APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

COMFIDBNIAL

M-1. 61

-2.

COITTSTRE

```
M-141, Sumary Roport No, 2, Introduotion
        to Volume 7
M-137, Computer Codos for Whirlvind I, by
        Robert R. Evorett, Noverher 4, 1947
M-134, Alphabeticel Information in Whir1mind
        Computers, by Robert R. Sverett,
        $cvember 10, }194
M-111, 3 ok Diagran Work, by Robort R,
        Evarett, October 6, 1947
4-113, 3looi Diggran Prioritiet for Whirluind I,
        by Earris Fahnantook, Ootobar 9, 1947
M-123, Additionet Registers for mhirlwind I,
        by Rabert a, Erorett, Ootobor 22, 1947
\<-127, Chocleing, by Robert R. Bverott,
        Ootobar 27, 1947
-161, Cheoking by Chook Froblems, by
        Robert R. Evoratt, Novambar 13, }194
M-129, Whirlwind I Trouble Shooting, Conmuntc
        on Womoranduar 4-123, by \sy W. Forraster,
        Ootober 28, }294
M-117, Control Desk, Whirlwind I, by Jay N.
        Forrester, Ootober 17, 1947
K-135, Blook Diagrams, Eleotrostatio Storago,
        by Robert R. Everett, Nuvambor 10, 1947
W-136, Aocumulation of Produote in the Thirlwind I 
        Computer, by Robert R. Evarott, Novamber 10,
        1947.
M-158, Blook Diegreas, Input and Output, by
* Robert R. Everett, Novembar 10, 1947
Z-24, Disoussion of Gomputer Systera, Typo 1-A,
        by Poter D. श11ton, August 12, 1946
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COMTIDENRTA

11-141

INLRODCOTION

Abstract

Torle was begun on block diagrams for a digital computer in Fobruary, 1946. At that time the projeat was consider ing the use of a high-speed erasable storege using aerially-1"esd eleatrostatio storage tubes plus sone photo-aleotric oard randers for storiag and resding orders and sonatants and tables of functions. Studias ware therefore made of a serial -type oonputer Since high opersting speads were reguired for tho aolution of the sirplano problem, a three-adiress aode was proposed, alloving setiting up storage elaments in parallel and a full hiph-apeod whiffletres-fpe multiplior wes proposed with aon-cyclis operation rasulting in a maltipiioation time of about 100 mioroseoonds. Since this apeed was still not great enough for complete solutioa of the aitplene problain, it was proposod to build two oomputers; one of whioh would be usad Bolely for interpolation, while the other would bs usad for the umeriaal onlculations, A study wes aado of this ayetem by Dverett, Ridor, and Tilton. One of the propossls is disoussed in $\mathrm{S}-24$ by Feter D . Tilton.

In the fall of 1946 it was deoided that an electrostetio storage tube could be developed whioh could be used in t parallel-digit transanission syatem. It was furthor deoided that if suoh a syetem wes used it would be possible to solve the entire sirplane problem with a single computer and yot to have gronter flexibility and sinplicity then the serial conputer considered bofore. Datallad blook diegrems were made for this syscen and are desorlbed in Vols, 5 and 6 of this report. Onitted frqu Vols. 5 and 6 is eny discussion of the electrostatio storage control, the input and output to the ocaputer, a large part of the oheoking, the control desk, and sarcain of the edditionel ordars. The input end output devices ero desor lbed in the reports of Vols. 11 and 12. A proposed set of blook diagrame for uaing these devices is presented ic $\mathrm{M}-158$ in this Volume. A tentative proposel is al so given for oleotrostatio storago control in $\mathbf{M}-135$. The computer equipment required for the additional orders is discussed in Nomorends $\mathbb{N}-111$ and $\mathbb{1 5}-123$. Sone of the ohecking problems aro also considorad in $\mathrm{M}-1.27$ and $\mathrm{K}-2.61$ e while some comments on the control deak by Jsy $\mathrm{V}_{\text {. Forrester are glven }}$ in 11.117 .
hs an indioation of the floxibility of the system, K-155 desoribas how a nodiflaation could be made to allow automatio acoumulation of produots in the Thillwind Computer. This insdiflastion could be mado oven oftor the oomputer is built and runaing. Some ooments ar mede in $M-234$ on how alphsiotioal in information could be handled in the Whirlwind Cotaputer,

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COHETDENTIAL

M-137 disousses the oode proposed for Whirlvind I in sonewhat more detail than is given in Vol. 5. A comparison is also made in this Menorandum between the code proposed for Thirlwind I and the code proposed by the Institute for Advanced Stucly for their digital oomputer.

REFBRENCB INITAX
E Series Memoranduns
C Sories Neno randum

VOL

CONSIDETTIAS,
0345
Memoranduxi M . 137
Page 1 of 12

Project Whirlwind
Servomechanisms Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: COMPUTER CODES FOR WHIRLWIND I
To: Joy W. Forrester
From: Robert R. Everett
Date: November 4, 1947

1. INTRODUCTION

The first fifteen orders for the code propoced for Whirlwind I are described in detail in the Block Diagran Report, E-227. The basic reasons for choosing this type of code are not discussed in any great detsil in this Report. It is the purpose of this mencrandum to consider the basic problems of code selection and compare the code chosen for Whirlwind I with thoso codes chosen by other computer groups, particularly that chosen by the Instituto for Advanced Study.

By computer codes is meant the group of orders or olementary operations built into tiae machine and available to the operator for inetructing the machine in the solution of a problea,

2. SELECTION OF A CODS

Firgt I would like to quote a paragraph used in the Instituto for Advanced Study Report ontitled, "Preliminary Diacussion for the Logical Design of an Electronic Computing Instrument", paragraph 3.1, page 4 :
"It is easy to see by formal logical methods, that thero exist codes that are in abstracto adequate to control and cause the execution of any sequence of operations which are individually available in the machine and which are, in their entirety, conceivable by the problem planner. The really decisive considerations from the prosent point of viev, in selecting a code, are more of a practical nature: simplicity of the equipment demanded by the code, and the clarity of its application to actually important problems together with the speed of its handling of those problers."

It is possible to perform any of the arilhmetic operations using only very airmple orders, sich as: the ability to examine a single digit to determine if it is a or a 0 , and the ability to creace or destroy digits.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
CONFIDENTIAL
Memorandual H: 137
2.

