MACHINE METHODS OF COMPUTATION and
NUMERICAL ANALYSIS
QUARTERLY PROGRESS REPORT NO. 19 MARCH 15, 1956
and

PROJECT WHIRLWIND SUMMARY REPORT NO. 45 FIRST QUARTER 1956

Submitted to the
OFFICE OF NAVAL RESEARCH
Under Contract N5ori60
Project NR 044-008

Project Nos. DIC 6915 and 6345

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge 39, Massachusetts

Part I. Machine Methods of Computation and Numerical Analysis

1. general comagents
2. Graduats school research
2.1 Index to Reports
2.2 Progress Report
part II. 2roject Whiriwind
3. REviEw and problek index

25
2. whirluind coding and applications
2.1 Introduction
2.2 Progress Report

Appendices
. Systems Engineering
2. Visitors

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

2. graduate school research
2.1 Indox to Roports

Tho Basid Problem of Numerical Analysis Expressed in the Language
of Computing Machine
Finito Bending of Thin, Shallow Spherical Sholls

Asymptotio Solution of a Differential Equation
13
Evaluation of Multi-center Integrals
Coulomb wave Punctions
firat Approximation Solution on Ore Body
An App1ieation of Monte Cario Methods to Neutron Diffusion
Reaponse of a Single story Reinforced Conereto Butlding to
Dmamic Blast Loeding
Rasponse of a Five-Story Frame Building to Dymamic Loading Growth of Patigue Cracks 22
23

Graduate schoor, research
2.2 Progress Reports
the basic problem of numerical analysis expressed in the langunae of computina michine
 decision making

 oint of view the decision instruction plays the part or a runction that 181 iser a set zero e elaewhere; it
tional programing.
more conventent notation. Throushout this reort of alil stand for the contents of the a more convenient notation in throughout
last regstiser referred to in the equen
vector in which case we will write $O_{\mathbf{N}}$.
a: The 1dentity. Replace contents of register a by 1 tseif
$\mathrm{b}+\mathrm{c}$: Add $\mathrm{O}(\mathrm{b})+\mathrm{o}(\mathrm{c})$. Store in a.
$\mathrm{a}_{\mathrm{b}+\mathrm{c}}:$ Add $\mathrm{O}(\mathrm{b})+\mathrm{o}(\mathrm{c})$. Store in a.
$\mathrm{a}_{\mathrm{b}-\mathrm{c}}:$ Subtract $\mathrm{O}(\mathrm{b})-\mathrm{O}(\mathrm{c})$. Store in a .
Multiply $O(\mathrm{~b})$. O(c). Store in a .
$\mathrm{a}_{\mathrm{b} \cdot \mathrm{c}}:$
$\mathrm{a}_{\mathrm{b} / \mathrm{c}}:$
Multiply $\mathrm{O}(\mathrm{b}) \mathrm{O}$: c$)$. Store ine $\mathrm{o}(\mathrm{b}) / \mathrm{O}(\mathrm{c})$. Store in a .
$\mathrm{r}_{\text {mpp }}$
r_{n} : If preceded by $\mathrm{a}_{\mathrm{b}+\mathrm{c}}$, $\mathrm{a}_{\mathrm{b}-\mathrm{c}}$, etc., replace b by $\mathrm{b}+\mathrm{m}, \mathrm{c}$ by $\mathrm{c}+\mathrm{n}, \mathrm{a}$ by $\mathrm{a}+\mathrm{p}$.
(${ }^{\text {mpp }}$) Repeat bracketed sequence n times.

${ }^{\mathrm{x}_{\mathrm{Y}+\mathrm{Z}}}$

 dase the 1 Instruct tion a
dirference 13 not 1 mportin.).)

$$
\text { The generalization of the repeat instruction } 18 \text { a set of equations as follows }
$$

[^0]oraduate school research

```
(1)N= (: Perform bracketed sequence 2. Then carry out
```

$0(0)=0$, The dectation instruction 18 defined as follows. We will assume throughout that
$\mathrm{a}_{\mathrm{b} \in \mathrm{c}}=\left\{{ }^{\mathrm{a}^{0}+0^{1 f}}{ }^{1 f} \mathrm{O}(\mathrm{b}) \leqslant \mathrm{O}(\mathrm{c})\right.$
we w11 also use the symbol $\bar{\sigma}$ as the inverse of 0

$$
\bar{o}(\mathrm{a})=\text { register containing a. }
$$

Thus, if $\mathrm{x}=\mathrm{o}(\mathrm{a}), \mathrm{s}=\bar{o}(\mathrm{x})$.
A final instruction introduced to complete the algebra

$$
\left[\left(x_{3_{x_{1}}+x_{2}}\right)^{N}\right]^{m}
$$

$$
\left(x_{3_{x_{1}}+x_{2}}\right)^{N}
$$

appearing inside the instruction () ${ }_{1}$ s to be considered constant and

$$
{ }^{x_{x_{1}}+x_{2}}
$$

 the converting
some examples.
discussion

+ Note: We have not previousiy specirited that the sequences in PXI are finite, but this
restriction wrill be assumed from now on.

There
these reports tis that of finding the most erficient program for coming w thin a certain din

 time we have a tool for programing that refiects the mathematical structure of the problems
being soived.

Examples

$$
\begin{array}{ccccccc}
\text { II } & 4 & 14 & 14 & \text { III } & 108 & 102 \\
1 & 4 & 10 & & 114 & 109 & 103 \\
1 & 3 & 6 & 119 & 115 & 110 & 104 \\
1 & 2 & 3 & 120 & 116 & 111 & 105 \\
1 & 1 & 1 & 121 & 117 & 112 & 106 \\
0 & 0 & 122 & 118 & 113 & 107
\end{array}
$$

$$
{ }^{x_{3_{1}}+x_{2}}
$$

$a_{b-2^{-c}}$
$\begin{aligned} & \text { Take the coerflicient of }{ }^{2} \\ & \text { of } O \text { (})^{2} \text { and store it in in }\end{aligned}$
oraduate school research
routinos to the program or bracket for rows, one to computo N and three to compute the variable
cogin tors
x_{1}, X_{2}, X_{3}.

The prograw can be written as follows

$$
\left[\left(x_{3 x_{1}+x_{2}}\right)^{x}\right]^{x}
$$

$x=x \quad n=0\left(a a_{a 1+1}\right)$
$x_{3}=0\left(a_{a 4-1}\right) \quad \begin{aligned} & x_{3}=0\left(a_{a 4}{ }_{a 4-1}\right) \\ & x_{1}=0\left(a_{a 2-1}\right)\end{aligned}$
$x_{1}=0\left(a a_{a 2-1}\right)$
$x_{2}=0\left(a 3_{a 4+1}\right)$
In reference to arrays If, II, III, the inttial contents or registers 117 , al, a2 and a4
should be $1,2,121,118$. The initial contents of a3 can be anything. in should be set $M=3$

a new digit, basic program here to to search ind store There will be a bracket for selecting

$$
\left\{\left[{ }^{(a 1}{ }_{x_{1} \cdot 2} \cdot 2^{-0\left(x_{2}\right)^{a 3}}{ }_{a 3+2}\right.\right.
$$

$$
\begin{aligned}
& \left.\left\{\left[{ }^{(a 1} x_{1} \cdot 2^{-0\left(x_{2}\right)^{a 3}}{ }_{a 3+a 1}\right)^{-1}\right]\right\} \\
& r_{2}=M_{2} \quad N=0\left(a \sigma_{a 4 \leqslant a 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=0\left(a_{2} a_{2+1}\right) \\
& x_{2}=0\left(a_{0+0}\right)
\end{aligned}
$$

 0,2 . The 1 intial contents
result will be stored 1 n a3.
conversion of the algebra

$$
\left.\left[a_{a 4-1}{ }_{a 4} 4_{a 4-1}{ }^{a 2_{a 2-1}}{ }^{a 3_{a 4+1}} O_{(a 4)} O_{(a 2)+0(a 3)}\right)^{N}\right]^{n}
$$

$$
\mathrm{M}=\mathrm{M}, \quad \mathrm{~N}=\mathrm{O}\left(\mathrm{a}_{\mathrm{a}+1+1}\right)
$$

Graduate school research
 Id of a modirication instruction such as "transfer the contents or regrater a to the address
part of instruction

 Rayard Rank In
Raymond
P. Stora
ererences:
References:
 [2] 1b1d. Report No. 18, December 18(1955) p.7.
[3] John yon Neumann and H. H. Coldst ine "Planning and Coding of Problems for an
Electronic Comput 1ng Instrument," Insitute for Advanced Study, Pt. 2 Vol. 1-3 (1947-48),

[5] Raymond Stora, Same as [1], Report No. 18, December 15 (1955), p. 12.
pinite bendino of thin, shallow spherical shelis
 ritten in the following form [2]:
(1) $M[P, G]=P^{\prime \prime}+\frac{1}{x} P^{\prime}-\frac{1}{x^{2}} P+\mu^{2} G+2 x-\gamma \frac{F G}{x}$
$N[p, a]=a^{n}+\frac{1}{x} a^{\prime}-\frac{1}{x^{2}} a-\mu^{2} p+\gamma \frac{p^{2}}{2 x}$

$\mathrm{P}=\frac{\mathrm{a} \alpha \mathrm{m}^{2}}{\gamma h} ; 0=\frac{\mathrm{m}^{4} \alpha \alpha}{\mathrm{Eh}^{3} y} ; \gamma=\frac{\mathrm{m}^{6} a^{4} \alpha^{4}}{4 E h^{4}} ; \mu^{2}=\frac{m^{2} a \alpha^{2}}{h}$
where
$a=$ radius of the midale surface of the shell
$2 \alpha=$ opening angle of the shell
$\begin{aligned}{ }^{\mathrm{E}} & =\text { Young's modull } \\ \mathrm{m}^{2} & =\sqrt{12\left(1-\nu^{2}\right)}\end{aligned}$
$\nu=$ Polsson's rat1o.
Whall consider two cases of boundary conditions [2]
(2) A simply supported edge: $F^{\prime}(1)-\nu F(1)=a^{\prime}(1)-\nu a(1)=0$
(3) A clamped edge: $\quad P^{\prime}(1)=a^{\prime}(1)-\nu 0(1)=0$.

Observing that $x=0$ (18 a a ingular point of the system (1), we require that p and a be finite
in both cases (2) and (3):

graduate school research

```
4)}P(0)<\infty\quad0(0)<
ve attempt to f1nd solutions of equations (1), (2) and (4), or (1), (3) and (4) respectively,
```



```
Substituting these series into the differential equations and equating the coefricients of
(5) }\mp@subsup{P}{3}{}=\frac{1}{8}(2-\mp@subsup{\mu}{}{2}\mp@subsup{a}{1}{}+\gamma\mp@subsup{p}{1}{}\mp@subsup{a}{1}{
    P}\mp@subsup{P}{n}{}=\frac{1}{\mp@subsup{n}{}{2}-1}(-\mp@subsup{\mu}{}{2}\mp@subsup{a}{n-2}{}+\gamma\mp@subsup{\sum}{j=1}{n-2}\mp@subsup{P}{j}{}\mp@subsup{a}{n-j-1}{})\quadn=5,7,9
    \mp@subsup{a}{n}{}}=\frac{1}{\mp@subsup{n}{}{2}-1}(\mp@subsup{\mu}{}{2}\mp@subsup{P}{n-2}{}-\frac{l}{2}\mp@subsup{\sum}{j=1}{n-2}\mp@subsup{P}{J}{}\mp@subsup{P}{n-j-1}{})\quadn=3,5,7,\ldots
    P}\mp@subsup{P}{2k}{}=\mp@subsup{a}{2k}{}=0\quadk=0,1,2,
```

```
If Pa and og are determined, the remaning coerficients are given by these,
```

If Pa and og are determined, the remaning coerficients are given by these,
F. To ootain In\tial estimates for the coefficients P}\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{G}{1}{}\mathrm{ , we approximate the solutions

```

```

In Inder to determine A, A, C, , and C' we shall require that P}\mp@subsup{P}{}{*}\mathrm{ and 的* sat1sisy the differen
\int}\mp@subsup{\int}{M}{1}[\mp@subsup{P}{}{*},\mp@subsup{a}{}{*}]dx=0\mathrm{ and }\mp@subsup{\int}{0}{1}\textrm{N}[\mp@subsup{P}{}{*},\mp@subsup{a}{}{*}]dx=0

```

```

P}\mp@subsup{}{(0)}{(0)}A,\mp@subsup{G}{1}{(0)}=C, ye obta1n an approximate solution F F (0), G(0)

```

```

the mth approxYmat 10on"or (P P},\mp@code{\mp@subsup{O}{n}{\prime})
*)
Nacmen
M,
\DeltaO
*)

```

```

sat1sfy the boundary conditions (2), or (3) reapectively, Using (7) this can be written
(8) }\quad\Delta\mp@subsup{\textrm{P}}{1}{(m)}\mp@subsup{\sum}{n}{(n+\nu)\mp@subsup{a}{n}{(m)}+\Delta\mp@subsup{\textrm{a}}{1}{(m)}\mp@subsup{\sum}{n}{(m+\nu)\mp@subsup{b}{n}{\prime}}\mp@subsup{}{(m)}{(m)}=-\sum(n+\nu)\mp@subsup{\textrm{P}}{n}{(m)}

```

```

M,
sion formulas (5).
12

Hubertus J. Weinitschke

Reverences:

1950.

