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Collapse by Instability of Tjin Cylindrical
Shells Under External Pressure

By DWIGHT F. WINDENBURG' AND CHARLES TRILLING,' WASHINGTON, D. C.

This paper discusses the collapse by instability of thin-
walled cylindricl vessels subjected to external pressure.
The most important of the theoretical and empirical
formulas that apply to this subject are presented in a com-
mon notation. A new and simple instability formula is
developed.

Three classes of tubes are considered: Tubes of infinite
length; tubes of finite length with uniform radial press-
ure only; and tubes of finite length with both uniform
radial and axial pressure. Collapsing pressures calcu-
lated by the various formulas are presented in tabular
form as a means of comparing the formulas.

The formulas are discussed briefly and checked against
the results of tests conducted at the U. S. Experimental
Model Basin for the Bureau of Construction and Repair,
Navy Department.

This paper is a sequel to one previously published' as a
part of the work of the A.S.M.E. Special Research Com-
mittee on the Strength of Vessels Under External Pressure.

HE STRENGTH of a circular, cylindrical shell under ex-

ternal pressure depends upon its length-diameter and thick-
ness-diameter ratios and upon the physical properties of the

material. Failure of the vessel may occur in either of two ways.
A short vessel with relatively thick walls fails by stresses in the
walls reaching the yield point, while a long vessel with relatively
thin walls fails by instability or buckling of the walls at stresses
which may be considerably below the yield point. These types
of failure are analogous to the familiar column action: a short,
thick column failing by "yield," and a long, thin column col-
lapsing by "instability." The analogy to thin plates under com-
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pression is even closer. In all three cases, tubes, columns, and
plates, there is an intermediate region between the regions of in-
stability and yield.

In the present paper, only the region of instability is considered.
Nevertheless, as in the case of columns, instability formulas can
be extended to the intermediate region by substituting the cor-
rect value of the effective modulus of elasticity (1)' (2, p. 240) in
the formulas. Such an extension, however, requires an accurate
stress-strain curve of the material, and the determination of col-
lapsing pressure in this region is indirect and cumbersome.

The heads of a pressure vessel, if sufficiently close together,
may exert considerable influence on the strength of the shell.
Bulkheads or stiffening rings of adequate rigidity may be con-
sidered equivalent to heads (3), (4). However, if the tube is rela-
tively very long, the heads exert no appreciable influence on the
central portion. The collapsing pressure of such a tube will be
the same as the collapsing pressure of a tube of infinite length.
The minimum length of tube for which the strengthening in-
fluence of the heads can be ignored is called the "critical length"
(2, p. 226), (5, III, p. 68). The existence of such a critical length
was found experimentally by Carman (6) and Stewart (7) who
made many tests on long pipes and tubes,

INSTABILITY FORMULAS

The most important instability formulas published are pre-
sented for the purpose of comparison in a common notation as
follows:

D -= diameter of tube'
L = length of tube
t - thickness of shell
p = collapsing pressure
E = modulus of elasticity
A = Poisson's ratio
n = number of lobes or waves in a complete circumferential

belt at the time of collapse.

Since the linear dimensions D, L, and t appear in all formulas
only as dimensionless ratios which are independent of the units
in which these dimensions are expressed, p is given always in the
same units as E.

PIPES OR TUBES LONGER THAN CRITICAL LENGTH

Any tube longer than the critical length can be considered as
a tube of infinite length since its collapsing pressure is inde-
pendent of further increase in length. The following formulas
apply to such tubes:

Bresse, Bryan (8), (9)

2E
p 2 E (t/D) ................. [A]

4 Numbers in parentheses correspond to references given at the en
of the paper.

5 In all the theoretical formulas D is the diameter to the neutral
axis. Practically, for thin shells, the differences between outside
diameter, inside diameter, and diameter to the neutral axis are
negligible.
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Stewart, Carman and Carr (7), (10) (empirical and for steel tubes
only)

p = 50.2 X 106 (t/D) ... . . . . . . . . . . . [B]

Formula [A] is the generally accepted formula for the col-
lapsing pressure of an infinitely long thin tube. It differs from
the formula of IAvy (11) for a ring of rectangular cross-section

p = 2E (tlD)'

only by the factor (1 - 0).
Formula [B] has the same form as formula [A], but the con-

stant term is about 25 per cent smaller. The difference is due to
the fact that while formula [A] is for geometrically perfect tubes
formula [B] represents the average collapsing pressure of a great
many commercial steel tubes taken at random from stock.

