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NOTATION

u velocity of translation of eddy

v velocity of flow in the stream

I distance between eddies in a row, measured in the direction of motion of the

cylinders

d diameter of each cylinder

c space between cylinders, measured transversely

ac spacing ratio = c/d

CD drag coefficient c

S Strouhal number d d

h distance between eddy rows c Direction of Flow

F circulation T
d

n an integer

p a variable

y a transverse distance on the eddy street

k distance between the two inner rows of four-row eddy street

V velocity in knots

UP velocity at point P

uI velocity of a vortex in row 1

u 2 velocity of a vortex in row 2

s the function tanh irh/1

t the function tanh 7rk/l

V average velocity between cylinders

v; velocity at separation point on outer sides of pair of cylinders

vi velocity at separation point on adjacent sides of pair of cylinders

b distance between conjugate points

f eddy frequency

D drag per unit length

p fluid density

q 1/2 pv 2

e channel width

v' velocity of flow just outside the wake

he width of eddy street of non-vibrating cylinder

6 ho/d

a amplitude of oscillation

f yaw frequency

lo distance between eddies in a row in the wake of a non-vibrating cylinder

vo maximum fluid, velocity around a body

H pressure head

g acceleration of gravity

Po dynamic pressure around a body

S- Po/q
L lateral force or lift per unit length

CL lift coefficient



DIGEST

This report deals with the theory of the lateral hydrodynamic forces exerted

on parallel adjacent cylinders towed through a fluid in a direction perpendicular to

the plane containing the axes of the cylinders. By analogy with the Kirman street of

eddies in the wake of a single cylinder, the theory assumes that a double Karmin

street may be present in the wake of a pair of cylinders and that the lateral forces

on the cylinders is attributable to the circulation remaining as the successive eddies

break away.

By expressing mathematically, as a necessary condition for stability, that

the double vortex street moves as a rigid lattice and only in a longitudinal direction,

it is found that the double Karman street may be of two different types:

Type A when the phase difference between the two streets is 180 degrees; the

forces due to the eddies would cause the cylinders to successively approach and recede

from each other.

Type B when the phase difference between the two streets is 0 degrees; the

forces due to the eddies would cause the cylinders to move as a pair.

Direction of Motion of Eddies Direction of Motion of Eddies

Row I -- ---- Row I -- -*- - * -*--
Row2 *-- o d Row 2 --- h----

k k

Row3 - - -(*------ -- 7  Row3 -3 e.---e----*e---e-
Row4 - --- '--- -- --- -- Row4 - -

Figure 2a - Double KArman Street of Figure 2b - Double K~rman Street of
Type A, k/h>0.45, FI >F12  Type B, k/h>0.45, F1 < 1 2

F1 = Circulation of eddies in rows 1 and 4.
F2 = Circulation of eddies in rows 2 and 3.

By remarking that the eddies will be stronger on that side of each cylinder

where the average velocity at separation is greater, it is possible to predict the

type of street from a study of the velocities around the cylinders. The discussion of

the velocity is based upon a formula given by Lagally in a paper on the flow about a

pair of cylinders (3)* and upon experimental data concerning the velocity distribution

for laminar and turbulent flow about a single cylinder. In the case of turbulent flow

* Numbers in parentheses indicate references on page 16 of the report.
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it is shown, by analogy with the initial stages of the flow about an airfoil, that a

starting vortex may be shed, one from each cylinder, as a consequence of which the

street would change from Type B to Type A.

The space-diameter ratio o = c/d, where c is the distance between the cylin-

ders, and d their diameter, is taken as a parameter determining the configuration of

the wake and, hence, of the hydrodynamic forces acting on the cylinders.

The major points of this study can be summarized as follows:

1. If the flow in the boundary layers of the cylinders is laminar and a.<0.45,

the wake is a single Krmfin street. The eddy forces then cause both cylin-

ders to oscillate as a pair in the plane containing their axes.

2. If the flow is laminar but a>0.45, or, if it is turbulent for any value of

a, however small, the wake consists always of the two Kirman streets, each

containing two rows of vortices.

3. When the flow is laminar and a>0.45, the double Kirmdn street is generally

of Type B, except for a narrow range in the vicinity of a = 1.5, when it
becomes of Type A. In this case the cylinders move as a pair except for

space-diameter ratios near a = 1.5.

4. When the flow is turbulent, there is initially a wake of the B type. For

a <1.0 this condition persists until a starting vortex is generated and shed

into the Karman street. This results in the appearance of a hydrodynamical

force arising from the circulation, equal and opposite to that of the de-

parted vortex, and at the same time the street becomes of Type A. If, how-

ever, the value of is of the order of unity, the wake is unstable; it may

be either of Type A or of Type B. For larger values of a the wake becomes

stable and of the B type.

These conclusions seem to be in agreement with the experimental data obtained

by photographing the wake for laminar flow, and with a number of isolated phenomena

observed in connection with experimental work on the transverse vibration of adjacent,

parallel cylinders.

A number of experimental and theoretical results concerning the wake and

eddy frequency of a single cylinder and a pair of cylinders, cavitation between a pair

of parallel cylinders, and the lateral force on a cylinder due to the vortices in its

wake, are given in the appendices.



FLOW ABOUT A PAIR OF ADJACENT, PARALLEL CYLINDERS NORMAL TO A STREAM

THEORETICAL ANALYSIS

ABSTRACT

To account for the behavior of a pair of adjacent parallel cylinders normal

to a stream, a photographic study of the wake was undertaken. Three types of wake

were found, only one of which could cause the cylinders of the pair to vibrate trans-

versely with a phase difference of 180 degrees. By investigating theoretically a

necessary condition for the stability of four rows of vortices, criteria were found

from which the type of wake can be predicted.

SIn the case of laminar flow in the boundary layer of the cylinders, there

is only a small range of the spacing-diameter ratio of the cylinders, about 1.5, in

which the proper wake for the cylinders to vibrate 180 degrees out of phase is ob-

tained. When the boundary-layer flow is turbulent, however, the proper wake can be

obtained for all space-diameter ratios that are, roughly, less than unity. These con-

clusions are in complete agreement with both the photographic study of the wake and

the observed behavior of adjacent parallel cylinders.

The speed and spacing of the vortices in the wake of two parallel cylinders

were measured from the photographs and the Strouhal* numbers and drag coefficients

were calculated. The Strouhal numbers are about 1/3 larger than those for a single

cylinder. The variation of the drag coefficient with spacing is in good agreement

with directly determined experimental values.