With these operations only we can add or subtract, and using the additions and subtractions we can multiply, divido, and carry out all the other operations desired for a machine of tis type. The problem then is not one of diacovering whether or ntt we can devise a code adequate for our purposes, but rather how gojd a code we can devise in view of our own particular problems. The basic conilict then is between cost and the ease and rapidity with which the machine can be used. By cost, I mean not only monetary cost but the 1 imitations of space and woight, the complexity of the equipment with resulting trouble shooting and maintenance difficulties, end possible set-up complexity requiring highly trained operators. This conflict between cost and periormance is inevitable in any kind of design work. The resulting design must be an engineering comproraice。

It is firat, necessary to discover what would be desired as a code and then to compare it with what is readily available. In particular, the operations which would facilitate the solution of the kinds of problems in which we are most interested, mist be discovered. There is no such thing as a somplotly general-purpose nacaine. The computing machines have not reached the stage of speed and flaxibility where they can be said to handlo satisfactorily all types of problems. Instead, the computers are intended for specific classes of oroblens. These classes are very large, to be sure, compared with wat has been possible in the past and the computers are able also to hendle with less efficiency problems outside their specific design classes but the fact remsins that the computer must be designed with certain specific requirements in mind. These requirements are dictated by the kinds of proolems to be encountered.

Going beyond then the simple logical operations mentioned above, we can atate that almost all classes of problens require large numbers of the arithnetic operasions of addition, subtraction and multiplication。 For this reason, it is desirable to build in these operations even though the amount of the equipment required may be considerable. We also basically require the ability 30 examine a digit of a mo in in computor and to order the further oporation of the computer according to the condition of this digit.

Beyond these simple operations is a second category which would bo desirable in alnost ary case and which will be built in if the amount of equipment required is not excessive. Among those cperations are; traneforring data from one part of the computer to another without arithmetic operations, absolute as rell as conditional transferance of control, the shifting of information within the computer wishout requiring mulitipisication and transferring paris of a word without requiring a lengihy shifting operation These operations are sufficiently valuable and used sufficiently of ten to warrant their inclus ion although they can b- fairly readily made up of the simpler operations. In fact, the very readiness with which they can be made up indicates the aimplicity of the additional squipment noeded for their eutomatic accomplishinent.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

$63 L 5$
SONITUAMTIAX
Nemorandum M - 137
3.

Then there is is tifrd category containing; operations of. a more special nature whesa general value is not so inmediately apparont. Snce again it is possirio to make up these operations from the simpler onser; the question is thall they be made automatic. Anong these operaiicns are others such as idition and subtraction using the absclut, Thives of numbers, civisior, and square root which would be included only If thay were either very easy o add or if the problems under particular considaration require them in. ench quantities as to make economic their incluoion. Among these operctiens are still otherw which would not be included at all unless the particulas problems required themo

It $s o$ happens then that the first two sategories involred are decirod without regerd to the nathematical problems: involved; the first catsgory, arithmetic operations, bocause it would bo included aryway, and the second category, convenient operations, becauge of its genoral value and the ease with which it can be added to the computer. It also happens t.hat the third category, special operatione, tends to be decided accordir, to the cost in arachine complexity unless the noed for then in special problems is immediately apparent.

3. BASIC CODES.

Orders in general consist of an instructional operation code plus the positions or addresses of one or more of the words in the storage, Orders are called single or multiple address order depending on whether there are one or more references to storage $f(r$ each operation.

The choice of the nurber of addresses to be used in tie order is once again 2argely dependent on the physical nature of the machine. Since most arithmetic operations require three nunlers, two of which are combined in some fashion to form the third, a three address code might at first be thought best, since two of the addresses could be for the two original numbers and the third address for the disposal of the result. However, many times only one or two of the addressos are required resulting in considerable waste of order storage. The addrevs position of a single address code is almcst always used thus making it tomewhat more efficient, particularly an it is not necessary to store the rosults of operations if they are to be used again imediately. Pour addrets codes are also useful. The fourth address can be used to select the rext order to be periormed; thus it is no longer necessary to store the orders in approximate linear seçuence in the macbine and considerable numbers o: transfors using the sub-program operaticns are avoided. However, all hese considerations aro secondary.

In the first place the single address cotie requires the simplest kind of equipment since only one olomentary operation is being carried on at a time. The effective use of a triple address code requires considerable duplication of control equipment. In the case of a parallel type machine such as hirlwind the increase in control equipment, would be considerable and the saving in time small. In the case of serinl type machines where the time required ts extract information from storage is long, the use of

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

a multiple address code allows these extractions to be carried out in parallel with a considerable saving in time. For this reason a multiple address code was selected for the early serial corquter investigation of Project Whirlmind and has also been selected for some of the EDVAC type machines.

There is another important consideration however, and that is word length. The length of an address is fixed by the memory capacity of the machine and is of the order of ten to fifteen binary digits. A triple address code is thus of the orcier of 50 binary dig.ts in length. Thirty to forty binary digits are usually considered adequate for most types of computingo If the word length ie made 50 or more digits long just to accomodate the length of an order, there is a considerable wastage both of memory capacity and quipment. If, however, the order is cut in two parts or stored in two words, each part need cnly bo about 25 digits which is now too short for most computing purposes. Therefore, when multiple address codes are considored the four address code exhibits the advantage of nicely filling two word lengths of an ordinary computer. Although the triple address codo was used in the ooding investigations carried out in the serial computer study of the whirlwind Prograra a four address code or a modification of it was proposed for the actuel machine。 At the moment there seems to be no edvantage in using a two address codo or in using more than four addresses. Both tho kh: rlwind and Institute for Advance Study machines use a single address code as is best sui.tigd to their basic syster which is to perform operations in series while handling digit colunns in parallel. Two complete single address orders fit easily through a single word length of a machine such as Whirlvind II or the Institute for Advance Study Machine wille a single address order was used to determine the word length for whirlwind I_{0}

There are other possjble modifications such as an early EDVAC code which filled a full word length with a single address order and included space for such information as the number of transfers to be parformed. The Naval Ordnance Laboratory machines proposed providing space for "stop orders" which were indices carriod along with orders to facilitate keeping track of inductive processes.

