance,

in the same units as the radius P, to the point M of the arc OE which is farthest

from O. This maximum distance P,, indicated by the broken line in Figure 2a, is the

equivalent static load experienced by the structure. In this figure the line OM is

evidently 2Punits long.

Figure 2b illustrates a case in which the duration of the load P is less

than in the preceding example, so that the equivalent static load is between 1 and 2

times the actual load P.

Figure 2c shows the effect of still further shortening the time of applica-

tion of the load P, so that the equivalent static load is considerably less than the

actual load P.

* This can be determined in the case of an actual structure by the use of a vibration generator, or
by other convenient means.

* The term arc in this report is used to signify a czrcular arc.
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(360 oftt P "Pst
S2P\ (360f -t)o

Ps 2P 0 0
M 0 O _ a

Direction- of Direction of Direction of

p Initial Load initial Load Initial Load

E

a, The load lasts so long that the b. The load lasts long c. The load is released

equivalent static load is 2P. This enough for the equivalent in a very short time so

is the classic case of the suddenly static load to be greater that the equivalent static

applied load, in which the dynamic than P but less than 2P. load is less than P.

load factor is 2.

Figure 2 - Phase Graphs of a Constant Load P Applied Suddenly
and Lasting for Varying Lengths of Time

The equivalent static load is indicated in each case by P,.

Just as we recognize that the case illustrated in Figure 2a is one in which

the well-known dynamic load factor 2 is applicable, so it is possible to see that the

case presented in Figure 2c may also be treated numerically by the use of the static

equivalent ratio wtl (3). First, note that the length of the line P, which represents

the magnitude of the equivalent static force is approximately the same as that of OE.

Then we have

2,TP, OE = P 3-6- (360f -tz)

= P 27rftl

= P wt 1
= P (static equivalent ratio)

However, the dynamic load factor for the intermediate case shown in Figure 2b, which

was easily handled by the graphical method of this report, is obtained by analytical'

methods with relatively more difficulty. It is given by Frankland (2) as 2 sin t
so that

P, = P*2 sin -

But this is exactly the formula for the secant OM of Figure 2b. Hence it constitutes

a verification of the method presented here for the special case of constant loads

suddenly applied and lasting a time t1 less than 0.

S EQUIVALENT STATIC LOADS FOR VARYING FORCES

In conitrast to the loads considered in the previous section, most loads do

not have a constant value during the time of their application. Consequently, to

handle these cases, it becomes necessary to modify the foregoing procedure, both in

drawing the phase graphs and in estimating equivalent static loads from them. These

I



a a

o u

o Time t 0 --- Time t

Figure 3a - The Force-Time Curve Figure 3b - Approximation of the
of Some Varying Load Force-Time Curve of a Varying Load

by Step-Pulse Loads

[360f(t2 -t,)]o modifications will become evident from the

M O"=E' accompanying illustrations, in which we shall

E. first describe the construction of phase

graphs and then indicate how equivalent static

loads can be estimated from them.

Let the force-time curve be as shown
(360 of t,- 0 in Figure 3a. Now instead of making direct

Figure 3c - Phase Graph of the use of this exact force-time curve, replace it

Step-Pulse Load of Figure 3b by an approximate one made up of a constant

force PI, lasting from time t = 0 to time

t = t , and another constant force P2, lasting from time t = tj to time t = t2. After

this time the force is zero; see Figure 3b. Each constant force should be so chosen

that its impulse, i.e., the rectangular area under the load-time curve, equals the im-

pulse of the actual load in the same time interval.

More accurate results can be obtained by approximating the force-time curve

by a larger number of step pulses; this is the term used to describe the loads P1 and

P2, maintained for the times ti and t, - ti. However, for purposes of illustration,
the foregoing choice will prove sufficient.

Now to find the equivalent static load begin with a horizontal line repre-

senting P1 and terminating at O'. Draw an arc of radius Pi units which subtends an

angle of 360f. tj degrees, where f is again the natural frequency of the system. Next

draw an arc of radius P 2 units, subtending an angle of 360f (t2 - t1 ) degrees, so that

the initial point O" of the second arc coincides with the end-point E' of the first

arc, and so that the initial position of the radius of the second arc coincides with

the final one of the first arc. Finally, the force sinks to zero, so that all subse-

quent arcs degenerate to the end-point E" of the second arc. This leads to the phase

graph 0'O"E" shown in Figure 3c. The equivalent static load is now represented by

O'M, drawn to the farthest point of the graph in a direction perpendicular to it.