INTRODUCTION

When the coupled** oscillation of a pair of parallel non-rigid cylinders in

a stream was observed, neither an explanation nor a record of this phenomenon could

be found in the published literature. The theoretical work on the frictionless flow

about a pair of opposite cylinders predicted a small attraction between the cylinders,

but in actual flow the cylinders were found to behave as if they repelled each other.

By analogy with the whipping of a single cylinder due to the eddy street in its wake,

a similar explanation for the behavior of a pair of cylinders seemed probable.

To ascertain whether the vibration of a pair of parallel cylinders could be

attributed to eddy forces, the wake of a pair of non-vibrating cylinders was photo-

graphed and studied. To interpret and apply these results it was necessary to develop

a theory of the wake. To be successful, this theory must be able not only to predict

the conditions under which a pair of cylinders will vibrate and touch each other but

also to explain the numerous isolated phenomena that have been observed in investigat-

ing the behavior of parallel cylinders.

* Defined in Appendix 1.

** The 'coupling' refers to a phase relation between cylinders oscillating with the same frequency.
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PHOTOGRAPHIC STUDY OF WAKE BEHIND TWO PARALLEL CYLINDERS

To ascertain whether the coupled oscillation and contact of a pair of paral-

lel cylinders could be attributed to eddy forces, a pair of non-vibrating, parallel

cylinders was towed in a tank in a direction normal to the plane of the cylinder axes,

and the wake was photographed.

Cylinders of 1/2-inch diameter and 10-inch length were employed, placed side

by side with their axes vertical, and immersed to a depth of 6.5 inches. The tank was

10 feet long, 11.5 inches wide, and 7 inches deep. The cylinders were supported and

towed by a carriage running on tracks along the sides of the tank; the carriage was

driven by a gravity dynamometer.

The surface flow around the moving cylinder was photographed with a station-

ary motion picture camera, with axis vertical, set at about the center of the tank.

Exposures of 8 frames per second were made of the moving cylinders and their wake at a

cylinder speed of 0.22 knots, for spacings between the adjacent tube walls of zero,

0.125, 9.25, 0.50, 0.75, 1.00 and 1.50 inch.

An enlarged print from one of the photographs for each spacing is shown in

Figure 1. At spacings of zero and 0.125 inch (1/4 diameter), the cylinders act as a

single object, forming a single Karman vortex street of two asymmetric rows of eddies

in their wake. At the 0.25-inch spacing (1/2 diameter), each cylinder begins to form

its own vortex street, although the two inner rows are intermingled and poorly defined.

At the 0.50-inch (1 diameter) and larger spacings, 4 rows of vortices are present in

the wake, each cylinder of the pair forming its own vortex street.

The theory that the cylinders vibrate transversely in opposite phase because

of eddy forces requires that each cylinder form its own eddy street and that these

eddy streets be directly opposite in phase, as shown in Figure 2a. The latter condi-

tion is necessary to insure that the two cylinders successively approach and recede

from each other. An examination of the photographs shows that these conditions are

satisfied only at the 0.75-inch spacing, i.e., at a space-diameter ratio a = 1.5.

However, at this value of a it is improbable that the amplitude of vibration of non-

rigid cylinders can be large enough to cause the cylinders to touch each other. Since

the Reynolds number for the test was 1300,* this indicates that a pair of vibrating

cylinders cannot touch in laminar flow.

At the smallest spacings in the tests, the eddy forces would have caused the

pair of cylinders to yaw as a unit had they been free to undergo a lateral motion.

Figure 1 shows that this is also the case for the spacings o = 1.0, 2.0, 3.0, where

the vortex configuration was of the type shown in Figure 2b.

Measurements of the speed and spacing of the eddies were made from the mo-

tion picture negatives. Values of u/v and 1/d, where

u is the speed of translation of the eddies

v is the speed of flow at a great distance from the cylinders

* Flow about a cylinder is laminar for Reynolds numbers up to about 200,000.
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Figure 1 - Photographs of Wake behind a Pair of Parallel Cylinders

The motion of the water around the cylinders is made visible by aluminum powder blown onto

the clean surface of the water. The direction of motion of the cylinders is from left to right.
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1 is the distance between consecutive eddies in a row

d is the diameter of each cylinder

were computed from the measurements for the various cylinder spacings and are given in

Table 1. The drag coefficients CD and the Strouhal numbers 8 in Table 1 were computed

from Equations [15] and [171 of Appendix 1.

Direction of Motion of Eddies

Row l h- d-- * e - e -

Row2 - o- *- *- -

Row - --* k
Row4 -4 - ---

Figure 2a - Configuration of Four Rows of
Eddies, Type A

Direction of Motion of Eddiesa

Row I -- i- Ai
Row2 --- ,*-- *- --- I0

Row4

Figure 2b - Configuration of Four Rows of
Eddies, Type B

TABLE 1

Characteristics of Eddying Wake of a Pair of Parallel Cylinders

in a Stream at a Reynolds Number of 1300

Direction of Flow

c d
ci

- Cd CD

Space-
Diameter
Ratio, a

0
0.25

0.50
1.00
1.50

2.00

3.00

Number
of Rows of
Vortices

0.34
0.24

0.26

0.24

0.24

0.23

0.23

h
1

0.35
0.31

0.30
0.30
0.33

0.30
0.32

Strouhal
Number

S

5.9
6.7

3.2
3.2
2.9
3.2

3.1

0.112

0.113
0.245
0.24

0.26

0.24

0.25

Drag
Coeff.
CD

1.39
1.14
1.18
1.09
0.99

1.06

1.02

Type of Eddy
Configuration

Karmdn Street

Khrman Street

4 Rows - Confused

4 Rows - Type B

4 Rows - Type A

4 Rows - Type B

4 Rows - Type B

In comparing the Strouhal numbers, those for a = 0 and a = 0.25 should be

doubled, since the pair of cylinders is acting as a single object, forming a single

wake. Thus modified, the Strouhal numbers are about 25 per cent larger than those

obtained with a single cylinder, as given in Appendix 1.