Roperties of the solutions of a dipperential gevation arisina in the theory of Linear
LLASTIC DEFormation or shaliow shells or revolution
It is proposed to develop theory and a 180 the necessary tabular. 1nformation for use
in solving for the derlections of shaliow shells of revolution. The she 11 s dealt with here re parabolic, having as the equation or the underlected mldsurface

1) $\quad \mathrm{H}\left(\frac{\mathrm{r}}{2}\right)^{\mathrm{s}}$ or $\mathrm{H} \mathrm{E}^{\mathrm{s}} \quad \mathrm{s}>0$

Jonnson $[1]$ has shown that a solution for the stresses and transverse deflection
in such a she 11 satisiles the s tngle (complex) differential equation
(2) $\quad \nabla^{2} \nabla^{2} T=i \sqrt{\frac{c}{D}}\left[Z^{\prime \prime}\left(\frac{1}{r} \frac{2 T}{2 r}+\frac{1}{r^{2}} \frac{2^{2} T}{2 \theta^{2}}\right)+\frac{z^{\prime}}{r} \frac{2^{2} T}{2 r^{2}}\right]$

Seeking for simplic1ty solutions for T of the form
(3) $T=t_{n}(r) \cos n \theta$,
ve obtain an ordinary differentlal equation for $t^{\text {a }}$
(4) $\quad\left(\frac{d^{2}}{d r} r^{2}+\frac{1}{r} \frac{d}{d r}-\frac{h^{2}}{r^{2}}\right)^{2} t_{n}-i \sqrt{\frac{c}{D}}\left[Z_{r}^{\prime} t_{n}^{\prime \prime}+Z^{\prime \prime}\left(\frac{t_{n}^{\prime}}{r}-\frac{h^{2}}{r^{2}} t_{n}\right)\right]=0$

(4) becomes $\xi^{5}=(r / a)^{3}$
(5) becomes $d^{4} d$

$+\frac{1}{z^{3} s^{5}}\left[(s-2)(s-1)^{2}-(s-2)\left(1+2 n^{\circ}\right)-(s-1) z\right] \frac{d}{d} \frac{d}{s}$ $+\frac{1}{z^{4} s^{4}}\left[n^{2}\left(n^{2}-4\right)+n^{2}(s-1) z\right]_{q_{n}}(z)=0$

This equation has a regular singular point at the origin. Thus at least one power serles
silution

$\begin{aligned} & +\left[(s-1)(7 s-5)-\left(1+2 n^{2}\right)\right] \lambda(\lambda-1) s^{2}\end{aligned}$
$+5(s-2)\left[(s-1)^{2}-\left(1-2 n^{2}\right)\right] \lambda+h^{2}\left(n^{2}-4\right)=0$
which has the roots
${ }_{\text {(6) }}^{\text {(6) }}$ that $\quad \lambda=\frac{n}{3},-\frac{n}{3}, \frac{2+n}{3}, \frac{2-n}{3}$
$\mathrm{f}(\lambda)=\left(\lambda_{s}-n\right)\left(\lambda_{s}+n\right)\left(\lambda_{s-2}-n\right)\left(\lambda_{s-2}+n\right)$
Now, if we write the solution formally
(7) $\quad q_{k}(z)=\sum_{k=0}^{\infty} A_{k} z^{\lambda+k}$
then the A_{k} wil1 satisry a recursion
where $\quad A_{k+1}=A_{k} \frac{q(\lambda+k)}{f(\lambda+k+1)}$

$$
\begin{aligned}
& \qquad g(\lambda)=s^{2} \lambda(\lambda-1)+s(s-1) \lambda-\mathrm{n}^{2}(s-1) \\
& \text { a closed form may read11y be obta ined for } A_{k} \text { in terms of gamma functions: } \\
& \text { (8) } \quad A_{k}=A_{0} \frac{\Gamma\left(\lambda+k-\bar{\lambda}_{0}\right) \Gamma\left(\lambda+k-\bar{\lambda}_{\lambda}\right)}{5^{2 k} \Gamma\left(\lambda+k+1-\frac{h}{5}\right) \Gamma\left(\lambda+k+1+\frac{h}{2}\right) \Gamma\left(\lambda+k+1-\frac{2+k}{5}\right) \Gamma(\lambda+}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) } \quad A_{k}=A_{0} \frac{1}{s^{2 k} \Gamma\left(\lambda+k+1-\frac{h}{5}\right) \Gamma\left(\lambda+k+1+\frac{h}{5}\right) \Gamma\left(\lambda+k+1-\frac{2+h}{5}\right) \Gamma\left(\lambda+k+1-\frac{2-h}{5}\right)} \\
& \text { Here } A_{0} \text { is not the same as in }(7) \text { and } \lambda_{0}, \lambda_{1} \text { are def1ned by }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{0}=\frac{24}{25}+\frac{1}{25} \sqrt{5^{2}+25\left(1-4 n^{2}\right)+1+4 n^{2}} \\
& \tilde{\lambda}_{1}=\frac{5+1}{5}-\frac{1}{25} \sqrt{5^{2}+25\left(1-4 n^{2}+1+4 n^{2}\right.} \\
& \text { for real }
\end{aligned}
$$

 Reference:
[1] M. Jormson, unpubilished paper, M.I.T. Mathematics Department
asymprotic solution op a dippbrential equation

 (1) $u^{i v}+\lambda^{2}\left(z u^{\prime \prime}+p u^{\prime}+\right.$ are now being investigated.
 Invoiving turning points, These were ehosen for tasulation since they are the simplest of
type dear ind and can be treated by the method of taplace transformetion to yeld explicit
solutions.
gatuation op mutri-cemper twegras

coulomb wave punctions

$$
\begin{aligned}
& g_{0}(\rho, h)=\int_{0}^{\infty} d \xi e^{-\left\{\rho \xi-2 h \sigma_{-}-\xi\right\}}-\int_{0}^{\infty} d \xi \frac{\sin \left\{f t^{2}-h \xi-2 \zeta \xi\right\}}{\cosh ^{2} \xi}
\end{aligned}
$$

 $4 e^{-2 \xi} \sin \{0.9996 \rho-2 y \xi\}$

 $e^{-(\Delta \rho) \xi} ; e^{2(A)) \tan ^{-1} \xi} ; \sin \left\{\Delta \rho \operatorname{Tom}^{2} h \xi\right\} ; \sin \{25 \Delta \eta\}$
 seconds. IT a separate 1 ntegrat
quired would be about 25 seconds.
It 1 s hoped that the full production of the irregular function will start about the
mide of April and be completed by the end of May.

 As out1ined in the previous report, as solution for the tro-dimensional case was to

 tal ore body orresponded better with those from the vertical ore body in modeling and
verrse
dimene

 measured on the surface or the earth by the reee ver electrodes. This was to compute the
rate or change of potential with respect to the distance from the sender electrode at a

 eo the conductivities, somexhat dependent on the amount of metal present, and of the geocogy
of the area.
Reference:
[1]

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

araduate school research
graduate school research
pirst approximation sowition on ore body

 versa. Numer ical ogreement . wa
diment $10 n a 1$ case has ceased.

[1] Norman P. Ness, Machine Methods orcomputation and Numerica1 Analys13, Quarter1y Progress

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

graduate school research
an application op monte carlo nethods to neutron dipfusion
Introduction

outline of the Method
 eutrons 18 studied. Th1s behavior 18 then averaged 1 n such a way that the des 1 red results
con be obta ined; e.g., if we want to know the neutron balance of a reactor, we record the
 P1ssion. More 1 Information, 1 ike the coordinates
the reactor, can be obta ined if that is desirable.
 Cordinates 18 avallable. Ir new neeutrons are formed by
r tf neutrons are needed, they are taken from thm bank.
he start the problem by taking a neutron from the bank. The following description
an be roilowe ton the attoched flowsheet.

 determine which constants to use. Each velocity interval between two chosen 11mits has its
own velocity-group number.

If the velocity switch 18 on fast, we calculate the new velocity, determine the
velocity group, and store the constants that belong to this velocity group. Tr the new velocity group 18 the therma1 group, set the velocity switch on thermal.
This the effect that from that moment on no velocities are calculated anymore, this saves
time.

other unt he have now completed the cycle. The neutron w111 have one collision after the

graduate schoor meserach
Concluatons

Marlus Troost

graduate school research
besponse of a sinale story reinporced conchete buiditmo to dymamic blast loading

The loading portion of the problem a 1 aso has dist inctive characteristics 3 ince the
The program to solve th1s problem has three maln parts;
The loading portion of the program is \times ritten and is
(2) The integration portion uses the backnard dirference technique. It includes
(3) The control portion 18 almost completed.

Ralph G. Gray
response op a pive-story building to dynamic Loading

(1) Control Program

Th1s program,
load.
(2) Load Program

On the inner and outer surfaces of the buliding as functions of time.
(3) Integration Program

(4) Reststance Program

Also writen, th1s program utilizes the d1splacements
tion program to compute resistances within each story.

Prom the moments existing at the joints, the story
by the integration program on the next cycle as resistances.
growth of fattaue crack:

 22
raduate school. reseahc

 $\left(\frac{d \theta}{\xi \xi}\right)_{\xi=x}=\frac{x_{3}^{2}}{1+x_{3}^{2}}\left[1+\frac{1}{\left(x+x_{j}\right)^{2}}\right]+\frac{x_{3}}{\sqrt{1-x_{1}}} \int^{x}\left[1+\frac{1}{\left(x-\xi+x_{j}\right)}\right]\left(\frac{d \theta}{d \xi}\right) d \xi$
 References:
eferences:
[1] P. A. Mcclintook, "Growth or Patigue Cracks under plastic Tors ion," unpub11shed paper
[2] L. Collatz, Numerlsche Behandung von Differentlalgletchungen, Springer, Beriln, (1951)
condensation of vapor in a vertical tube
verticea1
lam nar
lin
The equations 81 ven in the past report for the r 11 m condensat ion or a vapor in a

lam nar
turbulen

computer. The laminar condensate-turbulent vapor equations are being programmed for the

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

2.1 Introduction

Progress reports as subuitted by the various programors are presented in numerical order in section 2.2 . Since th1s summary report presents the combined effort
of DIC Profects 6345 and 6915 , reports on problems undertaken by members of the Machine
 duplication of Part 1. For reference purposes, a 11st of the mac Group problems appears below.
Letters have been added to the problem numbers to indicate whether the prob 15 for academ
81 gnificance

A implies the problem 1 s Nor for academic credit, is UNsponsored.
B implies the problem $\underline{I S}$ for academic credit, is UNsponsored.
c implies the problem is NOT for academic credit, is sponsored.
D 1 mplies the problem is for academic credit, is sponsored
N implies the problem 1s sponsored by the office of Naval Research
L implies the problem is sponsored by Lincoln Laboratory.
The absence of a letter indicates that the problem originated within the sarc group.