The solection of a fixed or floating point system has considerable effect upon the code to be used. In order to facilitate certain oporations it is desirable to have a fixed point system availiblo. If a floating point system is desired for ease of setup then usutlily both fixed and floating point systems must be provided. It has been decided that the Winirlwind machine and most of the other proposed machines use a fixed point system only because it has not bsen felt that any simplicity gained by the floating point in setup is warranted by the extra complication and loss of speed of the computer.

The precedure for handiung signs also hat an affect upon the code. The particular convention used has no offect whon olementary arithmetic operations are considered but has considereble offect when multiple longth number operations are carriod out or when the digital character of the numbers are conaidered as in comparisons in convervions of one base system to another. A $9^{\prime} s$ complement syatom was chosen for the whirlwind I Computor

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum M-137

CONSID.ENTIAL
because of the simplicity obtained thereby in the arithnetic elemant although the tens complements system is used by the Institute for Advanced Study appears to result in occasional coding aimplicity.

The rounding procedure used also has a considerable offect upon the code selected. In genoral during ordinary arlthmetic corputa$t \dot{1} 0 n$, it is desirable to round off numbers as carafully as possible. When the digital characters of the numbers is considered it is desirable not to round off the numbers. There are 3 possibilities. The first is to round off whenever desirable from the point of vaer of arithemetic and to accept the rescliting complications of the coding when other types of problems are considered. The second is not to round off at all, sither accepting the resulting error or rounding off when cosired by application of the elpmentary operations. The third possibility is to duplicate orders for rounding off or not rounding off accepting the cost in machine complication for ease in coding. The whirlwind aachine uses a combination of the firct and third method. Since the problems :or wich it is intended, in particular simulator and other physical problems, aro aritmetio in nature, rounding off is performod whenever desirablo. In some instances special orders are provided to avoid rounding off, in particular to facilltate operations with multiple length numbers. Thesa points will be made clear in the paragraph below.

4. THE INSTITUTE FOR ADVANCE STUDY AND WHIRL\%IND CODES

The IAS and WW machine:; are physically va'ty similar as dictated by the similarity of their storage devices. Their differences ile in the extra complication of the Whirlvind machine added to obtain the very high computing speed required for the problems considered for Whirlwind. Since their physical natures are very similar and their physical natures have a very great effect upon the codes as shown above, the codes proposed for the IAS and WW machines are also very similar. These codos are given below and compared and discussed in detail. I shall first gite a short sumnary of the major differences between these tmo codes.

Sumary of the difperia ies betuern the Iais and ww codes.

1. There is no appreciable diff rence betwoen the ordors required for addition and subtraction.
2. In multiplication the Whirla. nd machine multiplies the number selected by the order by the contents of the accumulato: in the arithmetic olement and leaves the product in this accumulitor. It is thus possiblo to perform repeated aultiplications without restoring the products at sach step. The IAS machins multiplies the numier selected by the order by the number which is in the shifting register of the arithmetic elenent and leaves the product in the accumulator. The only path botween the accumulator and the shifting rogister is via the storage thus requiring a transfer omitted in the Thirlwind machine if repeated multiplications are to be carried out.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
congidintial
Mestorandum $x-137$
6.
3. The Whiriwind code provides two orders far multiplication one of which includes rounding off and one of which does not. The I..S code has but one order which always rounds off the product but leaves an indication so that the rcunding can be cleared later if deaired.
4. In division the remaintier is cleared from the accumulator in the Whirluind code and is left in the accumulator in the IAS codo.
5. I Since there is but one order per word in the Whirlwind machine as compared to two orders per word in the IAS machine only half is many control modification orders are required.
6. The shift orders in the IAS code cause the accumulator in the arithmetic element to be stepped but one space to the right on left for each shift order. In the Whirlwind code shifts up to the full length of the accumulator can be ordered by a single ordor.
7. There are also some special orders provided in the Fhirlwind code for facilitating operations with multiple length numbers. This facility is desirable in Whirlwind I bocause of its short register lengthe.
8. Since data is not availabie no comparison is given between the input and output orders proposed for the two machines.,

The detailed comparison of the codes now follows:

Order Number Code Symbol
1

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345 | COMIT DENMIAL
$\begin{array}{ll}6345 \\ \text { Memorandum } M^{\prime}-137 & 808\end{array}$

Order Number	Code	Dasmboliption
8	WWI	Substract absolute value of number located in position x in the selectron into the accumulator
Substract magnitude Substract the absolute velue of the number in register x already in ACom whatever is		

These two orders are also identical as far as the operator is concerned.

9 IAS $R \quad$| Clear register and add number |
| :--- |
| located at position x in the |
| selectron into it. |

There is no counterpart to this order in the Whirlmind code. Tha regisier mentioned is equivalent to Whirlvind $B-R g i s t e r$. In tho IAS Codo this order is necessary prior to a multiplication.
10 IAS A Clear accumulator and shift nuriber

There is no counterpart to this order in the Whiriwind Code. Whanever it is desired to shift the number in the B-Register into the accumulator the regular ehift left operation is used.

11	IAS	X	Clear accumulator and multiply the number located at position x in the selectrons by the number in the register, placing the left hand 39 digits of the answer in the accunulator and the right hand 39 digite of the answer in the register. The sign digit of the register is to bo made equal to the extreme left (non-sign) digit. If the latter is 1, then 2-39 is to be added into the accumuletor.
	WWI	mr	Multiply and round of. Multipis the contente of register x by whatever is in $A C$ and round off the result tc ons register length.

This is the first important difference between the IAS and Whirlwirct code. Since the multiplier is originally in the accumulator in the Whirlwinc code, order 9 described above is not needed. Since the product also appeara in the accumulator successive multiplications can be carried out without transfer-

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

634,5
Vemorandury \% - 237
$-a^{0}$

COMYYDENTLNL
9.
ring the product into the memory at sach step. In the Whirlwind operation this product is rounded off and the contents of the B register are cleored. If, then, it is desired to retein the less significant half of the product, a special order described beloy is needed. In the IAS order not only is the les3 significant nalf of the product rotained, but an indicatior is left in the si,m digit positic) in the regater so that the rounding can ba cleared if desired, The IAS order is perfeci,iy complete as far as allowing double length multiplication operations, bus is loss converisnt, if many of thom ars to be performed as is the case in Whirlwind ?

11 WFI Multiply and hold full product. Hultiply the contenta of register x by whatever 3.8 an $A C$ but do not round off,

This is the ..dor mentioned in the paragroph above.