As shown by Table 1, the drag coefficient increases by about 35 per cent

over the value for a single cylinder as the spacing is reduced to zero. For space-

diameter ratios a between 1.00 and 3.00, the drag coefficient is very nearly constant,

with an average value CD = 1.04. The data show that CD is still decreasing slowly

at a = 3.00, which indicates a drag coefficient of about CD = 1.00 for large spacings,

and hence for a single cylinder also. These results are in good agreement with actual

experimental drag measurements, both as to order of magnitude and trend. The drag was

-
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found experimentally to increase 33 per cent when the cylinder spacing was reduced to

zero (1).*
The drag of a single cylinder, towed vertically and partly immersed to

various depth-diameter ratios, has been measured at the Taylor Model Basin. The drag

coefficient for a single cylinder immersed to a depth-diameter ratio of 13, as in the

present case was found to be 0.95 at the corresponding speed-diameter ratio V/f

where V is the speed in knots.

STABILITY OF FOUR ROWS OF VORTICES

The wake photographs of Figure 1 show that there are two types of 4-row

vortex configurations. Both types, as illustrated in Figure 2, consist of two vortex

streets, one due to each cylinder of the pair. In Type A, Figure 2a, the two streets

are 180 degrees out of phase; in Type B, Figure 2b, the two streets are in phase.

Necessary conditions for the stability of either type of double vortex

street are that the lateral component, transverse to the direction of motion, of the

velocity of each vortex be zero and that the longitudinal components of the vortices

in all the rows be equal. The first condition limits the possible phase differences

of the two streets to either 0 or 180 degrees. The consequences of applying the sec-

ond condition to the two types of double streets will now be investigated.

First, the velocity due to a single row of vortices at a point P, situated

as shown in Figures 3a and 3b, will be computed as was done by von Karmin (2). Let I"

be the circulation of each eddy in the row and P be a point directly opposite one of

-Direction of Flow

r yU,
L p p

P P

Figure 3a Figure 3b

Figure 3 - Velocity due to a Single Row of Vortices

the eddies and at a distance y from it. The velocity at P due to an eddy, say the one

at Q in Figure 3a, is F/2rr in a direction normal to r, as shown in the figure. The

lateral component of this velocity is balanced by an equal and opposite component due

to the vortex at Q'. The longitudinal component, Fy/27r'r, is reinforced and doubled

by the effect of the vortex at Q'. Hence the velocity at P due to the vortices at Q

and Q' is 214/[27 (412 + y2)]. Summing up the longitudinal components due to all the

vortices in the row, the velocity at P is

UP= 1 y+n22+y2]

Numbers in parentheses indicate references on page 16 of this report.



1 27r2Y2

or L

Up - coth * [1]

Similarly, the speed at a point P situated as shown in Figure 3b, is given by

87ry

TT 2y F z 1
27Z (n - 1 2 y 2  21 n ( 2 

2n 2 r 2

Hence, by Equation [3]

The condition for the stability of a double vortex street can now be derived.

First consider a double street of Type A, Figure 2a. Let F, be the circulation of the

vortices in rows 1 and 4, F2 that in rows 2 and 3. The velocity of a vortex in row 1

is due to the vortices in rows 2, 3 and 4. The velocity due to row 4 is given by

Equation [1] with y = 2h + k, where k is the distance between the inner rows of eddies.

The velocities due to rows 2 and 3 are given by Equation [4] with the appropriate

values of y.

Direction of Motion of Eddies

Rowl -- *--- -- --
Row2I

Row3 -- 4 -- *-- .---
Row4 - *-- -- -"- --

Figure 2a - Configuration of Four Rows of
Eddies, Type A

Direction of Motion of Eddies

Row --I -- *

Row2 -- T
I I

Row3 ------ - -e---o- 1
Row4 --- -- -- --

Figure 2b - Configuration of Four Rows of
Eddies, Type B

For this purpose, use is made of the following series expansions, taken from "A Textbook of Algebra,"
by G. Chrystal, Vol. 2, 2nd Edition, page 362, A. and C. Black, Ltd., London,1926:

p coth p = 1 n2 7r
2 + p2

n= 1

tanh p 8p
t (2n 1) 7 

2+4p



Hence

ui =A 1 2tanh -- 2  i(h+ k) ±F- coth (2h+k) [5a]

Similarly the velocity of a vortex in row 2 is

u2 = [ 1 tanh zj- -2 coth E- + 1 tanh r(h + k)

For stability, ui = u2, so that

tanh -h - tanh r(h + k) + coth 7k
= 1 1 1 [51

F2 htanh- + tanh (h + k) _ coth i( 2 h + k)1 1 l

Since the hyperbolic cotangent-is greater than the hyperbolic tangent except when the

argument is infinite, when both are equal to unity, the numerator of Equation [5] is

greater than tanh 7rh/l, and the denominator is less than tanh 7rh/. Hence F, is

greater than F2 .

Now consider a double street of Type B. Let F, be the circulation of the

vortices in rows 1 and 4, F, that in rows 2 and 3. The velocity of a vortex in row 1

is

u 1 =: 2 tanh - F2 coth (h + k) + F tanh (2h + k)
ut-21 1Ltn , oh I +F 1 1

Similarly the velocity of a vortex in row 2 is

2  [1tanh -2 tanh / + r1 coth f(h+k)

Hence, putting u, = u2 and solving for 1-1/1"2 , the condition for stability is

tanh 'h - coth F(h + k) + tanh 6k
[= 1 1 1 [6]
F2  tanh r+ coth( + k) _anh r(2h + k)

1 1
Applying the same reasoning as before, the numerator is less and the denominator

greater than tanh 7rh/1. Hence F, is less than F 2.

Equation [6] must also satisfy the condition that F,/IF 2 is greater than

zero; i.e.,

'h k 7r(h +k)tanh + tanh - coth (h + k) > 0

Assume h/1 = 0.30, as was found experimentally. Then the inequality is certainly not

satisfied for very small values of k. To find the smallest value of k for which the

condition is satisfied, put s = tanh 7rh/1, t = tanh 7rk/I.

Then

coth (h +k) 1 + st
I s+t

Hence
+ t + st

S +t

I I
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and

s 2 + st + t 2 - 1= 0

or

t /4 - 3S2- s
2

Put s = tanh O.30r = 0.736.