List of Machine Methods of Computation Group Reports
The following problems used Whirivind I computer time during this quarter,
122 N . coulowb wavg punctions
A. Temkin
A. Tublis

203 b,N. RESPONSE OP A MULTI-STORY Prame building under dynamic
31 b, N. reactor runamay preverntion
39 N . YiRSt APPRoximation solution on org body

R. G. Gray
M. Troost
N. P. Ness
H. Weinitachke

100 COMPRBHENSIVE syStBM of sErvice routing
vould print out the dissemination of DCL Momo 117 on a proposed post-mortem program whic to floating addresses and place fiad tags in the print-out, the staff decided that the present Generalized Post-Mortem programs should be revised to incorporate these foature
and to and to add several others to make the GPM more useful as a means of getting output. To
goals for the GPM are to give print-outs of storage that are as goals for the GPM are to give print-outs of storage that are as chose as pract1cabil to
the input language to facilitate checking and print-outs of data in an easy to use form the input language to facilitate checking and print-outs of data 1
and in an automatic operation that will not use up very much time.
facilities: A nev GPM has been coded but has not yet begun to be checked out. It has these
(1)
The programaer may specify
mediate to 7 different (1) stop instructions as inter
 request pertaining to the particular break point and return control to the next instruc-
tion after the break point. A final break point mo should be specified men the tion after the break point. A final break point *0 should be specified. When it 1 in
reached another post-mortem will be executed, the stop will be logged and the comput stopped (or the next director tape word read). If the computer stops in any oother my
the operator may assume that there was trouble and he will be able to call in the apM the operator may assume that there was trouble and he will be abte to call in the Gpu
to execute a special "in case of trouble" post-mortem by setting the right wir to 1.00000
 post-mortem by setting the right MIR to o. OOO33, the let MIR to 0.0000n, vhere in 1s the break point number, and pushing both activate buttons and the Read-In button. (Vnless
the Erase button is pushed, the left MIR will be considered to be zero.) The operator the grase button 1 s pushed, the left in will be considered to be zero.) The operator
may obtain scope post-mortems and programmed arithmetic post-mortems (PAPMs) as at presen (ru4, ri will get a PAPM on the scope), but for more automatic operation it will be (2)
(2) In general, the new print-outs will have the same form as the old. However IN, and OUT are printed. In the flad modes automatic in-out requests will appear as AIorgh as explained in Memo DCL-117. Whenever flads are requested, flad tags are placed 1n the body of the print-out. The absolute addresses are always printed in the left-most
column, but these will usually be the current addresses (the place in core menory these columa, but these will usually be the current addresses (the plater in core memory these
words would occupy) rather than drum addresses (the actual locations on the drumb). The drum address of the first word of the block is alvays given on the first (subtitie) inne,
even when data is printed in the format mode where no current addresses are given. There will be 16 modes: gda, gdf, ofa, off, dia, dif, dfa, dff, wa, wwf wia, wif, $11 \mathrm{a}, 11$
Iwa 1wa, and ves, where the last letter calls for absolute or flosing address and the f11 first letter sets the mode and the second sets the mode after IN or out, i.e., wi and iv Imply switching.* Por numbers, a spectal format word in place of the initial current
address whll set the number per ine and number per block. Except in this mode, large address will set the number per 111
blocks of zeros w111 be suppressed
(3) The punch mode may be selected by an tp tape. The new punch mode will
to tape complete with title and sp block, but only the 100 octal block lengt give an fo tape ${ }^{\text {co }}$
will be retained.
(4) Because flads will be allowed in the addresses appearing in the ip tape and the flad table must be preserved for the post-mortem in many cases, the ip tape mue be read in immediately after the 10 tape containing those flads. As the read-in of tap
does not result in immediate execution of the request, but only in storing the request
on the buffer drum, it will be
before the program is operated.
point. (5) A PAPM will not be given unless it is spocifically requested at a break (5) a be given automaticanty in case of trown

It is expected that the new GPM will be operating routinely in the noxt quarter. A new memo and/or
With the new
GPM.
$\underset{\text { M. R. Weinstetn }}{\text { Digital Computer Laboratory }}$

- Memo DCL-117 Plad Post-Mortems and ff Tapes, M.R.WeInstein, December 19, 1955

101 N. optical proprrties of thin aetal plles
One successful run on some samples vastly different from ones previously used was preceded by a few unsuccessful ones
date after more than a year's interval
A. L. Loeb
$120 \mathrm{~B}, \mathrm{~N}$. The abrothermopressor
The present program was found to be unsatisfactory for certain initial con-
ditions because more make the present program satisfactory
Puture calculations are planned to check the experimental results that are just
being obtained in the Gas Turbine Laboratory.
A. J. Erickson
Mechanical Eng

126 c. DATA RRDUCTIO
Problem 126 is a very large data-reduction program for use in the Servomechan1sm
The overall problem 1s composed of many component sections which have been Laboratory. The overall problem 1 s composed of many component sections which have been ript ions of the various component sections have appeared in past quarterly reports. After the development and testing of the prototypp wirlwind programs 1 s completed, the prograns will be re-coded for other, commericaliy available, 1arge scale computers,
(probobly the Univac Scient1fic 1103, IBM 701 and IBM 704 computers), for use by intoreste agencies for anctual data reduction at other locations. The programs are currontly being
developed by Douslas T. devoloped by Douglas T. Ross, David P. McAvinn, walter E. Weissbium, Benson H. Scheff, and
Dorothy A. Hamilton, Servomechanisms Laboratory staff members with the assistance of Dorothy A. Ham11ton, Servomechanisms Laboratory staff members with the ass 1 stance of
John F. Walsh. This work 1s sponsored by the Air Porce Weapons Guldance Laboratory.

The nature of the problem requires oxtreme automaticity and efficiency in the actual running of the program, but also requires the presence of human operators in the
computation loop for the purpose of decision making and program modification. For this
reason extonsive use 18 made of output oscilloscopes so that the coaputor can conaunicat

 lation and modification is called the Manual Intervention Program (uiv), The moot recont
version of the prototype data reduction program 1s called the Basic Evaluation Program. The basic features of the Miv Program were described in the provious progress
report. During the past quartor the Basic Evaluation Prograi vas coepleter
 at over seventy break points. The nature of the Evaluat ion Progran 18 such that this
debugging procoss would have been virtually debugg ing process would have been virtually 1mpossible without the use of the MDR program
In addition, an ent1re new soction of the gvaluation Program, which will allow automatic
starting of the data reduction proces starting of the data reduction process at any point, was incorporated and checked.
The decision to operate all Problem 126 programs under Director Tape Controi
has materialiy increased the effectiveness and reliability of these programs. The re
 W-1103 Input Translation Program of Problem 256 has begun in earnesi.
provide greater LIexibility of operation. The function of the Logging Program 1s to
record record logical information on a magnetic tape unit, giving the pegrting program 18 to
concerning all manual intor interventions, in in concerning all manual interventions, 1.e., which buttons have been pushod and what cer tain parameter values are, and similar information concorning all displays seen by the
human operator. The complexity of the manual operations makes such a complete record human operator. The complexity of the manual os
essential to the successful use of the programs.

The logical magnetic tape output of the Logg ing Program is to be processed at
a run by the Editing Program which will give a delayed printer tabulation of the end of a run by the Editing Program which will give a delayed printer tabulation of
the iog in Eng1ish phrases and numbers of appropriate types. A preliminary version with the log in Eng1ish phrases and numbers of appropiate types. A prelimimary version
very restricted capabilitios is now in use, and the elaborate complete version is now very restricted capabilities is now in use, and the elaborate complete version is now
beeng written. Mr. Frank c. Helwig of the uIT Digital Computer Laboratory is a major
contributor to the Logging and Editing Programs.
program will very flexible and elaborate scope plot Program is also be ing written. Th1s to that on a ruler, a faint grid in the background, plotted points connected by faint stralght 1ines, alphanumeric labeling and automatic initiation of new frames whenever any boundaries are exceeded. The program 18 fed a series of parameters wish tell the
and
desired format, scaling, and labeling and then is furly automatic. The program can desired format, , calling, and labeling and then is fully aut
initiated either automatically or through the MIV program.
$\begin{aligned} & \text { Both the Editing Program and the Scope Plot Program require the use of arbit- }\end{aligned}$
rary sequences of alphanumeric characters.
Por use in these and future programs a pair rary sequences of alphanumeric characters. Por use in these and future programs a pair
of general programs are betng written. The first program accopts arbitrary six-bit
chatores
 them in arbitrary locations with optimum packing. The second program unpacks the code
words and characters, and under their direction distributes the arbitrary information to words and characters,
selected in-out units.

The Unpacking Program is being realized by programing a new type of computer which has three modes of operation of its control element. Each instruction in the
program to be executed by this computer is tagged whether or not it is to be executed in
each of the various modes. A system of jump and remember-jump instructions, which can change both location and mode, gives th1s type of computer extreme flexibility and
compactness, and should prove to be very educational from all standpoints. The future and

d. T. Ross

rat S\&EC subrouting study
Subroutines are being checked out for function evaluation, via truncated Chebyshev and Legendre expansions, for root extraction (Barr1stow and Bernoulli1), and for matrix converses (CraIg's method and Frame's method).

155 N . SYnoptic clinatology
A complete discussion of the research carried on by the Synoptic Climatology Profect, under sponsorship of the office of Naval Research, may be found in the 1 inal
report, "Studies in Synoptic C1imatology" published by the MIT Department of Meteorology, report, "Studie
March 15, 1956.
$\begin{gathered}\text { Programs for th1s problem were written by members of the Synopt ic Climatology }\end{gathered}$
Project under the supervision of Dr. T. J. Malone, formerly of the MIT Department of Project under the supervisision of DD. Tr. T. Malone, formeriy of the MIT
Meteorology and Professor E. N. Lorenz, MIT Department of Meteorology.

```
This problem is now terminated
```

$$
\begin{aligned}
& \text { E. A. Kelley } \\
& \text { Meteorology Departmen }
\end{aligned}
$$

152 N . analysis or a scattring exf briaznt in nuclear physics
A fit of various combinations of phase shifts has been obtained at discreet points for low energies. Now, a slightly finer mesh of points is being used in the same
fegion to determine the set of phase shift combinations which will give the truest physical picture

Puture computations will be based on this set, as it is planned to project out computations to try to find a fit at middie and high range energies

Programmers working on this problem are E. Campbell and B. Mack of the Nuclear
aboratory.
E. Mack
Nuclear Science Laboratory

179 c. transient tbipgraturg and strbss op a box-typg bean
Closer correlation with experimental temperatures was achieved by improving
of contact admittance. Puture plans are to tmprove stress correlation.
J.c.Loria
Aeronautica Engineering Department

193 L. Bigenvalue problek por propagation of blectromangtic maves

For purposes of coaparison with the resulta already obtained for a bilinear
model of the atmosphere at $50 ~ M c$, wo plan to carry out sim1lar calculations for an model of the atmosphere at 50 Mc , we plan to carry out sim11ar calculations for an
inverse-square model. This work will involve computation of Bessel functions of large
complex order and argument.

Calculations of $410 \mathrm{u}_{\mathrm{c}}$ and $3000 \mathrm{u}_{\mathrm{c}}$ have been continued, as described previously
Tapes have been prepared Tapes have been propared with which eigenvalues, elgentunctions and mode sums may be
calculated at one time, rather than in two parts, as mas done tormeriy. Prellminary
tapes have been made for the inverse-square model.
until completed $410 \boldsymbol{u}_{c}$ and $3000 \boldsymbol{u}_{c}$ calculations with the bilinear model will be continued
 preceding quartor
Programmers working on this problem are Professor H.B.DVight and Dr. R.K.Ring
of Lincoln Laboratory. Laboratory

$$
\begin{aligned}
& \text { H. B. Dright } \\
& \text { Lincoln Laborator }
\end{aligned}
$$

194 b,N. aN augagntsd plank wave method as appligd to sodium
Unfortunately, although the routines mentioned in the last report have been
individually tested, the tests of the complete program bave not yet been succesafuily Individual
completed.
In the meantime, it has been decided to use the symmotrization routines of the E ve E_{0} curves for symmetrized coabinations of augmented plane maves.
Molecular Theory can be found in the quarterly Progress Reports of the solid state and

$$
\begin{aligned}
& \text { M. M. Saffren } \\
& \text { Solid } \\
& \text { state }
\end{aligned}
$$

216 c. ULTRASONiC DELAY LinEs
This period has been spent in debugging the program and in making a fow tos runs. The program is very coapitix, consisting or an itorative hoop which contains a 1inear program. The reason for 1 teration with a 1 inear program is that the restrictions
(inequalities) are not 1inear, but well-behaved analytic functions to many variables, for which 11near approximations consisting of the first terms of Tayior series are made.