[I360f (t-t t ) ] O

00 nP?

0"= E 
E= M

'Ps
P I

(360f-t1 )0

o'

t 2 a Figure 4b - Phase Graph of the
O tk Step-Pulse Load of Figure 4a

Pa A second type of force-time curve

is illustrated in Figure 4a. The second ap-
Figure 4a - Approximation of a Force- proximating step pulse, P , is opposite in
Time Curve which has a Negative Phase proximating step pulse, P2, is opposite in

sign to P1, so that in the phase graph of

Figure 4b the initial radius of the second arc is opposite in direction to the final

radius of the first arc. But the direction of describing the arcs, counterclockwise

in the illustration, must remain the same; this results in a cusp at 0".

A further illustration is needed to clarify other cases which may arise when

the applied load has varying characteristics. Suppose the load P can be approximated

by two step pulses, of magnitudes P1 and 12, separated by a time interval t2 - tl,

during which a zero load acts. The pulse P, has a duration tj while the pulse P,
lasts for a time t. - t2. The approximating force-time curve described here is drawn

in Figure 5a.

Proceeding as before, describe the arc O'E' of radius PI, subtending an

angle of 360f-t ' degrees, as in Figure 5b. But now it is necessary to consider that

in the time interval ti < t < t2 an applied load of zero magnitude is acting on the

system.

M
E (360f(t,- td]0

' I

[360f (t2 -t)]

E1=011

0 ti t2  t 3  O'

Figure 5a - The Load-Time Curve of Figure 5b - Phase-Graph Construction
Two Loads Applied in Rapid Succession for the Equivalent Static Load
with a Short Time Interval Between of Figure 5a

. lo



o t,

[360f' (t- t2)]o

t2 t3 0

Figure 6a - The Load-Time Curve of Two Figure 6b - Phase-Graph Construction
Loads Applied in Rapid Succession for the Equivalent Static Load

with a Light Load Between of Figure 6a

To find out what its effect is on the phase-graph construction, suppose
that, instead of the zero load, a very small constant load P, acts on the system for
the time t2 - t1, as shown by the diagram in Figure 6a. Then according to the method
which has been described the construction is continued by annexing to O'6E a very
small arc of radius P3, as in Figure 6b. Its initial radial direction is to coincide
with that of the final radius of O'E' and it is to subtend an arc of 360f (t2 - t1)
degrees. The next arc, which is of radius P2 and which subtends an angle of

360f (t3 - t2) degrees, is drawn in such a way that its initial point O" coincides
with the end-point of the second arc and its initial radius is in the same direction
as the final radius of the arc E~O" This results in the curve or phase graph
O'E'O"E" of Figure 6b, containing the arc E'O"' of large curvature generated by the
small load P.

Now returning to a consideration of Figures 5a and 5b, it must be remembered
that, instead of the load P3 acting in the time interval t2 - t1, there is actually a
zero load acting for this time. For the phase graph, this means that the arc E'O" of
Figure 6b shrinks to what is known as a null-arc,* annexed to the arc OE"'. Hence the

* The unfamiliar term "null-arc" is used here to signify an arc of zero radius. It is a point with which
is associated a sheaf of directions included between two lines extending from the point. The null-arc
is said to subtend the angle between these two lines just as any circular arc subtends the angle between
the initial radius and the final radius of the arc. The accompanying figure represents null-arcs sub-
tending angles of 42 degrees and 160 degrees.

The line AC points in the initial radial direction of the null-arc at the point A; the line AB points
in its final radial direction. The initial and
final points of the null-arc coincide with its

/ 8\ center of curvature A. Just as a line through the
// center of curvature of a circular are and included

/ between its initial and final radial directions is

/42 \f7 e60o perpendicular or normal to the arc at some point,
420 \__ so a line is said to be normal to the null-arc if

A C A C it passes through the point A and is included be-
tween the initial and the final radial directions

Examples of Null-Arcs of the null-arc.