Then t = 0.402, 7rk/1 = 0.426

Hence

k/h = 0.45 [7]

This is the smallest value of k/h with which a double vortex street can oc-

cur. If this condition is satisfied, the double vortex street will be of Type A or

Type B according as the circulation of the outer eddies is greater or less than that

of the inner ones. But since the strength of a vortex shed at one side of a body is

proportional to the velocity at the point of separation on that side, the cylinders

will tend to vibrate transversely in opposite phase or yaw as a whole according as the

velocity at the separation points on the outer sides is greater or less than that on

the inner sides of the cylinders.

VELOCITIES AT INNER AND OUTER SIDES OF A PAIR OF PARALLEL CYLINDER

FLOW BETWEEN CYLINDERS

An expression for the total rate of flow between a pair of cylinders has

been derived by Lagally (3) for frictionless flow. Since, as has been frequently

shown, the actual velocity distribution around a body differs little from that com-

puted from potential flow up to the neighborhood of the separation point, Lagally's

formula will be applied to obtain an estimate of the velocity between the cylinders.

Figure 4 shows a section of a pair of cylinders of diameter d with axes at

0, and 02. 0 is the midpoint of 0102 and OT is the tangent from 0 intersecting the

cylinder about 02 at T. The circle about 0 with OT as radius intersects 0102 at P,

and P2. The points P1 and P2 are called the conjugate points of the circles at 01

and 02. Applying the theorem that the tangent to a circle is the mean proportional

between the whole secant and its external segment, the distance b between the conju-

gate points is given by

b) (d + C

or

S -[8]C c=i

wxere c is the space between the cylinders and a = c/d.



It can be shown that the conjugate

points have the interesting property that

the ratio of their distances to any point on

either circle is a constant. At,the point d ,0

R in Figure 4 the ratio is P

PsR b - c RP 2 1? _ b .c = * (say)R
PR - Direction

The number A can be expressed in terms of b Flow

the space-diameter ratio a =-c/d by substi-

tuting for b from Equation [8]. Thus by T

Equation [8] d%

b+c b2 +2bc+c 2  2c(b+c+d)

b -c b2 - C2  2cd

b + e( + b+
Figure 4 - Section of a Pair of

Hence Parallel Cylinders showing Position

X =10g 1+ a (1++ +91 ~ of Conjugate Points P1 and P2

Values of b/c and A against a are given in Table 2.

Suppose there is circulation f, and FI about the cylinders, es indicated in

Figure 4. Then Lagally's theorem states that the quantity of fluid flowing between

unit length of the cylinders per second is

F = bv - (r + 1x) A [101

where v is the velocity at a great distance from the cylinders.

Let W be the average velocity between the cylinders. Then F = ef and hence

Equation [10] becomes

- b r,+ r Li
c c

When the flow is irrotational this gives

F .b [11a]T c

Let vi be the velocity at the point of separation between the cylinders

when the flow is irrotational. When-a is small it is reasonable to assume that,

neglecting the thickness of the boundary layer, the velocity distribution is uniform

between the cylinders, so that va = . When a becomes large, however, b/c approaches

1.0 while v; approaches 1.5 v, the actual velocity (4) at the separation point for

flow about a single cylinder.

. . ...



TABLE 2

Values of b/c, A, vl/v, and v /v against a

a b/c A v/v v /v

0.1 4.58 0.443 4.58 1.981
0.2 3.317 0.623 3.317 1.903
0.3 2.770 0.757 2.770 1.852

0.4 2.450 0.867 2.450 1.815

0.5 2.236 0.963 2.238 1.786

0.6 2.080 1.050 2.084 1.763

0.7 1.963 1.122 1.971 1.744

0.8 1.871 1.194 1.885 1.728

0.9 1.795 1.254 1.815 1.713

1.0 1.732 1.317 1.760 1.701

1.2 1.634 1.427 1.686 1.680

1.4 1.559 1.522 1.648 1.664

1.6 1.500 1.610 1.635 1,650

1.8 1.454 1.692 1.644 1.638

2.0 1.414 1.762 1.660 1.628

, =i log + a 1+
v' a 1 1

Sb 1.5a4 + 30 b 1
v c a + 30 c 2+6

_ 1.5V == 2.25 1.5v b
cC

It will be assumed for purposes of discussion that v is given by

v bl 1.54 +30.
v c C(4 + 30

[12]

This function of a was invented because it not only satisfies the aforementioned con-
ditions when a is small or very large, but as will be seen, because it is in accord-

ance with the observed changes in the type of the double eddy street. Values of v/v
computed from Equation [12] are given in Table 2 and plotted in Figure 5.

VELOCITY AT SEPARATION POINTS ON THE OUTER SIDES OF THE CYLINDERS

An interpretation of Equation [11a] is that if planes are passed through
the conjugate points P, and P2 normal to the line 0102, all the fluid between these
planes, extended to the undisturbed region ahead, passes between the cylinders. Hence,
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2.0 C of Flw1 is velocity at separation

points on the outer sides

1.9 of the cylinders.

V 1.8 _ is velocity at separation

4 points on adjacent sides

of the cylinders.

v V is the velocity of flow at

1.6 a great distance from the

cylinders.

1.5
0.6 0.8 1.0 1.2 1.4IA 1.6 1.8 2.0

Space-Diameter Ratio, c/d - a

Figure 5 - Comparison of Velocities at Separation Points on Outer
and on Adjacent Sides of a Pair of Parallel Cylinders

if the cylinders are moved toward each other until the planes through P, and P.

coincide, the flow about the single resulting body, shown in Figure 6, will give the

flow outside the pair of cylinders in Figure 4.

To obtain an approximation to the velocity at the separation point v, of

the body in Figure 6, the body will be assumed to be equivalent to an ellipse whose

major axis is 2d + c -b and whose minor axis is d. [- - d ---

Hence, from (6),

v - 0.75 1+ 2d + -- b

or o,
or_ 01 Direction
r15 of Flow= 2.25 -0.75 - 2.25 1.50 i of W

V 1+ A13]1

Values of vA/v are given in Table 2 and plotted in

Figure 5. Figure 6 - Body Derived from
Figure 4 by moving Planes
through Conjugate Points P,

VARIATION OF TYPE OF WAKE WITH SPACING OF CYLINDERS and P2 into Coincidence

LAMINAR FLOW

The.measurements from the wake photographs of Figure 1 indicate that for

laminar flow h = d and k = c. Hence, from Equation [7], for values of a less than

0.45, the wake will contain a single vortex street for the pair of cylinders, in agree-

ment with the photographs.