12 IAS | Clear register and divide the number is |
| :--- |
| the accimulator by the number locatod |
| by position x of the eelectron, leaving |
| the remeinder in ths accunulator and |
| placing the quotient in the iegister |

Divide. Divide the contents of ic
by whatever is in the register x_{n}

13 IAS C

YNI 3P

Shift tre control to the lert hand ordor of the ordor pasr located at positior x in the selectron.

Sub-program. Transfer the register number x to the progreun counter-

These ordars are identical as far as the operator is concerned exceot that since there is only one order per word in the Whirlvind machine it is not necessary to designate which half of the word is to be used.

14 IAS C | Shift the control to the right hand |
| :--- |
| order of the order pair located at |
| positior x in the seIectron. Thero |
| is no ccunterpart to this order io |
| the Whirlvind code Since wwI ha3 |
| but one order to a word |

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum M-137

CONALDENTIAL
10.

Order Number	Code	Symbol	Description
15	IAS	cc	If the number in the accumulator is $\geqq 0$ shift the control as in order 13.
	WWI	CP	Conditional program. Transfer the register number x to the program countor if the number in $A C$ is greater than zero.

There are two differences between these orders, the first is the ono mentioned above that since there is only one order per word in the Whirlwind machine it is not necessary to designate which half of the mord is to be used, The second is that since the whirlwind machine used 9 's complements while the IAS machine used 101 s complements, zero has a zero sign digit in the IAS machine while it has a 1 sign digit in the Whirlwind machine. Zero is thus allocated to the positive numbers in the IAS machine and the control is shifted for a zero number, while in the Whirlwind machine zero is allocated to the negative numbers and the control is not shifted.

I6 IAS CC If the number in the accumulator is ≥ 0 shift the control as in order 14 .

There is no counterpart to this order in the Whirlwind machine since
there is only one order per word.

IAS	S
WHI	tsansfer the number in the accumi-
lator to position x in the selectron	

These two orders are identical as far as the operator is concerned.

18	IAS	Sp	Replace the left-hand 22 digits of the left-hand order located at position x by the 12 digite 9 to 20 from the left in the accumulator,
	WII	td	Tranafer digits. Transfer the loft hand 21 digite in $A C$ to the regiater position section of the order in x.

The difference here lies, first, as usual, in the number of orders per word and also in the selection of which digits in $A C$ are to be transforrod to the atorage stored order. At present the FWI code states that the left-hand 11 digits in AC are to be transferred. This digit seloction is not entirely satisfactory since the first digit is also the sign digit which puts certain limitations on arithmetic operations performed on the numbers to be transferrod The digit selection will therefore be changed, but it is not yot known what the final choice will be. The decision is not needed in the design until the final. cabling diagrams are made.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
CONEIUENFILAL
Memor andum $\mathbf{~ K ~ - ~} 137$
11.

Order Number	Code	Doscription
19	IAS	Replace the left hand 12 digits of th right hand order located at position x by the 12 digits 29 to 40 from tho left in the accumulator.

There is no counterpart to this order in the Whirlwind code because there is but one order per word.

20 IAS 20 | Replace the contents $E_{0} E_{1} E_{2} \ldots$ |
| :--- |
| $E_{38} E_{39}$ of the accumulator by |

There are two differences between these orders. First the Whirlwind order allows shifting by as many digits as desired as compared to the IAS order which allows shifting by only one digit at a time. Secondly, the contents of AC are rounded off in the Whirlwind I order and are not rounded in the IAS order, The sign handling methods are the samo.
 any overflow for use in double lengts number position.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
CONFIDENTIAL
Memorandum $\quad y=137$
12.

This order allows a complete double length addition to be performed in 6 orders while more than this number of orders is required in the IAS code without modification.

This additional order seems to be warranted in the case of Whirlwind I, first because of its short register length, and second because the handling of double length numbers is more complicated in $9^{\prime} s$ complement than in 10's complement.

WWI \quad se \quad| Automatic sub-program. Put the |
| :--- |
| contents of AC in ER . Fut the |
| contents of register x in $A C$. |

This order is the preliminary step to the automatic sub-program operations discussed in $\mathrm{H}-123$.
WiFI \quad ag, az These are the three aud omatic sub-
programs to be alloted in Whirlwind I

This is a very simple output order to be provided in Whirlwind I for use in test storage only. The more complicated special output orders have not yet been described in detail.
5. CODING CHANGES FOR WHIRLWIND I.

The control of Whirlwind I is so designed that changes in the code, such as changing round off procedures or retention of digits in shifts or multiplications can be readily made at any time even after the machine is operating. If it is discovered later on that certain of the minor differences between the Whirlwind I and IAS code occasioned by decisions made in the light of the arithmetic problems proposed for Whirlwind I should be adjusted, they can be changed readily without serious physical change in the computer itself.

It is also possible to use some of the spare order positions left in the control order to set up modified additional orders while retaining the original ones.

RRE:hes

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL
6345
Memorandum M-134
Page 1 of 6

Project Whirlwind Servomechanisms Laboratory Massachusetts Institute of Technology Cambridgo, Massachusotts

SUBJECT: ALPHABETICAL INFORMATION IN WHIRLWIND COMPUTERS
To: Jay. W. Forrester
From: R. R. Everett
Date: November 13, 1947

The following comments have been prepered hurriedly in response to a Bureau of Standards request for information. Improved methods of handling alphabetioal information could be worked out if more time were available.

1. There is nothing that prevents the insertion of alphabetic data into a binary machine such as WHIRLIIND. The twenty-six characters of the alphabet plus the few extra which are needed for certain kinds of punctuation and markers can be written in a base thirty-two system which requires five binary digits. The information may be inserted in the computer in this binary coded base thirty-two system. Five binary dizits are needed for each letter; thus, three letters could be stored in the sixteen digit word length of WHIRLNIND I with one digit left over for a marker. WHIRLWIND II could store about eight alphabetio characters per word. Since either three or oight oharactors is insufficient for most elphabetic data, particularly names, the actual alphabetic words would have to be broken up into several regieters in the computer. There are several possibilitios for handling this:
a. Assign for each alphabotic element a certain number of registars large enough to contain the largest possible case. This system is probably too inefficient to be very useful.
b. Transmit, probably first, e register telling how many words are required to contain the following alphabetio information. The oomputer can use this information as an induction index to keep track of the alphabetic processes.
c. Use the digit left over in WHIRLIMIND I or an equivalent digit in other computers as a marker. The first word, by word I mean computer word, in the alphebetic eequence

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

$-x^{3}$

BURTPIDENTIAL
6345
Mennorandum M-134

- 2 -
could hars a zero aign digit or marker. From then on, all words coming along with sign digite equal to one would be understood ti bs part of that alphabetic informetion. The next time that a zero sign digit appears the computer would know that a new alphabetic word had appeared. The computer can handle this problem easily because of the conditional sub-program operations.