[360f(t,- td]*

[360f (t[- t,) - E)]

M=0"=E'

P1  P2\

360f-t

0 t, t t3 0'

Figure 7a - Force-Time Curve Figure 7b - Phase Graph of the Load
of Two Successive Loads of Figure 7a

The time interval between the application of these This phase graph shows a cusp like that of Figure
loads is such that the phase graph has a cusp. 4b except that it is now generated by the zero

load acting in the time interval t1 < t < t2.

correct phase graph for the load of Figure 5a is the curve O'E'O"E" of Figure 5b

with a corner at 0"; in this case E' and 0' coincide.

In the example illustrated in the diagrams of Figures 5 and 6, it may some-

times happen that the time interval t2 - t1 between successive pulses is such that

the corner at O" becomes a cusp, a case illustrated in Figures 7a and 7b. In order

to avoid confusion between a cusp formed in this way and one occurring as in Figure

4b, the angle at a corner* or cusp, as in Figures 4b, 6b, and 7b, corresponding to

the time lapse between two successive pulses should always be indicated. This angle

is zero in Figure 4b and 180 degrees in Figure 7b. The angle at a corner or cusp can

be considered to be subtended by a null-arc located at the point of the corner or

cusp.

Thus far it has been shown how the graphical method is to be extended to

draw the phase graphs of any varying or dynamic loads. The cases illustrated cover

most possibilities; other kinds of dynamic loading can be made up of combinations of

these.** There remains the discussion of the modification to be introduced into the

method of estimating equivalent static loads so that such estimates can be made from

any phase graph.

The general method can be summed up in the following rule, exemplified by

the'construction in Figure 3c:

To find the equivalent static load from the phase graph of any varying load,
locate on an arc of the phase graph a point M at which the line from the in-
itial point O' meets the phase-graph arc perpendicularly. Null-arcs are to

* This includes a "corner" having an angle of 360 degrees or some integral multiple of 360 degrees.

* From one point of view the third case, that of two step pulses separated by a time interval, represents
the most general one, with the others as special cases. But from the graphical point of view maintained
here, it is better to consider all four cases as illustrations of distinct combinations.

- ----- -- ------- ---- ----- -- -- ----- I I---..- ----- ---- --.-- I-1-. ~ -.~. P



be treated in this construction like any other arc of the phase graph; see
the footnote on page 6. If there are several such points, choose as M* the
one that is farthest from the initial point. The length of the line O', in
the units of the phase graph, gives the equivalent static load P,.

(360f -tl)-

Figure 3c - Phase Graph of the
Step-Pulse Load of Figure 3b

acts subsequently to the load P.
Figure 2c.

It is immediately recognized that the

modified rule for finding the equivalent static

load gives the same construction as was obtained

for the cases considered in the preceding section.

For example, Of in Figure 2a on page 2 is the long-
est line, drawn from O, which meets the phase graph

OME perpendicularly. Similarly, UM in Figure 2b

is the longest line, from 0 to a point of the phase

graph, which meets the phase graph arc perpendicu-

larly; it is perpendicular at M to the null-arc

centered at E and generated by the zero load which

A similar observation holds for the phase graph of

The equivalent static loads for the phase graphs of Figures 4b, 5b, and 7b

can be estimated by measuring the lengths of the lines O'M drawn according to the gen-

eral rule. The interesting and important feature of these constructions is brought

out by a comparison of Figures 4b and 7b. Although the phase graphs appearing in

these figures arise from different dynamic loads, the phase graphs themselves are

identical in appearance, except for the angle indicated at the cusp E' in Figure 7b.

But. in Figure 4b, the ESL point M is placed at E', which is certainly not the farth-

est point of the phase graph from the initial point, while in Figure 7b the ESL point

M coincides with E' which is the farthest point from the initial point. Why does this

difference exist between the equivalent static loads in these two cases?

[360f (t 2 - t)] [360f (t- t)] .