PRESSURE VESSELS OR TUBEs SHORTER THAN THE CRITICAL
LENGTH

The formulas which follow apply to pressure vessels or tubes
shorter than the critical length. The ends of the tubes are as-
sumed to be simply supported, that is, free to approach each other
and free to rotate about the points of support. This ideal type
of end constraint "tends merely to maintain the circularity of the
tube without restricting the slope of the tube walls" (5, I, p. 696).
This condition is not entirely fulfilled in practise since there is
some resistance to rotation at the points of support. However,
there is probably very little fixation at stiffening rings because of
their small torsional rigidity and because of the staggered nature
of the bulges (3, Fig. 3). Any fixation makes for added safety.

The quantity n which appears in most instability formulas is
not an independent variable. It must be evaluated, when the
formulas are applied to a given pressure vessel, by the con-
dition that n is the integral number for which p is a minimum (2,
p. 222). Methods of evaluating n other than by tedious trial
and error substitutions are shown later.

e various instability formulas follow.

INSTABILITY FoRMULAS FOR TBES SHORTER THAN CRITICAL

LENGTH

Instability Formulas for Tubes Loaded With Radial Pressure Only.
von Mises (12, Eq [B]) corrected:

1 [ n- ,n' + x, 2E 

3 1 + n2-1 1 - )'

S2E(t/D)

(nI - 1) n2 +1
(rD

where

p(2 - p)Xp - ( p) _ = P [3 + j + (1 - Al)p]
(1 - p),

X3 = p(1 +I) - p, I (1 + 2 ) + (1 - l)(1 - pjI)

1+ L p

n 
+1

von Mises (12, Eq [D]) corrected:

P -1 2n -1 -J" 2E
a- 1 - ,U2

OD

S 2E(t/D) [2)
(nI-1) nI ()-L +1]. 2

I rD

von Mises, approximate Eq [D]:

1 + 2 E(t/D)I3 12L1 1- !,
nsD) - 1

2E(t/D)

+ n[2. + I ].[trD / il i

Southwell (2):

P1 (n _ 1) 2E (t+D)I + 2E(t/D) [4]
3 (D)1 - (n - 1)n2L

t.D/

Southwell (5, III), approximate hyperbola:

8 -V6 E (tLD)' [5
27 (1 - p')/' LID...........[5]

Instability Formulas for Tubes Loaded WithBothRadialandAzial
Pressure.

von Mises (13, Eq [61]):

p =[I {1 + (rD - 2InI + 1 2E (t/D)'3 2L 1 - A2

+ 2E(t/D) 1 61
+ 2 /2L * ]2 ..... [6 ]
n.D -1 n - 1-+2 2L

where

2jlz = 2 +X2 = [1 + (1 + IA)p][2 + (1-I)p]

f = 1 + X, = (1 - pp) 1 + (1 + 2u)p

(1- ') 1 + + ~pP
P, X2, and X, are defined in formula [1].

Tokugawa (14): .

[ (rD 2 n(2n'-1) 2E
P=j {[n + 2L -- D 1 i---i (t/ID)'

von Mises (13, Eq [71):3 P + )] -- (2D)L

2E(t/D) 1[.[ 2L)2 1] n 1+ *"t-I ~ ~ I2~ +ll 1 rD)2, ...... s
na 2 D1 -1. -

( D 22L
von Mises (13, Eq [71):

[ = n2 + (r)] E(t/D)I3 2L 1 - JA

+ 2E(t/D) [8

n2 - n+(L2+ 1] 1t (+ ....

I rD 22L
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U. S. Experimental Model Basin:

2.42E (tiD)' 1'
(1 ),I)' FL_ 0.45 (t/D), 9]

D

or, for p = 0.3,

2.60E(t/D)'/'p =f L. . . . ...... [10]1
L - 0.45(t/D)'/s
D

Discussion of Formulas. Most of the formulas quoted ap-
peared originally in the following notation (12), (13), (14):

1
z = (t/D)'

3

2E1 (tsD)Y 2E(t/D)

rDa= -
2L

as  1 [11]
aP t n =  

2L
n( rD " 1D

Certain combinations of terms in the formulas can be repre-
sented conveniently by the symbols of Eq [11]. The formulas
can thereby be put in simpler form. For example, formula [6]
in this notation becomes

Y ( + a') 2- 2in2 + sX + J2P

1

1+ ...... [12]
ns - 1 I 2 as

Formula [1] is probably the most accurate formula for the
collapse of tubes under external pressure but free from end load-
ing. It was developed by von Mises (12) from the theory of the
equilibrium of thin shells. The formula, as originally published,
contained an error in that the denominator of X, was given as
(1 - p2) instead of (1 - p)s.