A typew: 4 ter or telotype style of keyboard would replace the ten-digit decimal keyboard. Each key punched could, probably thr sugh a matrix switch, provide the fivedigit binary code equivalent to it. These codes would be inserted in the keyboard register in sequence without conversion since it is desired to keep the information in base thirty-two.

It is desirablo to have at ieast some punctuation marks since alphabetic information may consiet of a number of parts; for instance a man's suraame, followed by his given name, followed by his middle name. It is desirable to separate these sections, since in a comparison for alphabetic order, the ifrst initial of a man's given name has a different meaning than if it were a corresponding last digit in his surname. In this case, a comma given a base thirty-iwo notaiion which is greater than any of the alphabetic numbers cowld ha inserted betwoen the surname and given name, giving the desired result. Also, it will be necessary to attach base thirty-two numbers to the alphabetio characters in descending order such that A will be the largest and Z the smallest numerically. The alternative is also possible of attaching numbers in increasing order instead of decreasing. In this case the comme should be smaller numarioally than any of the alphabetio numbers.
2. I cannot see where it would be desirable to perform any arithmetic operations on the alphabetic data within the computer, since, in generel, words and names have no quantitative meaning. The only operation I can see of valus is the comparison operation; that is, the choice of whether or not two names or numbers are alike and, if they are not alike, which comes sooner in an alphabetic sorting. It is true that alphabetic order is obtained by assigning numerical meanings to the alphabetic oharacters but this is done merely for convenfence in reference and does not mean there is any logical meaning to the sequence except in the particular case mentioned above of identity or equality between words or parts of words.

For instence, in examining a sequence of names, each one of which is representer in the surname, given name,

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL
6345
Memorandum M-134
middle name order, two names may be considered as belonging to the same person only if they are identioal in all parts. Howevor, two names can be considered as belonging at least to the same general family if only the first part of their alphabetic information, that is, their surnames, are alike.

The ability to compare two numbers written in binary code but in any base is already avallable within the Whirlwind machine. The difference between these two numbers will be arithmetically oorrect only if the numbers are truly binary, but will have the proper sign in any case.

This remark requires some clarification. First, by a number written in binary code but not in base 2, I mean that each digit of the original number is written in binary code, but not the whole number. For instance, in base 10, the first digit of the deoimal number may be written in binary code requiring 4 binary digits. The seoond digit may also be so written requiring 4 more binary digits. If this process is continued, the result will be a binary coded decimal number requiring 4 n binary digits where n is the number of decimal digits in the original number. Now several things are apparent. Since four binary digits permit 16 possibilities and we are only using 10 of these, there are unused gaps in the resulting number. The number is thus not truly binary. If the base we are using happens to be a power of two as proposed above, then all the poseibilitias would be used and the number would be indistinquishable from a truly binary number; in fact, it would be truly binary. Our binary coded number has a distinct meaning as long as we know the process by which it was obtained. Any arithmetic operations on this number will also have to take this process into account.

Now, to see that the result of a subtraction involving binary coded numbers with non-binary bases will have at least the proper sign, consider the three possible cases:
a. The numbers are equal. If so, they are also equal if considered as truly binary numbers and will thus exhibit the configuration and sign associated with zero in the machine when subtracted.
b. The first is larger than the second. Consider the subtraction as being cerried out in groups corresponding to the binary digits of the original number. Starting at the left a nunber of these groups may be equal, but eventually we will come to group in which the minuond is larger than the subtrahend. The difference in this

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL

6345
Memorandum $\mathrm{X}-134$

- 4-
group will be a positive binary number. Furthermore, since the smallest digit in this group has a greater significance than the sum of all digits to the right considered in binary or any other base, the result of subtracting groups to the rizht cannot affect the sign of this difference. The size of this group and the meaning of the result can be affected, but the sign will remain and it is the sign we are after. The subtraction can be thought of simply as a comparison process where the result can be obtained by examining the first unequal pair of digits atarting from the left.
o. The second is lerger than the first. This case is the same as b. except the signs are reversed.

Note that if base 32 is used for alphabetic representation the result of the binary aubtraction will be arithmetically correct although meaningless.

An example is given below of the comparison by subtraction of two alphabetic names written in binary code. The code used is an ascending one with $\mathrm{A}=0, \mathrm{~B}=1$, eto. Subtractions in the machine are carried out by complements but are done here directly for simplioity. The selection process for determining identity is omitted; the purpose of the example is simply to illustrate that the difference has the proper sign. The subtractions performed are truly binary and the magnitudes of the differences are alphabetically maaningless.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTLAL
6345
Memorandum M~234

Since we are discriminating only on the sign of the result the binary subtraction is adequate. For example, if two names, considered temporarily as having the same number of alphabetic charactors, are represented as suggested in paragraph 1 above and are subtracted one from the other with a positive difference as evidenced by a zero sign digit, then wo know immediately that the first was greater. If the difference were negative or zero as represented by a one sign digit then we know that either the second name is greater or the two names are identical. By greater I mean comes sooner in an alphabetic sorting. Now if the latter case obtains we oan determine if the two names are identical by a process equivalent to that used for determining the equality of two binary numbers. If a 1 , that is, the smallest possible increment, is added in the right-most place to the difference, the difference will change sign if, and only if, it is zero. We can thus determine identity.

If we are comparing two names consisting of several parts, for instance surname and given name, we can examine for identical surname by first subtracting one from the other. In the oheck for identity, however, instead of adding the test one in the right-most place we will add it in the right-most part of those sections we are comparing, for instance, in the right-most digit of the surname part only of the words being compared. By shifting it ic possible to put seoond or third parts of the alphabetio information in the firat part section and to compare on the basis of these, having discarded the first part. Using these methods it is possible to take a string of random names and put them in alphabetic sequenco or to sort through a sequence of alphabetic names correlating them according to the identity of given names or surnames, or middle names, or inftials, or any other criterion desired.