E"= M [360f (t - t,)]9 E

Figure 4b - Phase Graph of the
Step-Pulse Load of Figure 4a

Figure 7b - Phase Graph of the Load
of Figure 7a

* For simplicity we shall often call the point M determined in this way the equivalent static load
point of a phase graph, or more briefly, the ESL point.



The answer to this question is to be found in the qualification that the

line I'r is to be normal at M to an are on which the point M is situated, and the

point M is the farthest point from O' meeting this requirement. Thus, in Figure 7b,

O M is on the null-arc at E' generated by the zero load acting in the time interval

tI < t < t2. In Figure 4b, on the other hand, although E' is the farthest point away

from O', there is no null-arc at the cusp at E' in this example, and the line O'E' is

normal to neither of the arcs O'E' or E'E. Consequently, the ESL point M coincides

with E" in order to satisfy both requirements of the rule:

1. .There is an arc on which M is situated such that OMr is normal to it;
it happens in both cases to be a null-arc, but in Figure 4b this is
generated by the zero load acting after the step-pulse load has dis-
appeared. In addition,

2. The line TM_ is the longest of such normals from 0' to points on the
phase graph.

The procedure for handling varying dynamic loads has now been described

sufficiently for the verification of a very important and useful result. It is con-

cerned with what is called impulsive loading.

Notice that the length of each elementary arc in any phase graph is equal

tq the product of its radius, P(t)* and the elementary angle cdt, in radians, which

it subtends. This arc length should be considered as positive if P(t) is positive,

and negative otherwise. Consequently, the length of the whole phase-graph curve,

with this convention as to sign, may be made up of negative as well as positive terms.

The algebraic sum of all the arc lengths equals w times the resultant area under the

load-time curve, that is, w times the impulse I delivered by the load to the system.

Now suppose that the load, whatever its other characteristics, becomes zero

after a very short time compared with the period T = 1/f of the system. For example,

let this load be approximated by the step pulse of Figure 8a. The phase graph of

such a load will look like Figure 8b.

The maximum restoring force experienced by the system is the equivalent

static load, 'measured by the length of the line TWiin the figure. But a visual in-

spection shows that this line is very nearly equal in length to the resultant length

of the phase graph OE'E"E" that is, to wl. This leads to the simple formula

P, = WI

for the equivalent static load of an impulsive load in terms of the impulse I and the

natural circular frequency w of the system.

The formula

C P, = Ptl(

on page 3 for the equivalent static load of a constant load P, of duration t, less

* This represents the load P as a certain function of the time t.

*



P, - [36of(t, -t,)]

E"'- M E'

P,p3

(360of-t,) P O'

[360f (t3- t2)]

0oi t t3  TTl/f Figure 8b - Phase Graph of the
Impulsive Load of Figure 8a

than approximately one-sixth the peri-

od of the structure, is a special case

of the preceding formula, since Pt, is
Figure 8a - Load-Time Curve of a
Rapidly Varying Impulsive Load the impulse I of the step pulse.

PEAK DEFLECTION AND TIMES OF PEAK DEFLECTION

Considerably more information about the action of the structure may also be

obtained from the constructions described in the preceding sections. One immediate

consequence is that, if the equivalent stiffness k* of the structure is known, the

peak deflection xM may be calculated from the equivalent static load by the formula**

Ps
M k

Another simple deduction, although not quite so immediate, is that of the

time tM at which the maximum deflection takes place. Two cases may be conveniently

considered. The first is that illustrated in Fig-

ures 2b, 2c, or 4b, on pages 3 and 5, or in Figure

9. In these cases the ESL point M coincides with
E=M

the end-point of the phase graph. The time tM of

maximum deflection is merely the sum of two quan-

P "tities. The first is the total duration td of the

(3so0ftd)o approximate force-time curve, that is, the time

after which no load acts. The second quantity is
O

Figure 9 - Graphical Estimation 1/360f times the angle 6 in degrees traversed in

of Time of Peak Deflection when rotating the final radius of the phase graph to the
the Point M Coincides with the direction of the lineWli, taken in that sense.
End-Point E of the Phase Graph

of the Load Thus we may write, from Figure 9 as an example,

tM = t + 6
360f

* k corresponds to the constant of the spring in the system illustrated in Figure 1 on page 2.