Formula [1], as well as formulas [2] and [4] derived from
it, reduce to formula [A] when L becomes infinite. For this
limiting case a = p = 0, and n - 2 (3, p. 210) (9, p. 292).

Formula [2] is derived directly from formula [1] by neglecting
powers of p higher than the first. This formula also is given in-
correctly by von Mises (12), for the error noted in formula [1]
is carried through to formula [2], resulting in a plus sign instead
of a minus sign in the denominator of the first bracket. Formula
[2] is an excellent approximation to formula [1] the average de-
viation being less than one-half of one per cent. This estimate is
based on calculations of collapsing pressure for a series of values
of L/D and t1/D in the instability region. The calculations are
discussed later.

Formula [3] is derived directly from formula [2] by neglecting
unity and j in comparison with ns. The approximation was first
suggested by von Sanden and GiInther (15, No. 10, p. 220).
formula [3], like the preceding formula, is a good approximation
to formula [1], the average deviation being less than 2 per cent.
However, when L becomes infinite, it does not reduce to formula
[A] but, instead, gives a value of the collapsing pressure 33'/, per
cent too high.

Formula [4] can be derived as an approximation to either
formula [1] or [2] by neglecting the fraction next to (n' - 1) in

the brackets and unity in comparison with n -(L in the last
7rD

term. Formula [4] gives values of the collapsing pressure which
are on the average 6 per cent lower (in an extreme case 16 per cent

lower) than those given by formula [1]. Formula [41 was ob-
tained independently by Southwell by the energy method (2)
before formula [1] appeared. It was a pioneer contribution to
the theory of the buckling of thin tubes shorter than the critical
length. Both formulas [4] and [5] were obtained by Southwell
from more general formulas (5, II, p. 503) (5, III, p. 70) which
contained a constant Z depending upon the type of end con-
straints. Southwell (2, p. 221) (5, I, p. 696) evaluated this con-
stant for a simply supported tube, and this value, which was
verified experimentally by Cook (16), is used for formulas [4] and
[5].

Formula [5] is the equation of a rectangular hyperbola in a
p, L/D coordinate system for any constant t1/D ratio (5, III, p.
70). This hyperbola is practically the envelope of the family of
curves represented by formula [4] with n as a parameter and
t/D constant. Formula [5] is a fair approximation to formula
[4] and errs always on the side of safety. Formula [5] is overly
safe, however, for it gives values of collapsing pressure on the
average 12 per' cent lower (in an extreme case 21 per cent lower)
than those given by formula [1]. Moreover, due to the approxi-
mations involved therein, formula [5] reduces to zero instead of
to formula [A] when L becomes infinite. It is limited therefore
to tubes shorter than the critical length.

Since formula [5] is the equation of a rectangular hyperbola
for any constant t/D, it is similar to the formula of Fairbairn
(17) and Carman (6), (18)

L, LID
P = PLZ M P CL ID ............... [13]

where L, is the critical length previously defined and p. is the
collapsing pressure of a tube of infinite length. Eq [13] can be
made indentical to formula [5] if p. is replaced by the value
given in formula [A] and

L, = KDv t ................. [14]

where

K = 46 4/1 -. u = 1.11 (for u = 0.3)
27

Eq [14] was first obtained by Southwell (2, p. 227). -Experi-
mental tests by Cook (19, p. 56) substantiated the form of the
expression but gave a value of the constant K = 1.73 instead of
1.11. Carman (18, p. 25) suggested the expression Le = 6D,
but this value is inadequate since it is independent of the thick-
ness. Eq [13], without an independent expression for L,, can-
not be used independently, and hence was not included in the
list of instability formulas.

Formula [6] is probably the best instability formula for the
collapse of pressure vessels which are subjected to both radial
and axial pressure. In its development von Mises (13) showed
the changes required in formula [1] when the effects of end load
are included. The error noted in that formula was not repeated
and formula [6] is, therefore, correct. Formulas [61] and [7]
both reduce to formula [A] when L becomes infinite (a = p =
0, n = 2). The collapsing pressures obtained by formula [6]
are always lower and differ on the average only 3 per cent (in
extreme cases 6 per cent) from the values obtained by formula
[1]. Formula [6], therefore, can be used in all cases, since the
resulting error when applied to a vessel not subjected to end
loading is small and on the side of safety.

Formula [7], developed by Tokugawa (14), is practically iden-
tical to von Mises' formula [6 ], and the greatest difference in the
collapsing pressures given by the two formulas is only 1.5 per
cent. Formula [7] as given by Tokugawa contains a "frame
factor" k which appears as a multiplier of a, thus

gil M olmllmlloi l



rD
a (Tokugawa) = k ir......... .. [15]

For ordinary stiffeners k = 1, and this value is used for formula
[7].