The sizes of the problems to be solved vary from 40 restrict $10 n s$ with 20
to 90 restrictions with 32 variables. The time needed for one cycle varie
variables to 90 restrictions with 32 variables. The time needed for one cycle varies
correspondingly from 3 minutes to 15 minutes, most of which is taken by the linear corresponding1y from 3 minutes to 15 minutes, most of which
program. Usualiy 3 cycles or less suffice for convergence.
test runs There are about five of the larger problens yet to be solved and several mor test runs using the smaller problems will be made to determine the mode of operation
preferred.
The programmers working on this problem are Richard B1shop and John Ackiey. $\begin{aligned} & \text { R. Bishop } \\ & \text { Mathematic }\end{aligned}$
Mat
219 linear procraming - transportation problem
The Whiriwind program for the solution of the classical transportation problem
completed and proved on a number of trial problems, and is now avallable for has been completed and proved on a number of trial problems, and 1s now avallable for
general use. The program will handie problems with up to 127 plants and up to a total general use. The program will handie probems with up to 127 plants and up to a total
of tou plants and customers provided the product or the number of plants and the number
of customers is is less than 7169 . Several sets of data for a practical distribution of customers is less than 7169 . Several sets of data for a practical distribution
problem with 9 plants and 69 customers have been tried. The average computer time for problem witt 9 plants and 69 customer
each solution was about 1.5 minutes.
The Classical Transportation Problem
The transportation probiem may be phrased as follows: A company operates
plants producing a commodity, the $1^{\text {th }}$ of which can supply s_{1} units of the commodity. plants producing a commodity, the $1^{\text {th }}$ of which can supply s_{1} units of the commodity. The company sells its production to n customers, the $j^{\text {th }}$ of which demands D_{j} units of
the commodity. The costs of manufacturing and transporting a unit of the commodity the commodity. The costs of manufacturing and transporting a unit of the commodity from
plant 1 to coustomer j is $C_{i j}$. It is desired to 1 ind the number of units $X_{1 j}$ that should be shipped from each plant to each customer, in order that the total cost of the operation be a minimum. Thus the problem may be stated mathematically as:
Minimize

$$
c=\sum_{i, j} c_{i j} x_{1 j}
$$

subject to the constraints

$$
\sum_{1} x_{1 j}=D_{j}
$$

$$
\sum_{j} x_{1 j}=s_{1}
$$

(3)

$$
x_{1 j} \geq 0
$$

(4)

This is a special case of the general inear programing problem.
The Stepping stone Method *
A set of $X_{i j}$ which satisfies equations 2,3 and 4 is called a feasible solution to the problem; if the set also minimizes c, it 1 s an optimum feasible solution containing,
n meneral, exactly $m+n-1$ non-zero $\mathbf{X}_{\text {if }}$. The stepping stone method of solution consists
of
(1) Generating a feasible solution having exactly $m+n-1$ non-zero $\mathbf{X}_{1 j}$.
(2) Finding a zero $\mathbf{x}_{1 j}$ wich, if allowed to be positive, would yleld a
decrease in \mathbf{c}. In the process of increasing this $\mathbf{x}_{1 \mathrm{~g}}$, one of the non-zero $\mathbf{x}_{1,}$ sust go to zero in order that equations 2 and 3 romain satiofied. Thus the nev fensible solution
will again have oxactly $m+n-1$ non-zero $\boldsymbol{x}_{1 j}$.

makes it faster than coupu :er technicues for mons of storing the feasible solution which
 Olsornal of the Association for Computing Machinery.
The programers work1ng on th1s problem are J. B. Dennis and M.J. Bccles of
the MIT Eloctrical Engine oring Dopartment.

> J. B. Denn1s Eioctrical Eng1

Dantz1g, G. B., "Application of the simplex Method to a Transportation Problem", Activity Analyspis of Profuction and Allocation, T. Tr. Eoopmans, Ed., John wiley
\& Sons, Now York, 1951, pp 359-373. Charnes, A., and Coopor, $\boldsymbol{\Psi}$. W., "The stepping stone Programming calculations in Transportation Problous ${ }^{" 1}$, Management Sclence,
Vol. 1, No. 1, Cotober 1954.

225 N . NButron-deutbroit scattrring
The calculation of the neutron-deuteron scattering longths with the trial
function described in provilus reports has been completed. ${ }^{\text {fin }}$ Unique minima wore found
for the vartartional function described in previous reports has been completed. * Unique minima wore found
for the varlational expressions for k cot 8 in both quartot and doublet spin states.
The scattering longths so determined show 1ittle offect of poilarizat The scattering longths so determined sot little e of ect of polarization in elther spin
state. However, it is felt that these results are inconclusive since the following two
 interpretations are both possible: (a) the physical system 1 s indeed unpolar.
(b) the trial function used is not adequate to describe the physical system.
In an offort to throw further 11 ght on the situation, it is planned to continue
the calculation using other forms for the trial function. Two such forms are being the calculation using other forms for the trial function. Two such forms are be ing
considered. one contains two additional parameters to describe the no-polarization
function, wh11e the other function, wh11e the other contains a moree flexible description of the polarization.
Both of these new trial functions are similar enough to the orisinal Both of these new trial functions are similar enough to the original one so that the
existing formalism can be taken over with little change. All the required

L. Sartori
Physics Depa

The results of this calculation have been submitted to the MIT Physics Departmant

225 d. investication op the vorticity pield in the gengral circulation of the athosphere The following programs have been completed during the past quartor:
a) A 30th order asymmetric matrix inversion program (24,6 input).
b) A matrix transpose program.
c) A relaxation program for $\nabla^{2} \emptyset$ over a 60 point square grid.
d) The program for the computation of $\mathrm{N}\left(\mathrm{h}, \mathrm{h}^{\prime}, \boldsymbol{\zeta}_{\mathrm{m}}, \boldsymbol{\zeta}_{\mathrm{T}} ; \lambda, y\right)$ in
equation (1) [see Summary Report No. 42]

$$
\text { e) The progran for the computation of } \dot{P}_{\text {min }} \text {. }
$$

Plans for the next quarter include the writing and checking out of two programs

$$
G(y) \nabla^{2} \frac{\partial h^{\prime}}{\partial t}-H(y) \frac{\partial}{\partial y}\left(\frac{\partial h^{\prime}}{\partial t}\right)-1\left(S_{m}, S_{T^{\prime}} y\right) \frac{\partial h^{\prime}}{\partial t}=0
$$

The programmers working on th1s problem are Duane Cooley and Martin Jacobs. R. L. Pfeffer Motoorology Department
234 n . Atomic intrgrals
Subprograms have been writton and tested which evaluate the radial integrals
arising from operators

$$
r^{L} Y_{L}^{M} \text { and } \frac{1}{r^{1+1}} Y_{L}^{M}
$$

for all values of L . The functions γ_{L}^{M} are spherical harmonics. These prograns also
evaluate radial integrals for the diamagnetic susceptibility operator

$$
\mathrm{r}^{2} \mathrm{x}_{0}
$$

and the contact hyperfine interaction

$$
\frac{8(r)}{r^{2}} y_{0} .
$$

All of these programs are based on 81 mple recurrence relations for matrix elements of
these operators between analytic atomic orbitals of the form

$$
\eta_{\mathrm{a}}=\mathrm{N}_{\alpha} \mathrm{e}^{-5 \alpha^{\mathrm{r}}}{ }_{\mathrm{r}}^{\mathrm{A}+\ell_{\mathrm{a}}}{ }_{\mathrm{y}_{\ell \mathrm{a}}}^{\mathrm{m}}
$$

where ζ_{α} is positive and A is a non-negative integer.

R. K. Nesbet Sol 1 d State

236 c . transient response of aircrapt to heating
been modified ing this quarter the basic temperature distribution coaputing program has sen modified in such a vay as to permit calculation of the transient tanperature and
stress response of T -section which 18 half of a doubly symetric 1 -section subjecte
 to any given continuous timevise variation of the boundary
transfor coefficient hand adiabatic wall temperature $T_{a v}$,
Eleven satisfactory runs vere made. These runs included accolerated dives and
level flight decelerations of Aluminum, Titanium, and Inconel X T-sections have been 1nterpereted in terms of structural welght penalties. The results. Tre further
beported in a paper entitled "Soes structural Penaltes reported in a paper entited "Soone structural Penalties Associated with Therain plight
by professor James w. Mar and Lucien A. Schmit, by Professor James W. Mar and Lucien A. Schmit, which was presented at the Spr
ference 1956 of the Aviation Division of the ASXE in Los Angeles, California.

> A study of thermally unsymetrical systems is contemplated for the future.

Programmers working on this problem are L. A. Schmit and H. Parechanian

241 b. tansients in continuous distllation colunens
A program has been written to determine the importance of the non-11near variation of vapor composition with 1 lquild composition leaving the plates in a dis
tillation column. If a linear variation for each plate is assumed and the usual
 change has been made in one or more of 1ts operating variables can be described by ${ }^{\text {a }}$
set of simultaneous 1 inear first-order differential equations. The solution of any such set of equations can be carried out by standard techniques to find the roots of the the
sump
determinant of the coetficients of the dependent variables and the constants from the deterninant of the coerficients of the dependent variables and the constants from the
initial and boundary conditions of the problem. The complexity of the solution 18 such Initial and buoundary conditions of the problem. The complexity of the
that a high-speed computer is necessary to carry out these calculations.
A comparison of the results obtained in th1s manner with the results obtained earlier by using a finite difference approximation to solve the more accurate non-1inea equations should show how important the non-1inearities are in many cases.

> S. H. Davis, Jr. Chemical Eng ineering Department

244 C. data reduction poa X-1 pirs control
This problem is concerned with computing from fire control signals how far
 quarter. Mork ane

Puture plans for the problex call for still more data reduction, perhaps also
aplementary programs (yet to be prepared) for clearer presentation of the using supplementary programs (yet to be prepared) for ciearer presentation of the reduced data.

$$
\begin{aligned}
& \text { J. .. Stark } \\
& \text { Instrumentation Laboratory }
\end{aligned}
$$

245 N . theory of ngutron reactions
for $\ell=5 \begin{aligned} & \text { Some of the coding has been reversed to increase the accuracy of the results }\end{aligned}$ for $l=5$ and 6.
including $x=0$.
of a constant.

E. Campbell Nuclear scle s. s.

253 N . an augugnted plane wave method for iron
${ }^{\mathrm{E}}$ vs. E_{0} curves have been completed for both the face-centered and bodycentered structures. These curves serve to define the augmented plane waves entering
into a variational procedure which in turn gives the so-called "k vs. k " curves.

$$
\begin{aligned}
& \text { J. Wood } \\
& \text { solid Sta }
\end{aligned}
$$

yood
State and Mol
256 c. Whirluind i - univac scientific 1103 thanslation program
The vocabulary of the wwi-1103 input translation program (as described in
Summary Roport No. 41) is currentiy being enlarged to include a more generalized form of umbers. Programers will be permitted to write numbers of the form

$$
\pm 12.34 \cdot 2^{3} \cdot 10^{-4}
$$

With or without as many associated factors of powers of 2 and 10 as desired, wherever they were previously allowed to write integer numbers. In addition, the post-mortem
program has been modifled to print an indication of ail the illegal words detected by the rogram has been moc
translation program.
warter, and a 18 inal report on the quarter, and
memorandum.

Programmers working on this problem are F. C. Helwig and J. M. Frankovich
J. M. Prankovich
Digital Computer

7 c. horizontal. stabilizer analysis
During this quarter the program for the solution of the two rigid body equations of motion (vertical transiation and pitching) has been checked out and 18 now ready to be
tncorporated in the overalil analysis of the horizontal stablitier. Incorporated in the overall analysis of the horizontal stabilizer. The program for the erponse of a thirteen lumped mass and a one lumped inertia system, representing a typical
present-day fighter aircraft, to a step-function input is almost completely checked out in the 1 inear elastic regime of deformation
In the future, the two programs mentioned above will be incorporated into one
program to yield realistic structural response, or deformations of a present-day to a gust type input. The response of the fighter will be solved for in its elastic
regime of doformation and also beyond, when the atructure incurs permanent doformation The solution of the differential equations of mot
numerical integration in a step-by-step procedure

> B. Criscione Aeroelastic

Aeroelastic and structures Research Let
260 N . ELECTRONIC RNERGY of this ob wolsculs
Most of the work done in th1s quarter has involved checking the results previously obtained and making use of programs (doscrtied tin earlitior Sumany Reports)
for repeating some of the calculations involved in calculating the binding energy of the molecule at new internuclear distances.
$\underset{\substack{\text { A. Preeman } \\ \text { Solid State }}}{ }$
261 c. pouribr synthesis por crystal structurk
The crystal structure of pectolite mentioned in earlie
during the last month, while wollastonite is nearing completion.
is finishe refinement of diglycine hydrochloride, also explained in eariler reports, Is inished as far as projections are concerned. Only one more refinement in three ,

The isomorph1c digiycine hydrobromide 1s under inve
1s carried on in 1ts main projections by difference syntheses
made. Further progress tovard the completion of the structure of Jamesonite has been
Programmers working on th1s problem are Professor N. J. Buerger, T. Hahn and
N. Nitzeki of the Geology Department, and J. Roseman of the Digital Computer Laboratory. T. Hahn
Geology Department

262 n . byaluation of two-center intggrals
The exchange integrals evaluated by Merryman's program, was not found to be
, sufficiently accurate at internuclear separations of one
integrals are now being evaluated by corbat δ 's program.
H. A. A. Ahajanian
Solid State and

Solid state and Molecular Theory Group
264 c. optimization op airchaft alternator regulating systbm
The method for minimizing a function of n constraints in the presence of equality constraints by means of the method of steepest descent has been proven for two
simple mathematical problems. Mork is being done on improving the above program, adapting it to large scale
problems, and modifying it for inequality constraints.
\qquad

whirluind coding and applications

$\begin{gathered}\text { Programmers working on this } \\ \text { MIT Electrical Engineering Department. }\end{gathered}$.