* The subscript M is used for Maximum and corresponds to the point M.
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Figure 11a - Load-Time Curve of a Typical
Gun-Blast Record

4 ' '2 '3 ' -- 1- '4

Time t -

Figure 11b - Step-Pulse Approkimation to
the Gun-Blast Record of Figure 11a

The second case is illustrated by M
Figures 2a, 6b, or 7b, on pages 3, 6, and 7, E

or in Figure 10. Here, the ESL point M is not / P

coincident with the end-point E of the phase [360f(t.-t)* E

graph. Let P, be the approximating step pulse

on whose are in the phase graph the point M is

situated. Let t, be the time at which P. be-

gins to act on the system. Then the time t. P

of maximum deflection is, as before, the sum (360ft).

of two quantities. The first is t,, which can o

be read from the force-time curve. The second Figure 10 - Graphical Estimation
is 1/360f times the angle e, in degrees, be- of the Time of Peak Deflection when

the Point M Does Not Coincide with
tween the initial radius of the arc on which the End-Point E of the Phase Graph
M is situated and the directed line OM, taken

in that sense. That is, we can write, taking Figure 10 as an example,

tM  t 360

In this construction a null-arc on which Mmay be situated is to be treated

like any other arc.

ILLUSTRATIVE EXAMPLE

The following illustrative example of the phase graph method is presented.

The load-time curve chosen is taken from the record of a typical gun blast

and is illustrated in Figure 11a. This can be approximated by the equation

t
P = P0 t , for 0 < t < t

P

up to the time tp of peak positive pressure, and by the equation

P = Po e-( [- 1 - t(t - t,) ], for t > tp

The equivalent step-pulse graph is shown in Figure 11b. Po is the maximum

dynamic load on the structure, attained at the time tp, while a is the time constant

H

I

tp+"



of the blast. The approximating step-pulse load of Figure 11b is so chosen that in

each constant load interval the impulse, or the area under the load-time curve, equals

the impulse delivered by the actual load of Figure 11a in that interval.

The resultant values of load and time for the various pulses are as follows:

P =- = 0. 5 Po

P2 = 1 = 0.6064 PO

P3 = Po(e-)= 0.1298 Po

P4 0 1 = -0.0973 P0

t = tp

t =t + 12 1 2a

3 2 2a

t= t + 1 = + 3.786
4 3 a e- 2 3 a

The example we shall consider is that of a structure with a frequency

f = 23 cycles per second. Table 1 gives all the necessary data for solving the

problem.

TABLE 1

Sample Data Used in Estimating the Equivalent
Induced by a Gun Blast

Static Loads

We first calculate the necessary parameters used in drawing the phase graph. These

are listed in Table 2.

This leads to the phase graph of Figure 12.* From this figure we quickly

scale off the equivalent static load P,, represented by the distance from O to M.

Thus

P, = 336 x 103 pounds

The peak deflection is given as

P
X, =- k 1.45 inch

Since te = ts, and c is read from the phase graph as 186 degrees, the time

at which this peak is reached is

E 186
M = te + 360f = 0.0161 + 360 23 = 0.0385 seconi

* Ps is indicated on page 14 in the final step in drawing the phase graph.

Symbol Quantity Units Value

f Frequency cycles per second 23
k Stiffness pounds per inch 2.32 x 10"

Po Peak Load pounds 343 x 103

tp Time of rise seconds 0.0025
1a Time constant reciprocal seconds 1

0.0135
T Period seconds 0.0434



TABLE 2
Phase-Graph Data for the Gun-Blast Problem

Duration
Symbol Quantity Units Value Dseconds

Pl Initial step pulse pounds 172 x 103 ti= 0.0025

P2  Secondary step pulse pounds 208 x 108 t 2 - t, = 0.0068

P - Tertiary step pulse pounds 44.6 x 108  t8 - t z = 0.0068

P 4  Final step pulse pounds -33.4 x 10 t 4 - t. = 0.0511

360f"t1  Initial phase angle degrees 20.7

360f (t 2 - t1) Secondary phase angle degrees 56.3

360f (ts - t2) Tertiary phase angle degrees 56.3

360f (t 4 - ts) Final phase angle degrees 423.2

Figure 12 - Enlarged Phase Graph of the
Gun-Blast Load of Figure 11b

To illustrate the procedure more clearly, the

graph has been drawn in five steps, the fifth
of which is on page 14.