Formula [8] is an approximation to formula [6] and formula
[7] obtained from either by neglecting all but the first term in the
braces and neglecting unity in comparison with n 2. The errors
due to these approximations partially compensate each other.
Formula [8] is a good approximation to formula [6], the average
deviation being about 1.5 per cent. However, when L becomes
infinite, formula [8], like formula [3], gives a value of the col-
lapsing pressure one-third greater than that given by formula [A].

Formula [9], developed at the U. S. Experimental Model Basin,
is an approximation to formula [6]. It is a very simple formula,
independent of n, the number of lobes. It checks formula [6]
very closely, the average deviation being about one per cent.

Derivation of Formula [9]. Formula [9] is derived as follows:
Formula [8] when expressed in the notation of Eq [11] becomes

1
= [n' + a2]'x + (1- ')p2 n, + a .... [16]

Differentiating Eq [16] with respect to n and equating the result
to zero

(n' + a')5z - (n' + a')'a'x - 3(n' + a2)a'(1 - pA')
+ a 6(1 - p'2) = 0 ............ [17]

The solution of Eq [17] for n gives that value of a which will
make y in Eq [16] a minimum for any given x and a. Inasmuch
as this value of n will not in general be integral it is an approxi-
mation to the correct value of n. With a further approximation
a solution to Eq [171 can be readily obtained. By factoring out
(n' + a ' )' in the first two terms, and transferring the other
terms to the right-hand side, Eq [17] becomes

n2 + a2 a (1 2) ............ [18]

where
a
2

0 = 3+2 - ................ [19]

Substituting the expression for what may be termed the "mini-
mizing n" as given by Eq [18], in Eq [16] aid simplifying

1 -+ 0 /0(1 - i) axz'/ '

0
y = ax', ........... [20]

1--
24/0 (1 - .2)

In terms of L, t, D, etc. Eq [20] becomes

Tr(1 + O)E
[30(1 - ) ]'/

1 
4

p = L -- (t/D)'l' . ..... [21]

D 4 [30(1 -2) ]/,

In the majority of practical cases a/n lies between 1/, and
2/,. It is found that Eq [20] and [21] are but little influenced
by a/n in that range. Hence, a mean value a/n = 1/,, that is,
0 = 3.5, may be substituted in Eq [21], which then becomes

4.57r E
(10.5)'/' (1- 2)'/, (t/D)I/'

P = L (t/D) . ......... [221

D 4 [10.5(1 - p,)]/

Since the second term in the denominator is small, and very little
influenced by j, by using A = 0.3, the coefficient of (t/D)/2 can
be given one value for practically all materials. Eq [22] then
becomes formula [9].

Not only does Eq [20] give for any x and a the minimum value
of y for different values of n, but it is also an approximate en-
velope of the family of curves represented by Eq [16] in an x, y
coordinate system with n as a parameter. This follows from the
fact that Eq [20 ] is obtained by eliminating the family parameter,
n, between Eq [16] and an approximation to the derived Equation
[17]. Thus there is a relation between formulas [8] and [9]
similar to that between formulas [4] and [5]. Formula [9] is
nearly identical in form to formula [5] and, like the latter, is
limited in its application because it reduces to zero, instead of to
formula [A], when L becomes infinite.

MATHEMATICAL DETERMINATION OF THE NUMBER OF LOBES

It has been mentioned that in formulas in which n appears, the
integral value of n which makes p a minimum must be used. In
practise, short cuts are possible which enable one to find this
minimizing value of n directly.

The minimizing n for some formulas can be determined by the
usual method of differentiation with respect either to n or to some
suitable function of n. For this purpose it is convenient to ex-
press the formulas in the notation of Eq [11]. The value of n
thus obtained will not in general be integral. The correct value
of n must be either the next higher or the next lower integer-
usually the closest integer.

In the case of formula [4], the equation obtained by differen-
tiation is

9
- T'(1 - )

(n
2 - 1)2 3(1- p)a 4  16 [23]

(n2 - 2) (L/D)4(t/D)2.