R. R. Brown knergy Conve

266 A. calculations por the mit rbactor
During th1s quarter, work continued on calculations for the wir reactor using
that are closer to the actual reactor design. The same basic two-group, parameters that are closer to the actual reactor design. The same basic two-group, fou region model is be ing used. Other modals
these models will be tried in the future.
The reactor power transient studies, carried on with miriwind I and the Dynamic Analysis and Control Laboratory analog computer, have been temporarily suspended
for this problem.

$$
\begin{aligned}
& \text { T. Cantwelı } \\
& \text { Nuclear Eng1 }
\end{aligned}
$$

270 B. CRITICAL MASSES IN $\mathrm{D}_{2} 0$ moderatrd reactors
During this quarter tapes have been propared so that a large number of case Spherical Geometry

1. Serber wilson one-group diffusion.
2. Three-group Pourier Expansion.

Cy11ndrical Goometry

1. Two-group diffusion
2. Three-group Fourier Expansion - both approximate and exact expansion.

The only renaining program to be debugged is the spherical multi-group transport. This
should require oniy a few weoks.
ro
Puture plans involve testing the worth of these methods by comparing them with
each other, and with what experimental data is availabie.
groups by Pourier is analysis, ath11 boe tried. This should be free of certain restrictions
that hamper the use of the three-group Pouriter techive that hamper the use of the three-group Pourier technique.

$$
\begin{aligned}
& \text { J. R. Powell } \\
& \text { Nuclear Eng ineer }
\end{aligned}
$$

272 L . Genseal raydist solution
A nov mothod of solution has been tried during this quarter. This mothod is
purely algeraic and solves for a set of coefficlents for an elght order polypoaial from purely algebraic and solves for a set of coetficients for an elght order
the coefficients of the original three second-order non-1inear equations.
This method proves the problem to be well conditioned and shows the prospect of to the desired accuracy. The program at prosent is in a debugging stage.
A. Zabludowsky
Digital Compute

273 n . ANaLysis of air shourb data
The last progress report describes how the method of steepest descent 1s used to make a least-squares fit of an empirical function f to mentioned the necessity of speeding up the computation. In order to do this the function
俍 has been changed from an exponential form to the following:

$$
f=\frac{\alpha}{r+\beta r^{2}}
$$

Th1s function gives an adequate fit to the data and the t ime per shower 18 only about seconds. But it has the defect that a good fit usually can be obtained with dirf
values of β. For this reason, we are planning to go back to the exponential function

$$
t=\alpha e^{-x / \beta}
$$

The computation time per shower may still be less than one minute since the program 1 is
now capable of making good estimates of the initial values of the variables. Also, we plan to develop a rapid exponential subroutine.

The problems connected with the empirical function have not prevented us from analyzing some data. So far, we have results on about 50 showers. This work will
continue along with the above mentioned problem and other testing of the program.
Programmers working on this problem are Professor G. W. Clark and F. Scherb of
the MIT Physics Department.
$\underset{\text { P. Scherb }}{\text { Phyaics Dopartment }}$
275 b. BUCKLing of shallow blastic shells
The work on the problem of the bucking of a compressed shaliow cylindrical shell is virtually complete. The results of this problem and the protiem of the buck1ing shell is virtuall complete. The results of this prowem will appear shortiy in a
of a ayperbolic parabolotdai shell loaded by is own weight wit
doctoral thesis for the MIT mathematics Department.
A. Ralston

Department
whirlwind coding and applications
278 N . EnEbay levels of diatomic molbcules (LiH)
The Ground Electronic state
Tho ground electronic state as deternined spectroscopically occurs at an
equilitivium internuclear separation of 3.0141 atomic units. The spectroscopic value equilititrium internuclear separation of 3.014 atomic units. The spectroscopic value of
the vibrational constant, ω_{e}, is $1.406 \times 10^{3} \mathrm{~cm}^{-1}$, and the experimental value of the thissoctation energy is $2,5 \pm 0.2$ electron volts.
The configuration interaction problem has been carried out by considering only
configurations of proper ground state symetry which occur when the 1s shell is kept filled Configurations of proper ground state symmetry which occur when the 1 s shell 1 s kept
The other two electrons may occupy the 1 ithumin 2 s and 2 p o orbitals and the hydrogen 1 s
symmetry occur.
The value of the binding energy has been determined for seven internuciear distances between 2.0 and 6.0 stomic units. The potential energy curve which results has
deen approximated by a morse curve, from which we obtain a value of $1.212 \times 10^{3} \mathrm{~cm}^{-1}$ for den approximated by a Worse curve, frou which we obtain a value of $1.212 \times 10^{3} \mathrm{~cm}^{-1}$ for
the vibrational constant, 3.245 atomic units for the equilitbrium internuclear distance, and 1.669 electron volts for the binding energy.

The First Excited Singlet State
tate (' $\Sigma^{\text {The }}$) first excited electronic configuration has tho same symmetry as the ground
 spectroscopically, 1s $234.4 \mathrm{~cm}^{-1}$. Since the symmetry 1 s unchanged in going from the
ground state to the first excited state, it is reasonable to assume that a determination ground state to the first excited state, it is reasonable to assume that a determination
of the next to lowest elgenvalue of the secular determinant might be expected to give a
fair approximation to the first exclited state.
very
form,
The calculated potential energy curve is very broad as expected, with a minimum
to the observed value and about 0.29 electron volts too high. A power series

$$
v(r)=x_{0} \xi^{2}\left(1+a_{1} \xi+a_{2} \xi^{2}+\ldots\right) \quad \text { where } \xi=\frac{r-r_{e}}{r_{e}}
$$

has been used to represent the potential energy near the minimum. The vibrational
constant, found f rom ${ }^{\text {a }}$, was in good agreement with the experimental value. SCP LCAO-MO Calculation
We intend to coupare the results of the configuration interaction calculation
W1th a self-consistent
field molecular orbital treatment. Adequate programs have been developed by Mockler and Nesbet for the whirlwind coumputer, and are avallable for eval
uating the electronic energy uating the electronic energy of 1 1thium hydride by this procedure

This phase of the work on LiH is being initiated, and further work is in progress on the electronic binding energy at more extended internuclear distances using
the conventional configuration interaction scheme. A. M. $\mathrm{M} . \mathrm{Karo}$
Solid State
State \qquad

285 N . augugnted plank wave nethod as appligd to chrouium crystal
The display routine mentioned in the last report has been
used to examine the discontinuity of slope in augmented plane vaves.
E vs. E_{o} curves which are being calculated for a slight change in the chromium potential indicate the sensitivity or these curves to potential, at least in
the transition metals. The potential used was obtanined in a way not ubual for onergy
band calculations. However, other members of the Sold State and Kolecular Theory band calculations. However, other members of the soldd State and Molecoular Theory Group
using Whiriwind I will soon furnish Hartree-Pock wave functions for the transity metals. Prom these it is hoped that potentials sultable for an energy band calculatit
can be obtained.

Problem 194.
Detalls can be found in the Quarterly Progress Reports of the MIT Solid state
and Molecular Theory Group.
and Molecular Theory Group.

$$
\underset{\substack{\text { M. . . . Safficen } \\ \text { Solid State and }}}{\text { State }}
$$

288 N . atomic wave functions
Approximate atomic wave functions, expressed as sums of determinantal functions constructed from orbitals which are 1 inear combinat
orbitals, have been obtained for He, $\mathrm{L}, \mathrm{B}, \mathrm{B}$, and Be .

The calculations on Li and B are primarily concerned with evaluating the electronic contribution to the
described under problem 234 .

A series of calculations on the 1soolectronic systems Be, Lif, He_{2} and HL have been carried out by the one-center method(see Quarterly Progress Report, sshat Group April 15, 1956, at a fixed internuclear separation of 3.0 atomic units. The difference
in total electronic energy of these systems can be obtained from the mean value

$$
\left\langle\begin{array}{ll}
\sum_{1=1}^{4} & \frac{1}{r_{1}}
\end{array}\right\rangle_{z}
$$

taken about the nucleus with charge Z in th1s 1soolectron1c system (the charge on the
other nucleus is $4-z$). These calculations are intended to explore the feasibility calculating molecular binding energies by th1s indirect method.

$$
\begin{aligned}
& \text { R. K. Nesbet } \\
& \text { Solld State }
\end{aligned}
$$

\qquad
elements: Approximate atomic wave functions are being obtained for the following transition
\square

```
cu
```

These calculations are being done in an attempt to obtain criteria concerning the choice
 lement calculations.

> R. Watson solid State and Molecular Theory Group

290 N . polarizability grpgcts in atows and moleculss
To describe the distortion of atoms in a uniform field, we have set up the perturbed Hartree-Fock equations for ar general external perturbing field of arbitrar order and symmetry. This atomic polarizability problem corresponds to a first
perturbing potential of the form r cos θ. As the first step in solving the self perturbing potential of the form r cos θ. As the first step in solving the selir-
consistent Hartree-Pock problem and also to get functions suitable for describing the anstor
distortion of an antom in an 1onic molecule we are using an equation der ived by sternhelimer The derivation of the perturbed Hartree-Pock equations, a discussion of the physical
assumptions and of Sternheimer's equation has been given in recent 1ssues of the solid assumptions and of Sternheimer's equation has been given in in
State and Molecular Theory Group quarterly Progress Report.

Sternheimer's equation is:
where

$$
\left(-\frac{d^{2}}{d r^{2}}+v_{\ell \rightarrow \ell^{\prime}}\right) v_{1 \ell \rightarrow \ell}=r U_{0 \ell}
$$

$$
v_{\ell \rightarrow \ell^{\prime}}=\frac{\ell^{\prime}(\ell+1)}{r^{2}}-\frac{\ell(\ell+1)}{r^{2}}+\frac{1}{v_{0 \ell}} \frac{d^{2} v_{0 \ell} \ell}{d r^{2}}
$$

${ }^{0}{ }_{1 l} \rightarrow \ell^{\prime}=$ The desired perturbed function characterized by l and ℓ
O\& The known unperturbed atomic function characterized by l and given as a sum
of terms each of which 1 s of the form r^{n} e-ar . With 1 . Temkin (Horse Group) we have set up the solution of th1s equation on Whiriwind
 and N ions (the various 1 ons beling characterized by the different O 's) by a.
integration technique using the Minlwind Library Subroutine DE 2 Kutta-G111.
 $\ell=1$ and $\ell^{\prime}=1, \ell=0$. For these we have used an outward integration also with the
Kutta-inill subroutine but so far we have not been anbe to get satisfactory results either With respect to the form or magnitude of the functions. In particular, the number of Hodes for the case $\ell^{\prime}=0, \ell=1$ has changed as we have changed our mesh size.
Uniortunately, in contrast to the case of the homogenous ordinary differential equation, there appears to be no general theory ${ }^{2}$ relating to our unhomogenous equation. The equation possesses great sensitivity to the mesh size s since we have a very rapidiy var
ing one at large r. This has necessitated several revisions in both the nuber ad ing one at large r. This has necessitated several revisions in both the number and
distribution of our mesh points and at present we are investigating a procedure employing
160 points and 19 different aosh intervals.
L. C. Allen
solid State and Molecular Theory Group

Roforence

1. Sternheimer, R. K., Phys, Rev. 96, 951 (1954)
2. As indicatod by a survey of the literature and discussion with Profossor x . Lovinson 293 c. rollimg bearings
a now approach to the results unsatisfactory. Some research 1s presently being done on future attempts may be made if a sufficientiy promising method is developed
A. Shashaty

297 B. DIPFUSION BOUNDARY LAYKR
A general description of the problem was given in Summary Report No, 43. The computations completed during the past quarter were concerned with a revised form of the energy equation. Previous results from 1 teration prograns for the concentration and
momentum equations were employed to obtain the additional solutions. The program will be concluded during the next quarter
J. Baron
Naval Supersonics Laboratory

300 L. TRopospheric propagation
Values of the Presnel integrals for complex arguments have been computed using convergent power series. Satisfactory values have been obtained for constant imag inary
part of the argument as a function of the real part over ranges in which the convergence is not too slow

$$
\begin{aligned}
& \text { J. P. Roche } \\
& \text { Lincoln Laborator }
\end{aligned}
$$

306 D. SPgCtral avalysis op atwospheric data
During the past quarter the writing of the program was successfully completed, It is expected that, in the near future, extensive comp
Summary Report No. 43 will be made using this program.

$$
\begin{aligned}
& \text { B. Saltzman } \\
& \text { Meteorology Department }
\end{aligned}
$$

$309 \mathrm{~B}, \mathrm{~N}$. PURE AND InPurs potassium chloride caystal.
The calculation of molecular KCl integrals outlined in previous reports has
and boen completed, and the combination of these integrals into matrix elements is nearing
completion. since the last report, however, it has been found that second neighbor
 expected that the main objectives of the calculation will be attained during the next quarter.