C

O

II ---



Figure 12 - Enlarged Phase Graph of the
Gun-Blast Load of Figure 11b

These values correspond to the greatest

deflection of the system. There may be
other lesser or relative maxima, as is

indeed the case in the present example.
Such maxima can be estimated from the

phase graph in a way similar to that

used in obtaining the absolute maximum.

If, as we trace out the phase graph
from the point O, we reach a point,
like M' in Figure 12, such that the

line from 0 to the point in question is
normal to the arc on which the point is

situated, this point then corresponds
to a relative maximum displacement of

the system. Relative peak deflections

as well as the time at which they are
reached may then be estimated in a manner identical to that used in estimating abso-

lute peak deflections and times.

Thus, in the illustration, the length of the line OM'divided by the stiff-

ness k of the system gives the relative maximum displacement Xm,, while the time at

which it is attained is again the sum of two parts. One part is the time te, at

which the load P,, begins to act. P,, is the load whose arc in the phase graph con-

tains the point M'. The second part is 1/360f times the angle e~ between the initial
radius of the arc on which M is situated and the directed line MSi', in that sense.
By coincidence, in the illustrative example, Pe = P, = P, and t, = t, = t 3. Con-
sequently we find for the relative maximum displacement of the example

0. 78 P, 267 x 10 3

xsM =  k = k = 1.15 inch

and since te, = t s while e' = 6 degrees, the time of the relative maximum is

tM, = t' + 360f= 0.0161 + 360 23 = 0.0168 second

TABLE 3
Comparison of Observed Data for the Problem in the Text

with That Calculated by the Phase-Graph Method

Symbol Quantity Units Observed* Phase Graph

P, Equivalent static load pounds 267 x 103

XM Peak deflection (second maximum) inches 0.97 1.45
X ,M Relative maximum deflection (first maximum) inches 0.88 1.15
tM Time of peak deflection second 0.0385
tM, Time of first relative maximum second 0.0168

* The data in Table 1, page 12, are for a structure investigated in a field test by the David W. Taylor
Model Basin, and the observed data in Table 3 are taken from the test results.



These values are all to be compared with the corresponding observed values listed in

Table 3. The discrepancy between the observed peak deflection and the value derived

by the graphical methods described may be due to the choice of the constants tp and a.

The method, as described up to this point, can not tell us whether the ab-

solute or the relative peak deflections are positive or negative, although we can tell

when these deflections are reached. To find the sign of the deflection, it is neces-

sary to pursue a simple extension of the method resulting from the dqvelopments in the

Appendix. This extension may be summed up in the following rule:

To find the restoring force or internal load S = kz in a simple elastic sys-
tem of one aegree of freedom, first draw the phase graph of the load acting
on the system. Treat zero loads as generating null-arcs. Then draw a tan-
gent to the phase graph, perpendicular to that radius which makes an angle
of 360f t degrees with the initial radial direction. The perpendicular dis-
'tance from this tangent to the initial point of the phase graph is the re-
storing force S at the time t. To get the deflection z for this time simply
divide S by the stiffness k.

Using this rule, and the phase graph of Figure 12, we can draw the restor-

ing force or internal load-time curve of the system of the example. This is shown in

Figure 13.

/ \\ C /

S/C /

kx(t)

Time t

f I

Figure 13 - Restoring Force in the System of the Example
Acted on by the Blast Load of Figure 11b

The curves in the small figures are duplicates of the phase graph in Figure 12. Each shows howO the rule was applied to find a point on the curve for a series of times. The perpendicular dis-

tances from 0 to the dashed tangent give the restoring forces in the system at each of these times.

The indicated angles between the perpendiculars to the phase graph and the horizontal axis, divided

by 360f, give the times at which these restoring forces act.

Notice that the dashed tangent line of the figure rotates in a counterclockwise direction as we

trace out the phase graph. When the end-point E of the phase graph is reached the dashed tangent

line simply continues to rotate as if it were pivoted at the point E.