A good approximation for the minimizing n, obtained by neglect-
ing unity and '/s in comparison with n 2 in Eq [23] is the relation
previously pubhlished (3)

4 (1 - )'/ 7.06
n = p/), /D (LD0 (for p = 0.3)... [24]n= (-ID-2Ct-D) = (L/D)2(t/D) fr

In the case of formula [8] the equation obtained by differen-
tiation has already been given in Eq [17]. It can be written in
the convenient form

p5 - 3p bp + b' = 0............[25]

where

b2 a'X
1 -A 2

Eq [25] must be solved for p in order to obtain the minimizing
n. A graphical solution is advantageous. The graph of Eq
[25] is simple to construct inasmuch as values of b can be readily
computed for selected values of p. Moreover, if from these values

of b and p the expressions n(L/D) = - and =D

2 p (L/D)2

4 2  b are computed and plotted on a logarithmic scale,

a curve is obtained from which n can be easily determined for
given L/D and t1/D ratios. An analytical, approximate solution
of Eq [25] is given by Eq [18] for some constant value of 0, say
0 = 3.5.



TABLE 1 VALUES OF COLLAPSING PRESSURES GIVEN BY VARIOUS INSTABILITY FORMULAS

(B - 30,000,000 lb per sq in., z - 0.3)
Collapaiq pressure, in lb per aq in., b .LID 1001D [l [21 [1 inlbper sq in.,by formula [81 [91

/1[5] [6 [71 [8] [9

2 0.2 7.3 7.3 7.4 7.2 6.6 7.2 7.3 7.3 7.1
0.3 19.3 19.3 19.8 18.8 18.1 19.1 19.2 19.5 19.5
0.4 41.3 41.3 42.5 39.9 37.1 40.7 41.0 42.0 40.0
0.5 72.1 72.1 73.3 70.9 64.9 70.6 71.4 71.9 10.1
0.6 110.0 110.1 113.1 106.9 102.3 107.8 109.1 110.8 110.7
0.7 160.8 160.9 166.4 154.7 150.5 167.6 159.6 163.2 163.1
0.2 14.6 14.6 14.7 13.9 13.1 14.3 14.3 14.5 14.3
0.3 40.1 40.2 40.6 38.0 3L2 39.1 39.3 39:5 39.4
0.4 84.5 84.8 85.5 80.2 74.2 81.7 82.3 82.4 81.2
0.5 145.3 145.7 147.8 136.5 129.8 140.3 141.7 142.4 142.5
0.6 232.4 233.2 237.2 214.5 204.8 224.5 226.8 228.6 225.6
0.7 . 351.1 352.4 359.4 320.3 301.0 339.2 342.8 346.1 332.2

0.5 0.2 30.4 30.5 30.7 27.8 26.3 29.2 29.3 29.4 29.1
0.3 85.6 86.4 86.9 76.5 72.4 81.3 81.8 81.7 80.9
0.4 177.2 179.3 180.5 157.1 148.5 166.9 167.9 168.1 167.2
0.5 316.1 321.5 323.6 275.5 259.6 293.1 295.6 295.1 294.6
0.6 501.6 510.7 515.2 435.2 409.4 464.8 469.2 468.8 468.0
0.7 753.2 768.0 775.8 633.7 601.8 698.3 705.2 703.4 691.8

0.25 0.2 66.4 68.1 68.3 55.9 52.6 60.7 60.9 60.8 60.8
0.3 190.3 199.1 199.6 153.2 144.8 170.4 171.1 170.9 170.7
0.4 404.8 431.0 432.5 314.4 297.0 355.8 357.6 357.1 355.8

0.125 0.2 160.9 182.4 182.6 111.4 105.1 132.8 133.1 132.9 133.1
0.3 485.0 581.5 582.5 307.2 289.6 881.4 382.5 381.8 382.7

0.020

L0015

V0.i09
00.008
.0.007

as+ 0005's0 0040

1 0.003

t) 0.0025
I- o0020 I, N \ A 120

0.00110 015 0200 5 040 060 . 20 . 0 .0 1.O5.0
Length + Diameter (L/D)

FIGo. 1 NUMBER OF LOBES n INTo WHICH A TUBE WILL COLLAPSE
WHEIN SUBJECTD TO UNIFORM RADIAL AND AXIAL PRESSURE

(Based on formula [6] by von Mises.)

For formula [6], the one of most importance, a chart, Fig. 1,

has been prepared from which the correct integral value of n
may be determined at once for given LID and t/D ratios. The
method used to construct the chart is similar to that employed

by von Mises (12, p. 754, Fig. 8). An arbitrary value of LID
and two arbitrary consecutive values of n (say 7 and 8) are

selected. These values are substituted in Eq [12] and two linear
equations in z and y are obtained, one for n = 7 and one for
n = 8. The two equations are solved simultaneously for z, that
is, for t1/D. This t1/D ratio in conjunction with the L/D ratio
originally selected represent the dimensions of a vessel for which

either n = 7 or n'= 8 is determinative. Both values of a give

the same y and p. This procedure establishes one "division

point" on the chart. From many such points, the division lines
of the chart are drawn.