3. The problem is complicated somewhat if numerical data is carried along with the alphabetic data. This problem is of considerable importance, however, for in general the alphabetic data will be in the form of nemes or tage or position marks along with which are carried pertinent numerical information. Once again it is necessary to set up some sort of a convention or criterion for handling this problem. If, for instance, the extra digit in Whirlwind I were used as suggested above for marking the beginnings or ends of alphabetic words requiring more than one regieter length in the computer, the convention might be added that information appeared only in pairs of which the first section was alphabetic and the second section numerical. It will in general be possible to assign a fixed number of register lengths to the numerioal information since the range of numerioal data for a given quantity is usually considerably less than the range of alphabetic data considered as numerical. This difference is due not to a preponderence of alphabetic words over numerical possibilities

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDLNTIAL
6345
Memorandum $\mathbb{4}$-134 -6 -
but rather to the greater efficiency of numbers as compared to the written equivalent of spoken language. In any event it should be possible to dissociate the alphabetic and numerical parts of the information being handled either by index marks oarried elong with the information or by stendard conventions. In particular, once the numerical part of the information has been extracted the problem of applying conventions is really no greater than that oustomarily mot in ordinary computations.

Since the kinds of operations to be performed on alphabetic data appear to be very limited it should be possible to code most of them once and for all, the coding being simple enough not to present any partioular problems if done infrequently. The use of sub-programs should also facilitate the construction of special coding sequences. The high speod and large storage oapacity of Thirlwind computers would permit fast handling of alphabetical information. Several input tapes could be controlled simultaneously and the internal storage could be used for arranging blocks of information in order before reading to the output.
4. The output printers for the actual printing of the numerical results have not yet been given any consideration for Whirlwind. In all likelihood, however, these printers should be able to print alphabetic information as well in the form of headings, groupings, and special notes. The printers, therefore, must be able to decipher alphabetic information probably appearing as codes on film. If the printers are made to recognize alphabetic information given in base 32 coded binary such as is proposed for the handling of alphabetic information in the computer, they oan be need essentially without modification for printing alphabotic information received from the computer. It will be necessary for the printer to disoriminate between alphabetic and numerical information. I would suggest for this purpose that one of the spare channols on the film be used.
5. If large amounts of alphabetic information are to be handled, our presently proposed film input and output methods will probably not be satisfactory because of the large amounts of film required and the difficulty of processing. Particularly in certain types of sorting and collating processes where the total body of information must be transferred many times, en erasible output medium would be a great help. The presently proposed equipment should be satisfactory for hancling small quantities of alphabetic information in occasional problems. If the machine is to be used for large problems of this type, as for instanoe in census work, an erasible output medium, probably magnetic tape, should be developed if not already available fron other sources. The required modifications $\begin{aligned} \text { athin the computer }\end{aligned}$ itself should not be serious.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

CONFIDENTIIAL

6343

Memorandum M-111 2'age $2 n 10$ fages

Projoct Whirlwind
Servomechanisma Laboratory
Maesachusetts Institute o? Technology
Cambridge, Nagaschusetts

SUBJECT; BLOCK DIAERAM WORK

To:	H. Fehnestock
Irom:	R. H. Everett
Jete:	October 6, 1947

This memorandum in in responae to your request melio at a conference with Sylvanis on Friday, Soptember 22. It is as attempt to list the present objectiven of block diagran work and to define the oxpectod results of that work in sufficient detail to aillow ostimating its effect on Whirlwind I computer design.

I hope in the near futura to produce concrate diugrams and timing studies, accurately delining these matterg. This work will be Greatly expedited by the return of I 。 3 . Susin who in expecteci early this month. I would eppreciate coments of any eort on tho work. particularly on the order in wich the diffarant problems should be studied in order to best meet project neede.

SUMMAY: Tho block diagrame distributed to date and described in $\mathrm{H}-127$ (expected publication date Ootober 15) doscribe the elaments of a working computer. The control and arthnetic eloment are escentially complete as they stand. The storage coscribed Is the test otorage proposed for Whirlvind. I. The imput and output devices described ere only those nosdec for this test storecge Defore the block diegreme can be considered complete for Whirlwind I, the followinf work must be done.
2) The effects of odding electrostsitic storage must be eramined.
2) The Imput and output dovicas nescod in order to use Whirlwind I with electrostatic storage at all eificiontly must be described in falr detail.
3) Iurther work muet bs done on checking. Ihis vork should include specifying not only dilitionol equipisent required : for continuously checking computer elenents but el so more or lese complate analyees of all the checking neshodg to be usac. for deteamining and inolating PEAlures. This latter information can

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDYMSI AL

6.45

1knorandum M-111
be used for dotermining troublambhooting proceduras ond necessery equipsient 0 woll s.s for disoovering the intormation which must be brought from tho computer to the control desk,
4) The additional orders required in the code must be iully invertigated.
5) More exact methods and timing mast be dotermined. for generating restorer pulses for a c coupling.

These problems are discussed in the latter part of this menorandur.

The expected effects on Whirluind I degign are:

1) The requiroment of a fair number of gete tubes and natrix apace in the control bayond that now dafinad. This provision is, I believe, being mato but should be adoquate for additions beyond those conceived at present.
2) The possible scaition of a gpooinal register for storing program counter numbers during automatic subprograms. It may be possible to avoid tho usa of thís register. A study of this problem could probably bo nade in a fev days 28 worthwhile at this time.
3) Modifications to the program counter to sliov up to throe special pre-set nombers. The problen is the same as that prosented by pre-setting the step counter.
4) The design of a control for elactroatatic storage, Al thongh the nocessary information for a final desien is not avallablo, an approximato desion could naw bo rende.
5) Design of shifting regh aters for input and oubput dovices. Thess mat bo dasienad oventually and proviston mat be mude for connecting tham to the bus. Control aebiou to the registers and to the fl 1 m devices themselven are neecod.
6) Deeign of counter control for storage buffers betveen computer and input end oubput dericos as well es counters for filn position. The seme comments hold an for 5 .
7) Modifioation of the stop counter to provido restorer pulses cluring lengthy operationa.
8) No disoussion of chacking or control dosk probletas is given in this memorandum.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONEIDENTITAL

6345
Fiemorandum $\mathrm{M}-111$

- 3 .