_ _~~____111~~_~_ _ _~1__ ___ ~ ___ __ _~__ _ __1 _1_1____1 _ _ 1~1_ _~___~_~_______I__ ~____ ~~I~__



For larger values of a Figure 5 shows that v' is greater than vi except for

a range of values of a between 1.23 and 1.74. This indicates that the double vortex

street would be of Type B except for a between 1.23 and 1.74 where it would change

over to Type A. While the particular function for v /v in Figure 5 is arbitrary to

some extent, it was chosen so as to illustrate how the :ype-A vortex configuration

for a = 1.5 in Figure 1 could have occurred.

Direction of Motion of Eddies Direction of Motion of Eddies

Row 1 - Rowl I*Row2 to. - *--- Row"2 ----o-" *
k k

Row3 - - -*- - 4 -- *---- Row3 -(*---e-- *--- - -
h h ad

Row 4 - *- * - *- *-- Row 4 -*- e- * - -

Figure 2a - Configuration of Four Rows of Figure 2b - Configuration of Four Rows of
Eddies, Type A Eddies, Type B

TURBULENT FLOW

The most important effect of turbulence in the boundary layer of a cylinder

upon the flow is that the width of the wake is considerably decreased. To make the

discussion more concrete, suppose the width of the street behind each cylinder to be

reduced to h = d/2. This is illustrated in Figure 7. The space between the inner

rows of vortices is

k = c + dk c d

Hence
c + d

k 2S 2 = 1+2a
h d

2

so that k/h is greater than the limiting value of 0.45 from Equation [7] no matter

how small a may be. Hence, when the flow is turbulent, the wake consists of a double

vortex street even at the smallest spacings.

It has been seen, Figure 5, page 11, that when a is small v is much greater

than vi when the flow is irrotational. This implies that the double vortex street be-

hind the cylinders would be of Type B, as shown in Figure 7, so that the cylinders

would displace themselves transversely as a single body under the action of the eddy

forces. To understand how, under these circumstances, the cylinders can begin to vi-

brate transversely and touch as is actually observed, it will be useful to review a

number of facts concerning the flow about an asymmetrical airfoil.

When the flow about an asymmetrical airfoil first starts,the streamline pat-

tern is approximately that due to irrotational flow; the most important characteristic



of this is a large velocity gradient across the thin wake at the trailing edge. Owing

to the action of the small viscosity in the boundary layer, the large velocity gradi-

ent causes the so-called "starting vortex" to be rolled up. This vortex grows until

the velocity is the same on

both sides of the thin wake,

and then is shed, leaving a

resultant circulation, equal

and opposite to that of the

vortex, about the cylinder.

As the starting vortex is

swept downstream the airfoil

experiences a lift proportion-

al to the circulation, and

diminution of the drag pro-

portional to the square of the

circulation.

Suppose the angle of

angle. The important features

Direction of Flow -

d/4

d/2

c+d/2 C
.... o- -- ----- - *-- -o-- -- - -d

Figure 7 - Double Vortex Street of Type B for
Turbulent Flow around a Pair of Cylinders

attack of the airfoil is increased to the stalling

of the flow at the stalling angle are the widening of

the wake and the formation of an eddy street within the wake. The former manifests

itself by an increase in drag, the latter by an oscillating lift superimposed upon the

steady lift already present.

The foregoing considerations are directly applicable to the case of turbu-

lent flow about a pair of adjacent parallel cylinders. As in the case of the airfoil,

the initial flow is irrotational so that the velocity between the cylinders is greater

than that on the outer sides for small values of a, and a double vortex street of Type

B is formed. However, because the wake is narrow for turbulent flow, the velocity

gradient across the wake is sufficiently large so that starting vortices may be shed,

one from each cylinder. These leave equal and opposite circulations about the cylin-

ders which cause the velocity of flow between the cylinders to diminish, in accordance

with Equation [11], and the velocity on the outer sides to increase. Furthermore, as

in the case of the airfoil, there should be a considerable drop in drag as the start-

ing vortices are shed.

It has been observed experimentally that parallel cylinders that are free to

move or vibrate laterally, and are unrestrained by either amplitude stops or restoring

forces, act as if they repel each other. This implies that the effect of the circula-

tion is to make the velocity on the outer sides greater than that between the cylin-

ders so that a double vortex street of Type A will be formed. Hence if the cylinders

are restrained from separating too far, i.e., if a is small, they will move toward

and away from each other periodically under the action of the eddy forces.

If the value of a is increased to about unity, the difference between v; and

v; is small for the initial irrotational flow, as is shown in Figure 5. Hence the

NO



velocity gradient across the wake of each cylinder may be too small for a starting

vortex to be shed, so that the vortex street may be of Type B, and the cylinders may

vibrate intermittently. However, when a is about 1.5, the wake will again be of Type

A, as for laminar flow, and the cylinders will vibrate continuously in opposite phase.

EXPERIMENTAL VERIFICATION OF VORTEX THEORY OF VIBRATING CYLINDERS

The experimental work in connection with the transverse vibration in oppo-

site phase of adjacent, parallel cylinders is described elsewhere (8). It will suf-

fice here to record several of the isolated phenomena that were observed in the course

of the experiments, and to show how they can be interpreted in terms of the vortex

theory.

1. The cylinders do not begin to vibrate and touch until some time after uni-

form speed has been established, and there is a sudden drop in drag just as contact

begins. According to the theory, the time lag is required for each cylinder to build

up a starting vortex, and this, when it is shed, causes a diminution in drag.

2. When a pair of parallel cylinders is accelerated slowly from rest, it is

found that there is a minimum speed that must be exceeded before the cylinders will

begin to vibrate in opposite phase, but once they have begun, they will continue to do

so as the speed is reduced to values considerably less than the first minimum. The

initial minimum speed is required so that the wake may become sufficiently narrow,

either in transition or in turbulent flow, for a starting vortex to be shed. Once the

starting vortex is shed, the velocity must be decreased to a value well below the first

minimum before a vortex of opposite sign is shed and the circulation about the cylin-

ders is nullified. Since the cylinders will vibrate as long as the circulation per-

sists, this accounts for the observed behavior.

3. It has been noted that the vibration and contact is frequently intermittent.

According to the present theory this would correspond to the case where, after the

starting vortex is shed, the velocities on the two sides of each cylinder are about

equal so that a slight disturbance can change the wake from Type A to Type B, or vice

versa.