The chart, Fig. 1, gives the best known theoretical value for n.
It has been checked by experiment (see Table 3) as closely as the
practical determination of the number of lobes permits. Usually
the same values of f are given by all the instability formulas
presented in this paper for a given L/D and t1/D. Fig. 1 is,
therefore, not only correct for formula [6], but it is also a valua-
ble aid in the use of the other formulas.

CALCULATIONS FOR THE COMPARISON OF FORMULAS

As a means of comparing-the various instability formulas, 23
hypothetical pressure vessels with simple L/D and t/D ratios,
ranging from L/D = 1/8 to 2 and t1/D = 0.002 to 0.007, were
selected. The dimensions of these vessels were so chosen as to
be completely representative of a series of models tested at the
U. S. Experimental Model Basin, in order to facilitate the comn-

parison of 'formula predictions and experimental results. The
collapsing pressures of the representative vessels were calculated
by each of the formulas, [1] to [9], inclusive, for E - 30,000,000
lb per sq in. and ; = 0.3. The results are set forth in Table 1.

Percentage deviations of these calculated collapsing pressures
are listed in Table 2. The first five formulas are compared with
formula [1], while the last four formulas and formula [1] are
compared with formula [6]. The comparison is confined to the
instability region only and to L/D ratios equal to or less than 2.
The previous statements about percentage deviations are based
on the results shown in Table 2.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The observed collapsing pressures of 36 models and their col-
lapsing pressures as computed by formula [91] are given in Table
3. This table is similar to and includes all the models listed in a
table previously published (3) together with the results of tests
on 20 additional models. These later models include other
thicknesses. They are for the most part long models designed to
collapse in the region of instability. The models and their con-
struction have been described in previous papers (3), (20).

Test results can be compared with the predictions of al formu-
las by using formula [9] as the connecting link between Tables
1 and 3, and selecting the proper representative vessel in Table 1.

A convenient graphical comparison of theoretical and experi-
mental results follows.

GRAPHICAL REPRESENTATION OF EXPERIMENTAL RESULTS

Theoretical formulas give collapsing pressure as a function of
two variables, the ratios LID and t/D. A p-LID coordinate
system is commonly used to represent formulas graphically and

TABLE 2 PERCENTAGE DEVIATIONS OF COLLAPSING
PRESSUREI CALCULATED BY VARIOUS INSTABILITY

1 ORMULAS

--- From formula [I]-
L/D lOOt/D [2] [3] [41 [5]
2 0.2 0.0 0.9 - 2.4 -10.4

0.3 0.0 2.3 - 2.6 - 6.3
0.4 0.0 3.0 - 3.4 -10.0
0.5 0.0 1.7 - 1.6 -10.0
0.6 0.1 2.8 - 2.8 - 7.0
0.7 0.1 3.5 - 3.8 - 6.4

1 0.2 0.1 1.1 - 4.6 - 9.9
0.3 0.2 1.3 - 5.2 - 9.7
0.4 0.3 1.2 - 5.1 -12.2
0.5 0.3 1.7 - 6.1 -10.7
0.6 0.3 2.1 - 7.7 -11.9
0.7 0.4 2.3 - 8.8 -14.3

0.5 0.2 0.6 1.1 - 8.6 -13.5
0.3 0.8 1.4 -10.7 -15.5
0.4 1.2 1.9 -11.3 -16.2

0.25 0.2 2.6 2.8 -15.9 -20.8

-From formula l
[1] [7] [81 [9]
1.3 0.4 0.9 -2.6
1.3 0.6 2.3 2.2
1.3 0.7 3.0 -1.8
2.1 1.1 1.7 -0.7
2.0 1.2 2.8 2.7
2.0 1.3 3.5 8.5
1.9 0.3 1.0 -0.4
2.6 0.6 1.2 0.9
3.5 0.8 0.9 -0.6
3.5 1.0 1.5 1.6
3.5 1.0 1.8 0.5
3.5 1.0 2.0 -2.1
4.0 0.3 0.5 -0.4
5.3 0.6 0.5 -0.5
6.1 0.6 0.7 0.2
9.4 0.3 0.2 0.9

n by
formula [61

11ll
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to compare them with experimental results. For every value of
t1/D a separate curve is required in such a system (4, Fig. 2) and
it is difficult to plot and interpret experimental results.