2LEMROSTAMTC STORAGS COITRROE: The posaibsilty of considerable change and the uncertainty of time requirements have so for prevented any exact description of the elactrostatic atorage conirol but a possible sequence of evants in using electrostatic atorage has been given some consideration. An outline of this sequence and the necessary control equipinent is as follows:

There will be 2 banks of 16 electrostatic storage tubes each. Two 32 -way switches will be provided, one to set the verticnl deilection voltage and the other to set the horizontal deflection voltage. Thase voltages vill be applied simulteneously to all tubes. A 2-way eritch will be provided for solecting which of the 2 storage banks is to be u.sed.

On the output of each tube w111 be a 3-position 2lip-flop. When this flip-flop is set to its noutral position it will be switched to one position by a positive pulee and to the other by a negative pulse. This flip-flop is connected to the bus by read-in and read-out gates and is also connected to the scraen of the storage tube.

The sequence for getting information from the storego is then.

1) Clear all storage flip -flops (i.e., return tham to neutral).
2) Trensenit the control order to the storage avitohes.
3) A period of tine will be required for the deflection voltaces to reach their innal values.
4) The screens of the atorage tubes wil2 be eot to neutral by the storege fllp-flops. The beans of the tubes are nov turned on. The selocted mpot whll charge up or down dopending on whether a l or a 0 vas stored. The signal coming fron the signal. plate will thue be positive or negative and when applied to the 3-wey flip-flop will change it to one or the other of the nonneutral positions.

The connections from screen to $211 \mathrm{p}-110 \mathrm{p}$ are tranged to movs the screen to the original potential of the spot charge. It is necessary to keap the screan potential at noutral during the entire reading step. Some sort of corrective daley must therefore bo introduced betveen the ofgnal plate and the sareas setting.

The 2-uay evitch for eelecting the bank mes be used of ther to select which beams are to bo gated or size to eelect which flip-ilops ore to be read onto the bus.
5) The flip-flops are then oxanined to meke sure that none aro in the neutrel position. A flip-flop in neutral position would

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CORIITDENTIAL

6345
denorandua M-111
represent the fallure of that particular tube to rasd out.
6) The row of flip-floys will then be road out on to the main bus and the cheok bus.
7) The flip-flope remain set to the poeltion corresponding to the original contents of the tubes. The stored signal in the tube has beon eraged in the reading process. The goresne are then set according to the fllymflop settinps and the beans again pill sed. The sifnal will thus be replaced in the tubeso

The outpute fron the signsi plates during the revriting procedure will be sent to the flip-flop inputs resetting then to their neutral positions. Examination of the positions of all flip-flops following the restorinf: will discover i: eny tube has fatied to operats.

At the close of the operation, the orlpinal contents of tho storage tubes remain. The number has beon read out to maln bus and check bus and all parts of the operation have been checked.

The use of a holding beam oomplicates the abovo sequence. It med be neceseery to cut off tho holding bearn during writing and raedine. It will be necessary to keep the screen at sone potential other thas noutral during, the normal holding beam operation. It may evon be desirable to provide 2,3 way flip-flops, one for ecreen potentisl and one for the number, connecting them by gata tubas in order to have bettor control over acreen potential.

Storing a number is done in aimiler manner. Doponding on the timing, the old number may be rend out, the flip-flope aleared and reset, and the nev number etorad lastead of the old, or the nev number mey be stored without rasiling out the old.

Because of the amplaxity of the sequance and the leck of knowladge of the tining, the control for the alectroatatic atorace w:ll be a separate entity from the main control of the computer. The control sequence w121 be insorted in the main timing sequence in the eane amnes as severel of the other operations. In offoct this gyecial controd sequence will be inserted in place of the delay counter delay. It i.e doubtifl if the overlmpinc which will be resorted to in tho case of Whrlvind II for the purpose of increaelng operation speede will bo orthwhile for Whirlwind I.

THPCX AND OUPYUX DEVIGES, Tho 1 nput end output dovicos, which are under development at Bastrasn Kodek Con requiro some apocial squipment for connecting then to the corputer.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONITDBNTIAL

6345
Memorehdum M-111.

- 5 -

Abstract

A single mechanical housing and film drive design is plenned, the device belng sulted to itg parifoular purpoee by differences in tho optical and electronic systems. There will elso be a separate deelgn for a multiple-element graphical recorder.

MTCRAK INPUSS: The 1 nput reaiers consist of a 211 m drive, a. cathode-ray tube and optical system $\mathcal{Z} 0$ sweoping a spot of 11ght across the film, and a photocell. The film has stored on it both the number and its complement. The reader roads both number and complement and sends these out serially on a single cable. There is a clutch film drive wifch can be started or stopped on recefpt of an order from the computer.

The computer equipment is as follows:
1). Two registers capable of shifting. The inforination coming serially from the reador is ahiftod into the ond of the proper register, the number into the number register and the complement into the complement register. Following this shift the number is added to its complement in the complement regiater. "Any reading errors will appear es discrepancies in the sum.

The number may then be rasd fron the number register onto the
bua.
2) It is desirable to aliow the computer to continue calculations while the f 4 lm is being resd. A possible method of aocomplishing this end and at the same time simplifying the ordering process is as follovs.

Abstract

Allocste a section of storage, perhaps 64 registers, to gerve as a sort of flexible connecting link between the computer and the tspe. Conaider this gection as a ring. Bach new number coming from the tape is put in the firat vecant spaco. Zach number taicen by the cowputer is taken from the firgt full space. Two countere keep track of the positions of these spaces. If the resder has gotten ahead to the extent thst the ring is nearly full, e signal will be sent to the film drive to stop. If the ring in empty, the computer wlll be stoppod to allow the readar to catch up.

3) Another counter wili be provided for esch reocier to keep track of $211 m$ position for ue in scanning rather thas extracting large blocks of Information. Beoh transfer from the resder reglaters to storege should jo ohecked. The computer mast be stopped wh1lo the bus and storagy are in use for this purpose,
4) An input typewriter and decimal-tombinery converter

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONYIDENTIAL

6345
Hemorandur Min 112
-6
will be atteched directly to the bus. A number can be typed in along with the desired storage location. The computer w111 then stop 1ts at andard procedure long onough to store the nev information.

DIGITAL OUTPUTS: The output writers ere ofmilar to the readers except that the spot of light from the cathode-ray tubs $1 s$ used to expose the raw film in the writer.