I a a



It is seen from Figure 13 that the first maximum, occurring at the time

tmD, is positive, in the direction of the applied force, while the absolute maximum
deflection tM (negative) is attained on the swing-back of the system through its
equilibrium position.

CONCLUSION

With the discussion of this example, the description of the phase-graph
method is concluded. By the use of the rules of procedure described, a draftsman or
ship designer can estimate equivalent static loads and deflections of any structure
which acts like a system of one degree of freedom and experiences any given dynamic
load.

Those who wish to follow through in outline the analytical proof of the
method and its extension to cases in which the initial condition of the system is
not zero, are referred to the Appendix.
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APPENDIX

THEORY AND GENERAL METHOD

SThe material presented in this section is an adaptation of the graphical

analysis of E. Meissner (5) as applied to linear elastic systems of one degree of

freedom.

Consider such a system, as in Figure 14, having a circular natural frequen-

cy of vibration w = 21rf, acted on at the time t = 0 by a load P which may vary with

the time. Let T = wt be the phase angle in radians corresponding to the time t.

Then if we draw the phase graph of the load P by the method described in the body of

the report, we obtain a curve such as that in Figure 15.
The radius of curvature of the curve of Figure 15 at each point is of length

IP(rT) and its positive direction makes an angle r with the positive direction of the

initial radius of curvature. The positive directions of these radii are taken from

the center of curvature to the curve when P(r) is positive, and from the curve to the

ceqter of curvature when P(7) is negative.

Now let us draw the broken tangent line a to the point A of the curve, cor-

responding to the time t, at which point the radius of curvature is P(T). This tan-

gent line is a certain distance, which we may call IS(r) l, from the initial point 0

of the curve. We shall show that S(T), with the proper convention as to sign, is the

restoring or spring force ks in the system at time t.

Let ((, n) be rectangular coordinates in the plane with origin at 0, so

chosen that ( is measured in the direction of positive initial load. The equation of

the tangent line a in these coordinates

is

cos-r + =sinr = S(r)
E

It can be shown, from a consideration of

the intersection of a with a nearby tan- A
gent line and taking the limit, that the

equation of a line perpendicular to the "

/ .2 fa PI) S(T)

S Direction of
ositive Initial Load --

Figure 14 - Linear Elastic System Figure 15 - Graphical Proof of the
of One Degree of Freedom , Phase Graph Construction

_ --



tangent line a through the point A is

sin+ co dS(r)
d7

This last line is coincident with the radius P((r) and is a distance IS' (r) I from 0.
A prime (') is used to denote differentiation with respect to 7.

By a similar method, it can be shown that the line b of Figure 15 through
the center of curvature B of the phase graph, has the equation

-(cos7- q sin-r= dS(-)
d7 2

Thus its distance from 0 is IS"(r)I. Now, if the direction of this last line is
chosen properly, it will coincide with the direction of P when 7 = 0. This fixes the
sign of S(7), and, from the figure, we see that

S"r() + S(r) = P(r)

This is a differential equation for S. Let us rewrite this equation in terms of the
time t, namely

1 S(t) + S(t) =P(t)

where a dot over a symbol indicates differentiation with respect to t. But now, this
is exactly the differential equation of motion of the system,

mi + kx = P(t)

provided we put

S(t) = kx(t)

and remember that w2 = k/rn.

We can now summarize the results. To find the restoring force S in a simple
elastic system of one degree of freedom, draw the phase graph of the load as described
in the report. Then to that radius which makes an angle of 360f. t degrees with the
initial radial direction draw a perpendicular, tangent to the phase graph. The dis-
tance from this perpendicular to the initial point of the phase graph is the restoring
force S(t), where we follow the convention as to sign indicated previously, at time t.
To get the deflection x for this time simply divide S by the stiffness k.

The present treatment of the subject is concerned only with the case in
which the initial conditions are zero. By a simple modification, i.e., translation of
the point 0 to the point of coordinates 4 = kx(O), = k , and then measurement

of distances to the origin rather than to the initial point 0, the solution of prob-
lems with non-zero initial conditions may also be obtained.
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