It is desirable, therefore, to introduce coordinates 4o and Xo,
defined as follows:

S2t/ .................. [26]2t/D/

4 (L/D)' /
Xo I (lOOt/D) ................. [27]

for, it will be shown, in this coordinate system the points repre-
senting all vessels in the instability region, with any t/D or L/D
ratios, theoretically should fall on a single curve. With these
coordinates formula [91, if the small (t/D)i term in the de-
nominator is neglected, becomes

0.00121E 1
o = (1 - ')

1
/' ............. [28]

which is identical in form to Euler's equation. It may be noted
from Eq [26] that e0 is what is commonly called the hoop stress.

Eq [28] shows that Vo is analogous 0to the slndernes ratio.
lI/r, of column theo . This can be demonstrated in the follow-
Ing manner:! bulge or half-lobe length of the circumferen-
tial belt of a pressure vessel is analogous to a column whose

rD 1
length is l = w- and whose radius of gyration is r = - t (5,

2n v N/1
II, p. 506). It is seen that the analog of the slenderness ratio of
column theory is

1 const.
r n(t/D)................. [29]

Using the simple expression for a given by Eq [24] in Eq [291

r const. (tlD) ................ [30]

Comparison with Eq [271] shows that 1/r is equivalent to )o.
Differences in the physical properties of the material of ex-

perimental models can be corrected for by converting 4o and Xo
to the variables

#0o P.o
4 = to ...... . .. [31]sV 2s(t/D)

1000 s8, (1- p"'' (L/ '1 - p '/'

X E 0.91 (t/D) 0.91 /
.... [32]

or, for p = 0.3

1000 8 (LD)l 8, 3]X XiD) .......... [33]
I E y ~(t/ D)* I B '""'

where as is the yield point of the material. # nky be called the
"pressure factor" and X the "thinness factor." The relationship,
Eq [28], remains unchanged by the transformation to the new
variables and it is now independent of the properties of the mate-
rial. This transformation, except for the (1- 2)'/' factor, which
is nearly unity, is the same as the one adopted by Osgood (21)
for columns. Formula tcmnnw.obe written

1.30 -
. . . ............. [34 ]

where

= 0.045 1000 sy 1 - ') (lOOtD) ...... [35]1
E \0.91 ) (100t/ D)-

A #, X coordinate system is used in Fig. 2. The full curve
represents Eq [34] for e = 0, and the broken curve for e = 0.15
determined by Eq [35] for the arbitrary values

E = 30,000,000 lb per sq in.
sy - 30,000 lb per sq in.
p = 0.3

t/D = 0.003

The points shown by circles in Fig. 2 represent the tested
models listed in Table 3 and illustrate graphically the experi-
mental results in that table.

Fig. 2 is for tubes shorter than the dritical length. Formula
[9] does not hold for longer tubes and formula [A] must then be
used. This latter formula can be represented in the #, X coordi-
nate system only by a series of horizontal straight lines, ne for
each tID.

DIscussioN or THE GnarnAPH, FIG. 2 -X

It will be noted from Fig. 2 that the broken curve does not
differ greatly from the full curve in the region where either is

I.E

1.2

0.5

0.4

0.3

0.2

0.12

0.07C 1 L - - #--

1.5 2.0 30 4.0 5.0

THINNESS FACTOR = A V(,tZW)E

FIG. 2 GRAPHICAL REPRESENTATION OF EXPERIMENTAL RESULTS

Solid and broken curves both represent the theoretical formula [9], the
ormer neglecting the small (t/D)2/0 term. Circles are experimental points.)

applicable. The (t/D)'1 t term in the denominator of formula [9]
is thus shown to have small influence and in most cases can be
neglected.

It will be observed that the experimental points lie above the
theoretical line representing formula [9] for large values of the
thinness factor X, that is, for the instability region. This is be-
cause the value of p given by a theoretical formula is really the
"critical pressure" (22, p. 165) or pressure at which the deflec-
tions increase rapidly, whereas the experimqtal points represent
tultimate collapsing pressures, which *are considerably higher
for long tubes. On the w-hole t'e experimental points check the
theoretical curve fairly well. However, they begin to fall below
it at %hoop stress equal to only about half the yield stress (# =
0.5) which is far below the proportional limit. This seemingly
premature beginning of the intermediate region is due primarily
to imperfections in the models.