L. P. Howland solid state and molecular theory Group

312 L. Brror analysis
This problem, which was described in summary Report No. 43, has been in working order for several months now, and is being used frequently for production runs physical situation.

L. Peterson
incoln Laboratory

314 c. high order polynomial factorization
The present program has been extended to factor a series of polynomials on one tape. This resulted in a sumstantial saving of total problem time. Thus, the tapes
fc 141-227-79 and fc $141-227-1$ were replaced by the binary tape fo $314-88-4$. A typica esult is: factoring ten $10^{\text {th }}$ order polynomials in 2.5 minutes. This permits.
conomical use of Whirlwind in computing root loci for systems stability analysis.
Y. Shulman of the Aeroelastic and
programar for this section of the problem.

$$
\begin{aligned}
& \text { V. W. Howard } \\
& \text { Y. Shulman }
\end{aligned}
$$

Aeroelastic and Structures Research Lab
317 c. extraction op stabllity derivatives from plight test data
The aerodynamic terms of the equations of motion of a high-speed aircraft have Sen calculated using the method reported in NacA TN3288 (December 1954). It has been etermined that the type of simulated response used in the study to date adversely
affected the accuracy of the results. A program has been written, therefore, which rovide simulated responses to controiled inputs. During the next quarter, use will be nade of this program to get successively more complex responses, which will then be use
-

> L. L. Mazzola Aerobhystcs

Aerophysics Research Group
318 c. Thrge diugns ional abrodymuic lekad pursuit study using whirluind i as a real
Coding of the problem 1 s being carried out in three parts: aerodynamic,
 that they give correct results for cortain inputs. Currently, work is being continued
on the display routine, trying to 1 mage correctiy on the scope sepresenting an out1ine of the target. After the desired mapeses are obtained on the cope, the immediate future plans are to program the computation of points outinining ne target. Arter the various parts of the problem are checked out, the parts will be
necorpated into the whole.
rogrammers working on this problem are B. Romberg and J. M. Stark of the wir
tion Laboratory. Instrumentation Laboratory.
$\underset{\text { J. }}{\text { J. }}$ I. Stark
322 B. maxinum bubble size
The calculations are coapleted and will appear in the Sc. D. thesis of petor
Oriffith,
dee to be finished June 1956. Later the results will form part of a technical report for DIC Profect 662

Thi radius time curves are wanted to aid in the correlation of boiling heat
flux and maximum heat flux data. Using part of these computer resultas,
 forced convection, subcooled boilling, It remains still to complete a correlation for thesis.
. Griffith
323 N . ANALYSIS OP CLOUD Chamber photographs
stage of During this quarter, a few additional cases were run, completing the first stage of the work intended for this program. Some time
Will be enlarged to handle some other types of problems.

The programmer working on this problem is P. Abrans.
D. O. Caldwell
Physics Departmen

327 L. Prediction analysis
Th1s problem deals with the prediction of certain events when information giving rise to the prodicis primarily
appended.
The peotric and alige praic, , with a stans themselves are ploted on the oscilloscope
The program is in working order. It is being used with altornat
of solution to compare results with previously obtained hand-computed cases.

L. Peterson
 Lincoln Laboratory

332 c. Game-throry optimization op intercgption systrm
The problem described in the previous whiriwind Summary Report was completed during the quarter. Entritis for the 46 -by-46 payoff matrix of the reduced game were
computed. A study of the matrix indicated that the reduced-game solution would consis computed. A study of the matrix indicated that the reduced-game solution woura cons.
of mixed strategies for both players and that both mixed strategies would contain a large number of pure strategies. These indications 1ed to two conclusions: Pirst, an
exact solution of the reduced game would require computer time on the ordor of years;

Second, because the defender's optional strategy was known to be a pure strategy, the duced game was an inadequate representalion

The decision was made, therefore, to attempt an approximate solution or the exact game rather than an exact solution of the approximate (reduced) gamo. A method of sucessive approximations, called the method of fictitious play, was adopted. The
procedure consisted of choosing an alternating succession of strategies for the enemy rocedure consisted each choice belng based on the past strategies used by the opponent. The method converged rapldyy aqterer 22 iteration an approximate solution was obta ined,
That
and the true game value was determined within 1 per cent. The total computing time for and the true game value wis
this run was 29 minutes.

A final program, lasting 6 minutes, was run to compute some additional results. This run yielded data specifying (a) the optimum response function of the cascaded

The programmer for th1s problem was K. Kavanagh.
G. R. Welt1
Dynamic Analysis and Control Laboratory

33 A. boundary-layzr charactrristics op a steady laminar flow op a combustible MIXTURE OVER A Hot SURPACE

During the past few years, the study of 1 gnition and flame stabilization in steady fiow of a combustible mixture by means of a hot surface has received increasing hot surface, it has been found experimentaliy that the combustion intensity can be 1ncreased
avallable. A program, both theoretical and experimental, has been set up recentiy to study
the basic characteristics of this problem. Pour theses are now involved in the experimental program and three term profects are engaged in the theoretical study. Prel iminary work shows that 1 t 1 s ossent1al to investigate the boundary-layer characteristics of the
flow of a combustible mixture over a hot surface. This investigation will permit one to Clow of a combustible mixture over a hot surface. Th1s investigation will permit one to
understand not only the problem of surface 1 gnition 1 in particular but also the effects understand not only the problem of surface 1gnition in particular but also the eftects
of reaction rate and transfer of momentum, mass, and heat on combustion processes in enera

Partial differential equations of continuity, momentum, and energy are firs developed for a laminar boundary layer, and then transformed 1nto a series of ordinary
differential equations. Solutions are to be obtained with the ald of the Whirlwind I computer for specif1c reactions and temperatures of the hot surface.
Solutions of the first five sets of the differential equations were obtained
tor two values of the temperature of the hot surface and for a second-order reaction the Arrhenlus type.
reaction rate in of the profiles of the velocity, temperature, concentration, and solutions of the boundary-1ayer equations are necessary to study the effect of surface temperature on inciplent ignition.

The programmors working on this problem are Professor T. Y. Toong and $\xrightarrow[\text { T. Y. Toong }]{\text { Hechanical }}$
334 C. PARALETRIC Study or modal coupling and damping
During th1s quarter, the work has been concentrated on the solution of a single vibratory differential equation and the simultaneous solution of both two and
three coupled vibratory equations. A satisfactory solution has been obtained for eacicher three coupled vibratory equations. A satisfactory solution has been obtained for each
of the above three cases based on one set of tnitial conditions. To obtain a solution of the above three cases based on one set of initial conditions. To obtain a solution
to the problem for a different seat of initial conditions, the program must be rerun with a modification tape for the constants. Thus a paramentric study at the present time
involves a series of runs with a new modification tape for each run.

Puture work on the problem will entall the alteration of the set-up to produce

$$
\begin{aligned}
& \text { K. Wetmore } \\
& \text { Aeroelastic }
\end{aligned}
$$

338 C. SELECTIoN of aircrapt generator cooling systbms
With increasing flight speeds it has become impossible to cool aircrast gen-
erators with unproceesed ram air. Systems of turbines, compressors, and heat exchangers erators with unprocessed ram air. Systems of turbines, compressors, and heat exchangers
must be provided to cool the air to the point where it can remove generator losses withou requiring excessive generator temperatures. Use of such systems imposes a penalty on
aircraft pertormance due to the weight of components, and in addition a much larger aircraft performance due to the weight of components, and in addition a much larger
penally due to drag created by taking air aboard at high velocity and exhausting it at pow velocity. Equations exist relating this drag to system parameters, and it is desire to find the minimum-drag system for an aircraft flying at Mach 3, 70,000 feet
A selected range of discreet values of system variables are given to the computer
together with a program for cal culating drag. Another program causes the computer to all combinations of variables and record the drag caused by each. A selection of minimum-解
Pive hundred and sixty calculations of drag are required, each calculation
requiring approximately 200 numeric
The original problem as described above has been extended to include optimi-
zation of cooling systems for all Mach numbers up to 4 and all altitudes up to 100 , 00 feet, as weil as investigation of off-design performance of cooling systems. Two type work is also planned for programming.

The project is substantially completed with the exception of Macb 4 systems.

$$
\begin{aligned}
& \text { R. Moroney } \\
& \text { Bnergy Conversion Group }
\end{aligned}
$$

Slectrical Engineering Department

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

339 A. beam vibration
An earlier study of the equation
$\frac{\partial^{4} \psi}{\partial x^{4}}+\frac{\partial^{2} \psi}{\partial t^{2}}$
was reported on in "Numerical Treatment of a Fourth order Parabolic Partial Differential
Equation" by Stephen H. Crandall, J. Assoc. Comp. Mach., 1,111-118 (1954). An 1mprose tinite difference recurrence formula has now been developed and it is desired to test finite difference recurrence
this in actual computations.
This problem was used as an exercise for the students of MIT Course 2.215 Methods of Engineering Analysis, to illustrate the fundamentals of digital computer
programming. A program was prepared, run and partially debugged by interested students. expect to complete the program debugging and make a few runs during the next

S. H. Crandall

341 c. Statistical and dynamic forbcasting methods
Th1s project 1s the start of an extended research program ut111z1ng various
mathematical procedures for the establishment of empirical equations for weather premathematic
diction.

All or the mathematical procedures to be used cannot be stated at present, as
many are dependent upon initial results. The initial procedure is the computing of the many are dependent upon initial results. The initial procedure is the computing of the
elements of covariance matrices. There are several of these matrices to be computed, elements of covariance matrices. There are several of these matrices to be computed,
one for each weather element of interest. Each of these matrices involves input data of
approximately 10 , ooo numbers.

The method of operating on these covariance matrices is in unpublished form
and because of its extent it is not feasible to include it here. However, in the not and because of its extent it is not feasible to include it here. However, in the
too distant future it will be included in a project Scientific Report.
During the current quarter the major effort has been devoted toward the of predictors is originally chosen. The matrix of the covariances of the predictors is obtained. This matrix is then diagonalized. TTose in inear combinations of the orisinal
predictors whose variances are the large elements on the diagonalize predictors whose variances are the large elements on the diagonalized matrix are then
used as new predictors. In this way the total number of predictors is reduced. Whitriwin 1 han boen used to obtain the necessary cross-products for the covariance natrix. The rav data amounts to 10,500 numbers and the elements for a matrix of the 75 th order are the
results. This programming has been under the direction of Miss E1izabeth A. Kelley.