CONCLUSIONS

When a pair of parallel

cylinders is placed in a stream with Direction of Flow

the plane of the cylinder axes normal

to the flow, the vortex configuration (.- - - -- 0
in the wake is one of three possible h

types. If the flow in the boundary -

layer of the cylinders is laminar, Laminor Flow, c/d < 0.45

and the space-diameter ratio a is less



than 0.45, the wake will contain a single, large vortex street, consisting of two

asymmetric rows of eddies. It the cylinders are free to undergo lateral motion, the

pair will move transversely as a single body under the action of this wake.

If the flow in the .4Direction of Flow
boundary layer of the cylin- 

Direction of Flow

ders is laminar and a is

greater than 0.45, or if the e-----*-- ------------ y-!

flow is turbulent, for all OT__ __ _
k c

values of a, the wake will ---- ---- --- --- ---
consist of a double vortex 44-----*----------- (---4'-
street containing four rows Wake of Type A for Laminar Flow, c/d 1.5

of vortices. As the flow

changes from laminar to turbulent the minimum value of a to obtain the double vortex

street decreases from 0.45 to zero. There are two possible types of double vortex

streets, one type, called Type A, where the phase difference between the two streets

is 180 degrees, the other type, called'Type B, where the phase difference is zero. A

wake of Type A causes the cylinders to vibrate in opposite phase; a wake of Type B

causes them to vibrate as a whole in the same phase. The wake will be of Type A or

Type B according as the velocity at the point of separation is greater or less on the

outer sides of the cylinders than that between the cylinders.

When the flow is

laminar the wake will be of Direction of Flow

Type B except for values of a

near 1.5. At this spacing

the cylinders will vibrate _ 0
180 degrees out of phase but k c

their amplitude of oscilla- ___ ____ _
tion will probably not be
large enough for them to Woke of Type B for Laminar Flow, c/d 1 .5 but > 0.45

touch each other.

When the flow is turbulent or in

transition the wake will be of Type B when

the flow is first set up around the cylin- Direction of Flow

ders. If the value of a is less than about

unity a starting vortex will be shed and _7-t-

the wake will be of Type A, the effect of 4,1--4 ---- - -.4 _
k -C

which is to cause the cylinders to vibrate' -j.--*---4--- -----

and touch. For values of a between 1 and

2, the wake will be either of Type A or B Wake of Type A for Turbulent Flow, c/d < I

so that the cylinders will move traps-

versely and touch each other intermittently.
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At still larger values of a the wake will be of Type B and the cylinders will move

transversely as a pair.

The theory presented herein accounts for a number of isolated and hitherto

unexplained phenomena observed in experiments when towing adjacent, parallel cylinders.
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APPENDIX 1

WAKE AND EDDY FREQUENCY OF A CIRCULAR CYLINDER

The wake behind right circular cylinders normal to a stream has been in-

tensively studied by numerous investigators. The most salient facts, of interest in

interpreting the behavior of two parallel cylinders normal to a stream, are recapitu-

lated here.

It is well known that, when a cylinder moves through a fluid, eddies are

shed periodically from the cylinder, forming the Karmin vortex street. Each time an

eddy is released, an unbalanced lateral force acts on the cylinder. When these later-

al forces become large enough, and if the cylinder is free to vibrate laterally, it

undergoes a forced vibration with a frequency equal to the eddy frequency. If the

eddy frequenficy becomes approximately equal to the natural frequency of the cylinder,

the amplitude of vibration of the cylinder may become quite large.

It can be shown by a dimensional analysis that the dependence of the eddy

frequency upon the various characteristics of the flow is expressed by a single curve

of the Strouhal number, fd/v, against the Reynolds number vd/v, where

f is the eddy frequency, per second
d is the diameter of the cylinder, in feet

v is the velocity of the stream, in feet per second

v is the kinematic viscosity

This curve, as obtained experimentally by Relf and Simmons (5), is shown in Figure 8.

The product of the Strouhal by the Reyn-

olds number results in a number fd 2/v f= Eddy Frequency 6.0D

that involves the eddy frequency but not d Diameter of Cylinder
that involves the eddy frequency but not v Speed of Flow

the speed. The curve of fd 2/v against v Kinematic Viscosity- 5.0

the Reynolds number in Figure 8 expresses

frequency as a function of speed. When /

the frequency is given, the corresponding 4 4D0

speed can be computed directly from the >  fd 2

curve of fd 2l/v but not from that of the 0./ _ &
0.3 3.0

Strouhal number.

From considerations of the fd

momentum in the wake, von Karmin (2) de- 0.2 2.0

rived the following expression for the f

drag D per unit length of a two-dimen- v y I V
0.1 1.0

sional body in terms of the velocity 2 3 4 5 6

and spacing of the eddies in its wake LogO Id

Figure 8 - Non-Dimensional Curves of Eddy

D - q .587 -0.628 [14] Frequency against Speed
I, V1l.8 -068[4
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where
1 2q = pv2

p is the density of the fluid

I is the distance between successive eddies in the same row

u is the speed of translation of an eddy.

Writing F(u/v) for the bracketed factor in Equation [14] the drag coefficient for a

cylinder may be written as

CD = 1 F u [151

expressing the drag coefficient in terms of the ratios 1/d and u/v which can be de-

termined from measurements of the wake.

The Strouhal number can also be expressed in terms of these ratios. By

analogy with the wave formula which states that wave speed is the product of frequency

by wave length, the eddy frequency can be computed from the relation

f = vU [16]I

Hence, the Strouhal number is

S . - [17]

The ratios occurring in Equations [15] and [17] may, with profit, be ana-

lyzed still further. Thus
d d h [18]1 h I

where h is the width of the eddy street, as shown in Figure 9. It has been shown

theoretically by von Karman, and verified experimentally, that the ratio h/1 is con-

stant, independent of the cause of the wake and of the Reynolds number. The computed

Direction of Flow

h Q__d

Figure 9 - Karmin Street in Wake of a Cylinder in Laminar Flow

value of h/1 is 0.281 and the experimental value is 0.32, although some doubt has been

cast on the validity of the latter figure. Assuming h/1 = 0.30, Equation [18] becomes

d = 0.30 d [18a]
I h

An exception to the constancy of h/1l, for the case of a cylinder in a very restricted

channel, is given in Table 3.
The experimental values of u/v for several objects of various shapes are

given in Table 3. While these values are by no means the same, it is possible to



TABLE 3

Characteristics of the Vortex Street in Various C.ases

Conditione channel width Reynolds h h I U Computed Values
Condition, diameter of cylinder Number I d d v S CD