In general, imperfections in a pressure vessel have considerable
influence on their strength, largely because the position of the
bulges formed, and thus the position of the equivalent columns,
is determined by the initial irregularities of the shell. The

1- - 11 11 11 1111116l
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TABLE 3 EXPERIMENTAL RESULTS

- p, lb/in . .-
By By for-

expt. mula [91
10 7
14 13
15 13
23 26
81 28
48 56
25 23
39 34
36 31
58 50
54 45
65 56
66 69
94 92
96 97
84 82

107 119
139 190
139 192
163 206
168 235
195 300
48 39
89 81
89 83

159 163
199 347
67 60

129 142
235 278
112 107
209 200
281 380
149 150
288 298
327 570

Out-of-
roundnme

'-------in
By By for- one bulge

Sexpt. mula [6] or I/s lobe
6 6 0.94
8 8 0.Y4 1
8 8 0.39 t

11 11 0.26 t
11 11 0.16 t
14 14 0.47
a 5 0.478
6 6
6 6 0.53
8 7 0.32 4
7 7 0.33 t
9 8 0.16 t
9 9 0.50 t

10 9 0.37 t
9,10 9 0.28 t
9,10 9 0.18 t
11 11 0.33 *

13, 14 13 0.11 t
13 13 0.19
13 13 0.13 t

13, 14 14 0.22 t
19 17 0.16
5,6 6 0.14 8
6, 7 6 0.22 8
6 6 0.12 t

9 0.16 8
14 12 0.11 t
5 4 0.32 t
6 6 0.41 f

8,9 8 0.068
4 4 0.32 8
6 6 0.15

... 8
4 4 0.15 t

5, 6 6 0.16 t
.. 8 0.14 t

effect of variation of a pressure vessel from true cylindrical form
has been discussed in a previous paper (3). Definite manufac-
turing tolerances have since been proposed (4, Fig. 4). The maxi-
mum out-of-roundness or eccentricity -of each tested model,
measured as the variation in radius in the region of one bulge
or half lobe length, that is, the equivalent column length, is given
in Table 3. The eccentricity is expressed as a fraction of the
thickness. All tested models comply with the proposed toler-
ances.

CONCLUsION

The principal instability formulas for the collapse of thin
cylindrical shells under external pressure do not differ greatly in
the region where they are applicable in their predictions of either
the collapsing pressure or the number of lobes.

Probably the best -instability formula for vessels subjected to
both radial and axial pressure is that of von Mises, formula [6]
of the list at the beginning of this paper. Both the collapsing
pressure and the number of lobes given by this formula agree
with experimental results in the instability region.

Formula [9], a simple but excellent approximation to formula
[6], may replace it in all practical computations, and is the in-
stability formula recgmmended for the design of pressure vessels.
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APM-56-20

Model
no.
63
53
57
54
56
55
40
41
49
42
51
47
31
43
45
52
32
33
44
46
48
50
61
59
62
58
60
65
64
66
68
67
73
70
69
71

L,

in.
32
16
16
8
78/4
4

32
24
24
16
15
12
8'/4
8
8
8
6
4
4
4
3
2

32
16
16
8
4

32
16
8

32
16
8

32
16
8

.1,
in.

0.0310
0.0315
0.0308
0.0305
0.0320
0.0320
0.0500
0.0530
0.0510
0.0530
0.0500
0.0505
0.0476
0.0520
0.0510
0.0490
0.0510
0.0516
0.0518
0.0512
0.0493
0.0450
0.0635
0.0640
0.0647
0.0635
0.0620
0.0756
0.0783
0: 0776
0.0951
0.0933
0.0901
0.1092
0.1080
0.1045

10-s8Y
Slb/in.2

26
29
27
25
29
29
36
43
43
43
39
39
80
44
40
89
81
81
44
40
39
39
39
40
38
40
39
37
41
40
37
35
35
39
41
44

10-IR
lb/in.'

31
28
30
30
28
28
32
31
31
30
29
28
29
28
31
29
28
28
28
31
28
28
30
30
30
30
32
30
32
31
30
29
29
0so

30
30

L/D
2.000
1.000
1.000
0.800
0.484
0.250
2.000
1.500
1.500
1.000
0.937
0.750
0.547
0.500
0.500
0.500
0.375
0.250
0.250
0.250
0.187
0.125
2.000
1.000
1.000
0.500
0.250
2.000
1.000
0.500
2.000
1.000
0.500
2.000
1.000
0.500

1001/D
0.193
0.197
0.J
0.11is
0.200
0.200
0.312
0.330
0.318
0.330
0.312
0.315
0.297
0.324
0.318
0.305
0.318
0.321
0.323
0.319
0.307
0.280
0.395
0.399
0.403
0.395
0.386
0.470
0.487
0.483
0.591
0.580
0.560
0.678
0.670
0.649

1 uil I hII INMIMum .
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