One phase of the project is concerned with an extensive study of the extended Pange forecasting possibilities of the methods developed by the synoptic climatology
Profect, now dofunct. The sea-1evel pressure and 700 mb height anomaly charts for each
March from March from 1946 through 1955 have been expressed in terms of 26 coefficients of
Tschebyschotf orthoognal polynommale. Als. Tschebyschoff orthogonal polynomials. All maps cover a 135 point grid bounded by $25^{\circ} \mathrm{N}$
and $65^{\circ} \mathrm{N}$ and by $45^{\circ} \mathrm{W}$ and $185 \mathrm{~m}_{\mathrm{W}}$. The points have been taken at each 10° of long1tude each 5° of 1atitude. The Whiriwind computer has been utilized in order to determine the
coofficients. This work has been under the supervision of m .
 despect to time of the amplitude cortain equations, which oxpress the change with Integration 1s carried forward by short time steps. The programing on this phase of the project has been done by $\mathbf{k r}$. Kirk Bryan.
N. Lorenz, All of the work done on the profect has been supervised by Professor Edward

$$
\begin{aligned}
& \text { E. A. Kelley } \\
& \text { Heteorology }
\end{aligned}
$$

343 c. weather prediction
The success of the research conducted by the synoptic Climatology Group ai MIT (Whirlwind Problem No. 155 N.) has indicated that a statistical approach to the
weather forecast problem should be fully explored. It is planned to incorporate me weather forecast problem should be fully explored. It is planned to incorporate meteor
ological knowledge and theory into the stat1stical procedure. The research results of ological knowledge and theory into the statistical pro
our project have indicated fruitful lines of approach.
There are two aspects of the problem: (1) It is planned to derive 11near Pryan and used by the Synoptic climatology Group. Theory and observation have demor strated that the vertical structure of sea-level pressure systems have a direct influenc on their behav1or and, therefore, on the future weathor. Por th1s reason a non-11near
approach to the prediction problem w111 be made through the classification of back date approach to the prediction problem will be made through the classification of back data
into various classes of atmosheric structure. Linear prediction equations will be deve oped for each class of situation 1nstead of attempting to derive a universal 11 near pre-
diction equation as has been attensted in the past. diction equation as has been attempted in the past

The linear prediction equations are

$$
E=a_{0}+\sum_{1=1}^{14} a_{1} z_{-1,1}+\sum_{i=1}^{14} b_{1} z_{0,1}+c \overline{\underline{p}}_{1}+d \bar{p}_{0}+e s_{1}+t s_{0}
$$

where E is the weather element, $\mathrm{Z}^{\prime} \mathrm{s}$, $\overline{\mathrm{P}}$'s and $\mathrm{S}^{\prime} \mathrm{s}$ are the known variables and $\mathrm{a}^{\prime} \mathrm{s}-\cdots-\mathrm{-l}$ t
are the coefficients to be obtained.
for the parameters ales of E, Z 's s 's and $\overline{\mathrm{P}}$ ' s are already computed. Wh1riwnd w111 solve
The method of obtaining the coefficients is Least Squares Analysis of the Multiple Linear Regression Equation. The solution of the method described by crout. It 18 possi,
statistical parameters from this method,
Once the coefficients are obtained and the resulting statistical paramoters ar studied, the equation will be evaluated substituting variables independent of those used
in determining the coefficients. These results will be verified with observed weather conditions

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

(2) The second aspect of the problem is the development of new predictors to
replace the Z 's in the above equation. These predictors will be so chosen to represent replace the $z^{\prime} \mathrm{s}$ in the above equation. These predictors will be so chosen to represent
the maximum amount of variance of a field with a minimum number of parameters. whirlwind
will perform standard arithmetic operations to obtain the latent roots and latent vectors will perporm standard drithmetic operations to obtain the latent roots and latent vectors
of symetric matrices. The elements of these matrices will be the correlation coefficient of symmetric matricos. The elements of these matrices will be the correlation coefficient
or covariances between the Z 's.

- During the past guar

During the past quarter, some prelimimary work on a desk calculator was under-
classify the data for aspect (1) of the problem. plans are now under way to taken to classify the data for aspect (1) of the problem. Plans are n
make an initial computation on this non-1 near approach to prediction.

A study was undertaken to determine sets of orthogonal functions to describe patterns of atmospheric vartables. Essent1ally, the techntque requires dlagonalization
of a covariance matrix of such variables. Use was made of Witriwind library subroutines of a covariance matrix of such variables. U
in the initial programming for this problem.

The future work on prediction will utilize these new orthogonal functions
The programmers working on th1s probleil are B. Kelley and B. Shorr.

$$
\begin{aligned}
& \text { J. M. Austin } \\
& \text { Heteorology }
\end{aligned}
$$

344 B. AN inventory and production Control model
Initial study has been centered in solving numerically an inventory and prostection model where three distinct quadratic (by quadratic we mean the form and ${ }^{2}+b x+c$) levels, and (3) The cost of changes in the production rate. (2) The cost of inventory If we have,
$f_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}-1}\right) \quad=$ the minimum cost of operating for a given number of periods when one starts the nth period with inventory,
x_{n}, and the production rate of the previous period 1s x_{n}, and the production rate of the previous period 1s $\mathrm{s}_{\mathrm{n}-1}$.
n $\quad=$ demand of nth poriod; a random variable
$B\left(\right.$) $\quad=$ expected value of () with respect to y_{n}
$\mathrm{g}_{\mathrm{n}}\left(\mathrm{X}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}-1}\right) \quad=\underset{\mathrm{In}}{\mathrm{cost} \text { during the }} \mathrm{nth}$ period of production and inventories In general, this function will be a sum of the costs of
type (1), (2), and (3) mentioned above. $=$ discount rate
and, if we were to study the business for only one period, a minimum cost production rate for the nth period could be found by minimizing the expected value of g_{n} with respect
to z_{n}. Hence,

$$
\underset{x_{n}\left(x_{n} ; z_{n-1}\right)=\operatorname{win}_{n} E\left[g_{n}\left(x_{n} ; z_{n} ; z_{n-1}\right)\right]}{ }
$$

Since a minimum 18 desired for the sum of all discounted costs and since an optimal
(minimum cost) production rate will be chosen at each period wo have,

The last equation 1 s found by virtue of the firat-order difterence relation

$$
\Delta x_{n}=x_{n+1}-x_{n}=z_{n}-y_{n}
$$

which says that the difference in inventory between the ($n+1$) ot the nth the excess of nth period production over nth period demand
that g_{n} In the event that f_{n} considers the expected costs of many future periods and

$$
f_{n}\left(x_{n} ; z_{n-1}\right)=A x_{n}^{2}+B z_{n-1}^{2}+C x_{n} z_{n-1}+D x_{n}+E z_{n-1}+P,
$$

fore the solution equations of the

$$
A^{2}+f_{1}(B, \ldots P) A+g_{1}(B, \ldots P)=0
$$

$$
B^{2}+f_{2}(A, C, \ldots P) B+g_{2}(A, B, \ldots P)=0
$$

$$
P^{2}+f_{6}(A, \ldots B) P+g_{6}(A, B, \ldots B)=0
$$

The f ' s and g ' s are non-linear functions of the indicated vartables.
Whirlwind I prograns are being usod for the calculation of the cost, f_{n}, and
an
decision for production, z_{n}, for the quadratic model wo have outinined. On the optimal decision for production, $\mathrm{n}_{\text {, }}$, for the quadratic model we have outinnod.
hopes that the answers to this f1rst phase of the problem will allow us to make more hopes that the answers to this f1rst phase of the probiem will antow us to make more
general assumptions about the cost function, g_{n}. An onvious case 1 s the necessity of no
no symmetrical costs for positive and negative inventories as well as costs which are mor symmetrical costs disproportionately expensive than quadratic costs. An example is the region of hig production rate changes where one feels a need for an exponential-type cost.
R. M. Oliver
Operations R
$\stackrel{\text { ver }}{\text { Research Group }}$

$$
\begin{aligned}
& =\operatorname{minE}_{\mathrm{z}_{\mathrm{n}}}\left(\mathrm{~g}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}-1}\right)+\mathrm{ag}\left[\mathrm{E}_{\mathrm{n}+1}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{z}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}} ; \mathrm{z}_{\mathrm{n}}\right)\right]\right) \\
& =\sum_{z_{n}}^{z_{n}}\left(\mathrm{~g}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}} ; z_{\mathrm{n}} ; z_{\mathrm{n}-1}\right)+\mathrm{E}\left[\mathrm{af}_{\mathrm{n}+1}\left(\mathrm{x}_{\mathrm{n}+1} ; z_{\mathrm{n}}\right)\right]\right)
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

345 B. matrix multiplication
The problem of the bucking of a clamped shallow spherical thin elastic shell subject to a uniform external pressure can be studied by means of the boundary value problem. (See reforences 1. and 2.)

$$
\frac{1}{\mathrm{k}^{2}}\left(\mathrm{f}^{\prime \prime}+\frac{1}{\mathrm{x}} f^{\prime}-\frac{1}{\mathrm{x}^{2}} f\right)+\mathrm{g}=\mathrm{Px}+\frac{\mathrm{fg}}{\mathrm{x}}
$$

$$
\frac{1}{k^{2}}\left(g^{\prime \prime}+\frac{1}{x} g^{\prime}-\frac{1}{x^{2}} g\right)-f=-1 / 2 f^{2} / x
$$

$x=0: 1, g$ regular
$x=1: \quad f=0, g^{\prime}-n g=0$
where k is a geometric parameter, and p a 1 load parameter. A convenient method for the
solution of the problem involves assuming f and g in the form of series of complete solution of the problem involves assuming f and g in the form of series of complete
orthogonal functions and by means of a conversion of the non-1inear problem to a sea of 1 inear problems to got the coefficients in the series. Th1s leads to sets of equations of the form,

```
-((\frac{k}{k}}\mp@subsup{)}{}{2}\mp@subsup{a}{a}{(p)}+\mp@subsup{b}{n}{(p)}=\mp@subsup{p}{n}{(p}+\mp@subsup{c}{n}{ij}\mp@subsup{a}{i}{(p-1)}\mp@subsup{b}{b}{(p-1)
```


The matrix calculations in the right hand member can be conveniently programmed and
used over again and again at each stage of the perturbation and also for different values
of the parameter k that are of interest.
Solutions have been obtained over a certain range of the parameter k during
this quarter. It is planned to complete the range of k corresponding to important
this quarter. It is planned to complete the range of k corresponding to important
physical applications.
R. Archer
Lochanitcal Engineering Department

Referencos

1. Reissnor, B., Proc. of Symp. in App1. Wath., Amor, hath. Soc., Vol. 3 (1950)
2. Stmons, R. Y., Doctoral thesis wIT (Wath), 1955.

347 B , Solution or sets of ten linear stiulutankous bquations
The probiem involves the solution of twelve sets of linear algebraic
simultaneous equations by the crout Rediction method.
Each of thase sots of equations will solve for the ultimate settiements or
the footings of a rigid structure, (which in this case are the settlements of the footings of the John Dorrance Laboratory) for a soil having a particular compressibility
and a superstructure having a particular rigidity.
The object of my thesis is to invostigate a structure of difforent rigiditios and a soli of different compressibilitios and solve for the differential sottlements for
each of these combinations and the secondary stresses which these settiements will cause each of these combinations and the
in the members of the structure.

> This problem was succossfully completed in the first run. S. G. Fattal Civil Engineoring Depa

348 A. UNSTBADY SUPBRSonic FLOwS With spherical syaigtr
fluid are: ${ }^{\text {The equations which govern the spherically symmetric motion of a compressible }}$

$$
\rho_{\mathrm{t}}+\left(\rho_{\mathrm{u}}\right)_{\mathrm{r}}+\frac{2}{r} \rho^{u}=0
$$

$$
(\rho u)_{t}+\left(p+\rho u^{2}\right)_{r}+\frac{2}{r} \rho u^{2}=0
$$

$$
\begin{equation*}
\left(\frac{p}{\gamma-1}+\frac{\rho_{u}^{2}}{2}\right)_{t}+\left(\frac{\gamma}{\gamma-1} p u+\frac{\rho_{u}{ }^{3}}{2}\right)_{r}+\frac{2}{r}\left(\frac{\gamma}{\gamma-1} p u+\frac{\rho_{u}{ }^{3}}{2}\right)=0 \tag{3}
\end{equation*}
$$

where $P_{r},{ }^{\prime}$, and p are the density, velocity, and pressure respectively at a point
distant ${ }_{r}$ from the centre of the gas at t time t; subscripts denote differentiation.
The equations 1,2 and 3 are replaced by finite difference equations by the

$$
\frac{\partial \mathrm{t}}{\partial \mathrm{t}}=\mathrm{t}_{\mathrm{t}} \quad \frac{\mathrm{f}_{\mathrm{p}}-\frac{1}{2}\left(\mathrm{f}_{\mathrm{R}}+\mathrm{t}_{\mathrm{S}}\right)}{\Delta \mathrm{t}}
$$

$$
\frac{\partial g}{\partial r}=g_{r} \quad \frac{\frac{1}{2}\left(g_{R}-g_{g}\right)}{\Delta r}
$$

Δr
where f_{p}, f_{R}, f_{S} are the values of f at point P, R and s
This form of the forward derivative (f_{t}) introduces an artificial viscosity term in the difference equations so that discontinuitie.
arise due to the presence of shocks) are momoothed over.
The resulting system of three finite difference equations, was solved numercally using Warrwind 1 .
 $u=0$, values of $\rho, ~ p a n d ~$
from $r=0$ to 4 and $t=0$
to

$$
\text { This requires a total of } 19,200 \text { repetitions of the basic cycle. }
$$

During the last quarter, the problem has
peen obtained for two types of initial conditions,
whilumind coding and applications
$\rho=1+5 e^{-4 \mathrm{r}^{2}}$ $4 \mathrm{r}^{2}$ and $\rho=1+2 e^{-4 r^{2}}$ \qquad Numerical results show that the initial shock weve to occurr.
which finally subsides.
During the coming quarter it is intended to develop a method whereby certain
${ }_{\text {Lither }}^{\text {. Roberts }}$
349. solution op partial dipperential equations

This problem $1 s$ concerned with the solution of a set of 23 non-11near partial differential equations which arose in the study of a transient heat transfer problem,

S1nce the basic program contained 1773 instructions, it was handled by the core memory, and a solution time of 29 seconds per $\frac{\text { time }}{} \frac{\text { 年vel }}{}$ was realized. Sin
were 400 time levels, a single solution required about 196 minutes (3.3 hours).
As part of this study, this same problem was solved on the IBM Type 650 Kagnetic single time level was obtained in 29 minutes. The 650 program was not optimum programmed
in if it had been, the solution time would have been reduced to seven minutes for a single

The results obtained on Whirlwind and the Type 650 Calculator agree to six
decimal ditits-which is quite good considering the basic differences tn the machine structure, etc.