Circular cylinder, open flow (2) 2000 0.30 1.3 4.3 0.14 0.200 0.90

Circular cylinder, wide channel (6) 300 0.30 1.3 4.3 0.15, 0.197 0.96

Circular cylinder, e/d = 3 (6) 300 0.30 1.2 4.0 0.22 0.195 1.28

Circular cylinder, e/d = 1.5 (6) 300 to 750 0.45 0.9 2.0 0.53 0.235 1.33
Flat plate normal to flow (2) 3000 0.30 1.6 5.5 0.20 0.145 1.60

Elliptic cylinder, 6 to 1 fineness 382 0.307 1.43 4.65 0.094 0.194 0.66
ratio (7), minor axis normal to flow 3 I I

correlate the variations by making the following assumption. It appears reasonable to

assume that the velocity of an eddy street depends only upon the velocity of flow just

outside the wake, v'. On this basis
U U e

- = .V [19]

Suppose, further that u/v' = 0.10, i.e., that

u = 0.10 [19a]

As a check on the validity of this assumption, consider the values of v'/v indicated

by Equation [19a], corresponding to the values of u/v in Table 3. The value v'/v

= 1.4 is reasonable for a circular cylinder, considering that the measured velocity at

the separation point is 1.5v (6). The increase in the other cases appears to be of

the correct order of magnitude. For example, consider the value v'/v = 5.3 in the

case of the most restricted channel in Table 3. Owing to the presence of the cylinder

the channel is restricted to 1/3 its area at the separation point around the cylinder.

Thus, if the velocity distribution were uniform, the velocity v' would be 3v. Since

the velocity actually increases from zero at the wall, the value of 5.3 is not unrea-

sonable.

The characteristics of the vortex street in a number of cases are given in

Table 3.

The significance of expressing the drag coefficient and the Strouhal number

in terms of the ratios h/d and v'/v is that, in cases where no experimental data are

available, it may still be possible, on the basis of theory or experience, to make a

judicious estimate of the width of the wake, i.e., h/d, and of the velocity just out-

side the wake, i.e., v'/v. This is illustrated by the following examples.

EXAMPLE 1. Wake of a Circular Cylinder in Turbulent Flow

When the flow changes from laminar to turbulent, the wake becomes narrower.

Suppose h/d = 0.65, half the value for laminar flow, as shown in Figure 10. Since the



Directior of Flow flow closes in abaft the cylinder,

suppose vv = 1.10. Hence, from

h--.----- ----- ------- . __ Equations [18a] and [19a], d/1 = 0.46

and u/v = 0.110. Substituting these
Figure 10 - Ka'rman Street in Wake
of a Cylinder in Turbulent Flow values in Equations [15) and [17]

CD = 0.36

and

S = 0.41

in good agreement with experimental values.

EXAMPLE 2. Wake of a Cylinder in Transverse Vibration

Due to the Action of its Vortex Street

When a cylinder is vibrating under the action of its vortex streeL it sheds

an eddy at each end of its oscillation cycle. As a consequence, the normal width of

the eddy street is increased by the total

Direction of Flow amplitude of the vibration, i.e., the

1 -h 0/2 total motion in a cycle of a point of the

--- ,cylinder. This is illustrated in Figure
h=a+ho - d

h0/2 Suppose the amplitude to be

Figure 11 - Karmdn Street in Wake of equal to the diameter, and let h and ho

a Vibrating Cylinder in Laminar Flow be the widths of the street with and

without vibration. Then, in laminar flow,

from Table 3, h/d =(h o +d)/d = 1 + 1.3 = 2.3, u/v = 0.14. Hence S = 0.113, CD = 1.59.

Effects of this magnitude have been frequently observed at the Taylor Model Basin.

Observation of this phenomenon and its explanation have not been encountered elsewhere

in the literature.

More generally, let a denote the total amplitude of the oscillation, and let

6 = ho/d, when the cylinder is prevented from oscillating. Then, when the cylinder is

vibrating, the drag is increased and the Strouhal number is reduced in the ratio

ho + a a a [20]
ho ho 6d

EXAMPLE 3. Eddy Frequency in the Wake of a Single Cylinder
between Two Outer Parallel Cylinders

By symmetry, the flow around a single cylinder between two outer parallel cyl-

inders may be treated as the flow around a single cylinder in a channel whose walls are

halfway between the outer cylinders, except for boundary layer effects at the walls. To

compensate for the boundary layer effect at the wall, the actual equivalent channel

width should be larger than indicated by symmetry, and will be supposed to be equal to

the space between the cylinders.



Direction of Flow

ld

Figure 12 - Kir~n Street in Wake of a Single Cylinder
between two Outer Parallel Cylinders

Consider a 3-cylinder assembly for which the ratio of the space between the

outer cylinders to the diameter is 1.5. The data for this channel spacing in Table 3

will apply. Hence

fd = 0.235
and

f = 4.76 V
d

where

V is the speed in knots

d is the diameter of the cylinder in inches.

pn I I I



APPENDIX 2

EDDY FREQUENCY IN THE WAKE OF A PAIR OF PARALLEL CYLINDERS

It has been shown in Figure 1, page 3, that there are three possible types

of wake behind a pair of parallel cylinders; a single vortex street, a double vortex

street of Type A, and a double vortex street of Type B. Each of these will be con-

sidered in turn.

LAMINAR FLOW, a< O.45

The wake contains a single eddy street whose Strouhal number, as given in

Table 1, is

df - 0.113 [21]
V

When the cylinders are vibrating in the same phase the frequency f' is given by

f' (d+ ) 0.113 [21a]

as shown in Example 2 of Appendix 1. The value of 6, computed as 6 = k/1-1/d, using

the values for a = 0 and 0.25 in Table 1, is very nearly the same in both cases, i.e.,

6 = 1.07. Hence Equation [21a] becomes

S(d + 0.93a) -= 0.113 [21b]

DOUBLE VORTEX STREET OF TYPE A

For laminar flow at a = 1.50 the Strouhal number for this case is given in

Table 1 as 0.26. When the Type-A vortex street occurs in transition or turbulent flow,

the Strouhal number will increase since both u/v and 1/d are less than for laminar

flow, as was discussed in Example 1 of Appendix 1. Suppose, for example that u/v

= 0.20 and 1/d = 2.5. Then, from Equation [17], S = 0.32.