Programmers working on th1s problem were Dr. P. M. Verzuh and M. Hermann of
the office of Statistical Services, and A. Zabludowsky of the Digital Computer Laborator
P. U. Verzuh
office of statistical Services

351 b. NON-UNIPORM PUEL distribution
Non-Uniform Puel Loading in Reactors
Reactors loaded in a uniform pattern throughout the core allow only a partial
exploit of the outer core regions, as maximum heat generation at core center 1s by heat transfor and metallurgical properties.

A deliborate redistribution of fuel, moderator, neutron absorbers and coolant
will modify the neutron flux and equalize maximum temperatures and stresses $w 1$ thin the reactor.

The Age-Diffusion equations are solved for 1 energy groups, N core-zones and
4 reflector-zones. Material constants vary for each group 1 and each region N . The leakaze term becomes a second derivative when introducing modified fluxes $\mathrm{F}^{1}=\mathrm{r} \boldsymbol{q}^{1}$
in spherical geomot

Boundary conditions impose p1 to vanish at the center of the core and at the extrapolated boundary. Neutron currents must be equal at core reflector interface. B
successive iterations the distribution of fuel concentration in the core producing an arbitrary thermal flux can be approximated.

$$
\begin{aligned}
& \text { Age-Diffusion equations in finite differences: (sol) } \\
& F_{n+1}^{1}-k_{n}^{1} F_{n}^{1}+F_{n-1}^{1}+r_{n}^{1}=0 \quad(n=0, \ldots, N+4)
\end{aligned}
$$

The first three terms include 1eakage and absorption. The last term describes the slowing
down and production of neutrons. The number of iterations is a function of the accepted
error.
The problem is divided into two major programs: space criterion and criticalit criterion Space Criterion
Prom an arbitrary assumed thermal flux the correct spatial flux distribution
is approximated by successive iterations (regardiess of criticality conditions).
cessive iterations (regardiess of criticality conditions)
reactor with program for the space criterion is betng fulfilled for a 2 -group, 2 -region reactor with 18 core zones and 20 reflector zones. Print-out of sing1e itera,
rapid convergence. A program for any number of boundaries will be developed.
Criticality Criterion
Haterial properties of the reactor are changed to acquire prescribed criticalit The changes are fuel concentration, fuel distribution, reflector thickness, reflector ,
various The routine for criticality criterion will be programmed according to the hanges in material properties as mentioned above
The programmers working on this problem are A. Sutter and μ. Troost.

$$
\begin{aligned}
& \text { A. Sutter } \\
& \text { Nuclear }
\end{aligned}
$$

viclear Engineering
352 B. CRItical whirling prequencies of profelegr shapts
The whiring or 1ateral vibrations of a propeller shafting induced by the blade frequency of the propeller will be calculated by numerical titeration. The meth involves a numerical solution to a fourth degree differential equation. Prequencios
w111 be assumed and the residual moment at the free end of the shafting will be plott will be assumed and the residual moment at the free end of the sharts zero 18 a resonan
versus these frequencies. The point at which the end monent equals zer point or natural whirling frequency of the shafting system. This method of output
chosen to enable comparison with existing data. The numerical calculationg are:

```
\frac{\partial}{}\mp@code{y}
\mp@subsup{x}{}{4}=\frac{4\mp@subsup{\alpha}{}{2}}{81}
```

$y=c_{1} \sin \lambda x+c_{2} \cos \lambda x+c_{3} \sinh \lambda x+c_{4} \cosh \lambda x$
obtained. Using end conditions to solve for constants the following parameters are

$$
\varphi_{\omega}=\frac{w_{p} L_{0}^{3} E_{1} I_{1}}{w_{1} L_{1}^{3} E_{0} I_{0}} \quad \pi^{4}\left(\frac{\beta}{180}\right)^{4}
$$

$$
\varphi_{J}=\frac{J L_{0} E_{1} I_{1}\left(\frac{1}{2} \pm \frac{1}{8}\right)}{W_{1} L_{1}^{3} E_{0} I_{0}} \pi^{4}\left(\frac{\beta}{180}\right)^{4}
$$

$$
C_{d 1}=\frac{E_{1} I_{1}}{W_{1} L_{1}^{3}} \quad C_{a 1}=\frac{E_{1} I_{1}}{L_{1}}
$$

$$
I=\left(\frac{\beta}{180}\right)^{2} \frac{\pi}{2} \sqrt{E C_{d 1}}
$$

$$
s_{1}=-\frac{\cos \beta \sinh \beta-\sin \beta \cos h \beta}{\sinh \beta-\sin \beta}
$$

$$
s_{2}=-\frac{\cos \beta \cosh \beta-1}{\beta(\sin h \beta-\sin \beta)}
$$

$$
s_{3}=\frac{2 \beta \sin \beta \sinh \beta}{\sin h \beta-\sin \beta}
$$

$$
u_{01}=-\frac{\varepsilon_{0} I_{0}}{L_{0}}\left\{\frac{\varphi_{\omega}+\varphi_{J}-\frac{\varphi_{\omega} \varphi_{J}}{3}}{1-\frac{\varphi_{\omega}}{3}-\varphi_{J}+\frac{\varphi_{\omega} \varphi_{J}}{12}}\right\}
$$

$$
k_{N, N+1}=-\left\{\left(s_{1}\right)_{N} k_{N-1, N}+c_{a N}\left(s_{3}\right)_{N} \theta_{N-1, N}\right\}
$$

$$
\theta_{N, N+1}=-\left\{s_{\mathrm{a} 1} \theta_{N-1, N}+\frac{\mathrm{k}_{\mathrm{N}-1, \mathrm{~N}}\left(\mathrm{~s}_{1}\right)_{\mathrm{N}}}{\mathrm{c}_{\mathrm{aN}}}\right\}
$$

During the past quarter a program has been written for this problem and is in
the process of being tested.
Programmers working on th1s probiem are Lt. C. R. Brandt, USN, LL. J. C. Snyder,
USN, and Lt. c. R. Thompson, USCG, associated with the MIT Department of Naval Architecture,

353 A. waiting lines - constant holding thie
The problem 1s as follows:
Given: $\quad x=m u, a(n, x)=\frac{x^{n} e^{-x}}{n!}$
to compute: $\underset{1 \rightarrow \infty}{1 \mathrm{im}} \mathrm{P}(\mathrm{n}, 1)$ for $\mathrm{n}=0,1$,
where $\quad P(n, 0)=1$
for all n and $P(n, 1+1)=\sum_{j=0}^{n} P(m+j, 1) a(n-j)$
It 18 known that for $u<1$ the 1 imits exist. Computations are required for min $=1,2,5$ 10,20 and $u=.2, .4, .6, .7, .8, .85, .90, .95, .98$, and .99 .
The 1 imiting probabilitiles here are the steady state probabilities for the
number of units waiting or being served in a queue with m servicing channels, Poisson number of units waiting or being served in a queue with m servicing channels, poisson
arrivals, and constant holding (servicing) time. is is the ratio of mean arrival rate to arriva1, and and constan mervicing rate
total mean
run. The feasibility has been verified and seven problems have been successfully
In the future, it is planned to run up to 43 remaining problems.

. systrans encineraing

Perforanance Records for the Whirlwind Computer System
The wwI computer system has been performing a 168 hour week since 1 June 1955 .
Th1s 7 day per week 24 hours per day schedule is expected to be continued for at least Th1s 7 day per week, 24 hours per day schedule 18 expected to be continued for at least
one year. The amelioration of computer system rellability noted in the two most recent quarterly periods was apparently a direct result of the refinements made to several of the equipment areas during the preceding 6 months.
The followin
most recent 18 months.

	$\begin{gathered} 28 \text { Sept. }{ }^{284} \\ \text { tot } 54 \\ 6 \text { oct. } 55 \\ \hline \end{gathered}$	$\begin{gathered} 7 \text { oct. }{ }^{\text {ofs }} \\ \text { to } \\ 29 \text { Dec. } \cdot 55 \\ \hline \end{gathered}$	$\begin{gathered} 3_{0}^{\circ} \text { Dec. }{ }^{\text {Do }} \text { to } \\ \text { tomar. } 56 \\ \hline \end{gathered}$
Total Computer Operating Time In Hours	7537	1876	1584
Total time Lost in Hours	230	48	36.3
Percentage Operating Time Usable	97.0	97.4	97.7
Average Uninterrupted Operating Time Between Failure Incidents In Hours	12	17.8	22.2
Total Number of Fallure Incidents	605	103	70
Failure Incidents per 24 -Hour Day	1.92	1.32	1.06
Average Lost Time Per Incident In Minutes	36.6	28	22.6
Average Preventive Maintenance Time Per Day In Hours	1.55	1.7	1.

3. visimoss

Tours of the wiriwind I installation include a showing of the film, "Making
 people visited the computer installation:
January 4
Januaryy 6
January
Jan
January
Jana
January
January
19

MIT Aeroelastic Laboratory
MIT Course in "Pundamental
January 6
January
10
$\begin{array}{ll}\text { January } 11 & \text { Lexington High School } \\ \text { MIT Course } \\ \text { January } & \text { Shool }\end{array}$
$\begin{array}{ll}\text { January } 16 \\ \text { January } & 19\end{array} \quad \begin{aligned} & \text { Harvard Buse in "Pul sed-Data sys tems } \\ & \text { Har }\end{aligned}$

$\begin{array}{ll}\text { Ganuary } 30 & \text { General Electric co. } \\ \text { NFrontiers of }\end{array}$
March $7 \quad$ Drontiers of Science" Grou
March 15 and members of his staff
The procedure of holding open House at the Digital Computer Laboratory on the first and third Tuesday of each month has continued, with the exception of Narch 20 Then the Institute was closed because of a severe blizzard. A total of 112 people
attended the five Open House tours during the quarter, representing members and friend atended the five open House tours during the quarter, representing members and friend
of the MIT Cominunity, Children's Medical Center, Medfield State Hospital, and Harvard
University University.

During the last quarter, there were also 45 Individuals who made britef tours
f the computer installation at different times. Represented by the individuals were: of the computer installation at different times. Represented by the individuals were:
MIT, Molpar, Lynn Mutual Insurance Co., A.O.Smith Corps, Barnard College, International MIT, Melpar, Lynn Mutual Insurance Co., A.O.smith Corp., Barnard College, International
Business Machines Corp., the United States Navy, Burroughs corporation, Princeton susiness Machines Corp,, the United states Navy, Burroughs Corporation, Princeton A1rcraft, Tohoka University, oberlin College, and Babson Institute

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
prrsonnel of the prowets
maching methons of computation and numerical analysis
Faculty Supervisors:

Philip M. Morse, Cha1rman Samuel H, Caldeell

 samuel H. CaldwelHerman Feshbach | Herman |
| :--- |
| J. Forrester | James. B. Resswick

Ch1a Chiao Lin
Research Associate:
Bayard Rankin
Research Assistants:
Joseph Hershenov
M. Douglas McIlroy
James \boldsymbol{Y}. Schlesinger James \%. Schlesinger
Hubertus J. Weinitschke Fernando J. Corbato Harvey Plelds
zoltan Pried
Ral tan Pried
Raymond F. Stor
Arnold Tubis
Aaron Temkin
Aaron Temkin
Jack L. Uretsky
Jukka A. Lehtinen Joseph B, Walsh
Martus Troost Marruan P. Ness
Norment
Nen Ralph G. Gray

PROUECT WHIRLWIND

Physics
Blectrical

Engineering Physics | Mechanical |
| :---: |
| Mathematics |
| Engineoring | Mathematics

Mathematics -

Mathematics
Mathematics
Mathematics
位
Mathematics
Mathematics
Mathemat
Physics
Physics
Physics
Physics
Physics
Physics
Physics
Physics
Mechanical Engineering
Mechanical Engineering Chemical Engineering

Digital $\begin{gathered}\text { Staff Members of the } \\ \text { computer Laboratory }\end{gathered}$ scientific and Rngineering Computations Group at the
Prank M. Verzuh,
Dean N. Arden
Dean N. Arden
Rheldon P. Best
Sheldon P. Best (Abs.
John M. Frankovich

Frank C. Helwwig
leonard Roberts

L.oonard Rober
Jack Roseman

Arnold slegan
Murray Matkins
Monroe R. Weinste
Alexander Zabludowsky

[^0]: Note: Some notational errors were present in the deflintions given last time