Suppose, now, that the cylinders are vibrating and touching, with a total

amplitude a =d/2. This will lower the value of the eddy frequency. For example,

suppose u/v = 0.20, lo/d = 2.5 when vibration is prevented. The width of each street,

ho, before vibration is permitted is given by

6 = he = . . 4 = 0.3 0 - 2 .5 = 0.75
d lo d

Hence, by Equation [20], the Strouhal number becomes
0.32

S = 0.32 - 0.192
d/21+

This indicates that the Strouhal number for a pair of cylinders vibrating 180 degrees

out of phase whose amplitudes are restrained to about 1/2d is approximately the same

as that for a single, non-vibrating cylinder.



Suppose the cylinders are vibrating with a total amplitude a = 1.2d and that

u/v = 0.20 and 4/d = 2.5 as before. Hence, as in the foregoing example, by Equation

[20]

S = 0.32 = 0.123
1+

0.75d

DOUBLE VORTEX STREET OF TYPE B

The Strouhal number for laminar flow for the Type-B double vortex street was

found to be 0.245 in Table 1. As for the Type-A street, the Strouhal number increases

for transition or turbulent flow but decreases when the cylinders are vibrating in

phase.

Suppose that the cylinders are vibrating intermittently, successively in

phase and out of phase, in the foregoing example, and that the total amplitude when in

phase is a = 1.5d. Then, by Equation [20], the Strouhal number becomes

S = 0.32 0.097
1.5d1+-

0.75 d

Because the amplitude when the cylinders are in phase is greater than that when their

phase difference is 180 degrees, the eddy frequency will be less for the former, as is

illustrated in the example.



APPENDIX 3
CAVITATION BETWEEN PARALLEL CYLINDERS

An approximate expression for the speed at which cavitation will begin about

a body can be derived in the following way. Let v be the speed of flow at a great

distance from the body and vo the maximum speed around the body. Consider the motion

in a horizontal plane, so that the static head is constant and may be omitted from

Bernoulli's equation.

The essential assumption made is that cavitation will occur at a point in

the fluid when the absolute pressure at that point is reduced to zero. Let H be the

head of water in the plane of motion. Then, from Bernoulli's equation, cavitation

will begin at the point of maximum speed around the body when

_ v2
T = - +H
2g 2g

or

S- v 2 = 2gH [22]

since the absolute pressure head is H.at a great distance from the body. But if po is

the dynamic pressure around the body, Bernoulli's equation also gives

-pV + po P pv = q

or

v - v2  -2p .. 8V2  [23]0 P

where 9 =-Po/q. Hence, from Equations [22] and [23]

[24]

As an illustration, the initial speed for cavitation will be computed for a

right circular cylinder for both laminar and turbulent flow. Let the total head H be

40 feet. The measured values of 8 are

6 = 1.20 for laminar flow

8 = 2.45 for turbulent flow

Hence v = 2 x .20 x = 46.3 feet per second = 27.4 knots for laminar flow. Simi-Hencev = V 1.20
larly v = 19.2 knots for turbulent flow. In a test of a circular cylinder 0.875 inch

in diameter in the 12-inch variable pressure water tunnel at the Taylor Model Basin,

cavitation was observed to begin at 17.6 knots for turbulent flow.

The initial speed for cavitation for irrotational flow between a pair of

parallel cylinders can now be computed. From Equations [8] and [11a]

vo == [25]



Substituting for w in Equation [23], it is found that

jB 2

Hence, from Equation [24], the initial speed for cavitation is

For example, suppose the total head to be H = 40 feet.
Then

V = 35.9 1& feet per second
or

V= 21.2 Va knots

Thus, when a = 0.10,

V = 6.7. knots

If the total head is 60 feet and a = 0.10,

Ve = 8.2 knots.

[26]

[27]

(28]

bl Ir



APPENDIX 4

LATERAL FORCE ON A CYLLNDER DUE TO THE VORTICES IN ITS WAKE

If there is a circulation F about a cylinder of diameter d in a uniform

stream of velocity v, the lateral force L per unit length on the cylinder, as shown in

Figure 13 is given by

L = pFv [29]

where P is the density of the fluid.

KARMAN STREET IN OPEN FLOW

It was found by von Kdrmin (2) that the circulation of an eddy in a Karman

street is
F = 2:83 lu [30]

where 1 is the distance between eddies in a
L r

row and u is the velocity of translation of

the eddies.
Direction 

d
r of Flow d From Table 3, 1 = 4.3d, u = O.14v.

Hence from Equation [30], F = 1.72vd

and substituting into Equation [29] we obtain

Figure 13 - Force on a Cylinder L = 1.72 pdv 2  [31]
due to Circulation and

CL = 3.44 [32]

Comparing the lift coefficient in Equation [32] with the drag coefficient of 0.9 for

the corresponding case in Table 3, the lateral force is about 4 times as great as the

drag.

DOUBLE VORTEX STREET OF TYPE A

It was shown in Appendix 3 that when a pair of cylinders is vibrating with a

phase difference of 180 degrees under the action of a double vortex street of Type A,

the Strouhal number is approximately the same as that for a single non-vibrating

cylinder. This suggests that the lift coefficient derived for a single cylinder,

Equation [32], may apply approximately to vibrating cylinders whose phase difference

is 180 degrees.

The circulation F, and F2 in the outer and inner rows of vortices can be ex-

presses in terms of the speed and spacing of the eddies from Equations [33a] and [33b].

Carrying out the calculations for h/k = 1, assuming I = rk, as is indicated by the ex-

perimental values in Table 1, it is found that

F2 = 1.49 lu [33a]

F, = 2.30 lu [33b]
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Since the cylinders are vibrating and touching, assume h = 1.3d as a reasonable width

for the street. Then I = 1.37rd. Also, from Table 1, u = 0.25v. Hence, from Equation

[33a] and [33b]

12 = 1.52 dv [34a]

I- = 2.35 dv [34b]

or, from Equation [29]

CL2 = 3.04 [35a]

CL = 4.70 [35b]

where CL1 is the coefficient for the lifts or transverse forces driving the cylinders

together and CL2 is the coefficient for the lifts driving them apart.

Now
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