The computer equipment is as follove:

1) Two registers of the same type as used with the readers. The number from the bus 1.3 sont to these registers, the number being placed in one and its complement in the other. The utuber is ehifted out serially onto a single abis to the writer. The writer records both number and complement, recording l's in tha number lines if the digits shifted in are i's and i's in tho complement lings if the digits ghiftod in are $0^{\prime} \mathrm{s}$ 。
2) Photocells are providad to detemine if the witer has recorded end whether it has recorded in the number or oomplement 11 no. The recorded digite ara shifted into the vacated ond of tho number regiater. If all difits have been recordad and all recorded properl7, the axact number will have been replaced in the nurber reglster. This fact is checked by adding the contents of the number raglster into the complemont rogistor. The result ahould be all. $1^{\prime \prime} \mathrm{s}$.
3) A buifer section in the storage can be providad. for each reader. Note that sotting up these buffor soctions does not prevent thair use for internel computer neadg. The alzo of the buffar section oan be adjusted at will by setting the counter or the section can be omitted ontirely and the film controlled by direct stop and start orders.

ANALOGUE INPURS: In general these will be measures of shaft ponitions or other nechanical or electicioal amplituden. One or more oonverters to binary codo will be providod. The computer will obtein tho dealred information by tranentiting to the converter flest, en order to convert a cortain quantity and, second, en order to tranam! to the bus whth the number of the register whioh is to receive the informetion. These orders will bs separated by anough time (used for other operations) to allow the converter to select the desired quantity end perform the conversion. The timg involvad is undenown at present. The converter will be a self-containod undt with ite own control.

AWALOGHB OUTPUTS: Such outputs will be used for positioning open-cycle or closed-cycle instrumants or mechanical sorvos. In general the conversion will be from blanry code to an el.ecirical

APPROVED FOR PUBLIC RELEASE．CASE 06－1104．

CONFIDMATIAL

6345
Menorandua $\mathrm{N}-111$
magnitude wifch can then be transformed into any desired analogue quantity．Several converters will be provided depending on the number，sensitivity，and accuracy of the quantities converted．

The number to be converted will be sent to the converter unit along with an order designating the ultimate destination of tho quantity converted．The converter will perform the necessary con－ version and switch the result to the desired place．No further orders are required but cere must be taken not to order another conversion by the sane unit until the previous one is complete．If another con－ version is ordered before the converter is ready or if the input converter is asked for information before it is avallable，the computer will be stopped until the ordere can be carried out．

An alternative poseiblility is to retain the new order unt 1.2 it can be performed，the computer procaeding meanwhile，If the order storage is full，the computer cen then be stopped．This method would reduce stoppage time for a given care in progranming but does not soen whorthwitie for Whirlwind I．

Graphical recorders are but one form of analgue output and will be handled with the others except for the addition of start－stop orders and possible speed selection and scale factor recording．Scale factor recording might be carried out less efficiently by the uso of another recording channel．Another possibility is to note scale factor changes by some dafinite trace in the recorded channel．

CHMCINC AND CONTROE DESK：This category is probably the least understood and yet most important of ali at this time．However， since this problem is to be discussed in detail by concernad parties in the noar future，it se日ms preferable to defer its discussion．

ADVIRLONAL ORDYRS：These orders fell into three categories：
1）Extension of cs gid， cg, gy ，to handze absolute magnitude of numbers．Absolute magnitude may be obtained using existing orders but the greater speed and simplictty of special orders seems warranted here．It is eatimated that further aquip－ ment includes control connections and possibly two extre gate tubes in the operation timing matrix．

Into this category also go poseible modificatione in existing orders．The only modifications now under conslderation aro in rounding procedures．It is not expected that additional equipmant except for con－ trol matrix connections will be needod for these ordors even if they entall the actuel construction of new orders for different rcunding prou cedures（as \underline{m} and 巩）。

2）Orders required for the control of the input and

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COMIDDENTIAS

6345
Nemorandun 11-111
output devices.
For film readers -
a. Start $f 11 m x-g 0$ to position merked by next order.
b. Desired film position.
c. Read in x mords.

For film writers -
a. Start film x 。

If buffer storage sections araused, no further orders are necessary. In fact, if buffer sections are permanentiy allacsted to a film, no orders at all are needed. Such a syotem would be wasteful. of storage, and would prevent scanninge

The above orders require control lines, control natrix connections and control gate tubes.

For analogre imputs -
a. Convert quantity x.
b. Store last converted quantity in atorage register t.

For analogue outputs -
a. Convert quantity suppliod and send to z
b. Start filn x, at speod I_{2}.

Scale fectorg cen probably be recorded in the gnue chmnel by special marks or in a sepnrate channel.
c. Orders for automatic subprograms.

The coding of Whirlwind I with its short rogister longti wovld be simplified in many problems if mitiple longth musier operations conld be ordered as simply as gingle length. In, ilhiriwind II guoh a lacility might also be desirable, for ingtance in ordering intorpolatione or multiple leagth numbs operations. The aysten proposed is basiceliy e vay of allowing the operator a mall tunbor of spocial aparations to bo selectad at random by himself and hanclad as if thoy were bullt into the computer. The followine method has been proposed.

Three orders are needed. One gives the number of the reglator

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONPIDRITIN

6345
Homorancua M-22.

Abstract

holding the first half of the first number to be operated on. The second gives the number of the register holding the firat half of the second number to be operated on. The third gives the number of the register which is to hold the insat hali of the result. The second halves of all numbers are assunad to be in registers imediately following the first halves. One of the three order mast designate the operation to be performed.

The 3-order register numbers are made available to the subprogran as follows:

A new order is derived which does the following -

1) Tranenits the contents of $A C$ to $B R$.
2) Tranenits the contents of $A R$ to $A C$.
3) Tranamits the order itself to $A R$.

Two eqplications of this order will store the first two orders in $A R$ and $A C$. Another nev order is needed which -

1) Does the sane ss tho above order.
2) In addition, trangnits the contents of $P C$ to somo upeciel register provided for its storage. This register will probably be a flip-1lop register to be provided in nddition to present reghater3. A little recent study has shova that it may be possible to store the contents of PC in electrostatic atorage. If this is possible, and some timing stuilios should discover if thie ia so, the extra register se vell as ayy axtra order cen be avoided.
3) Sets $P C$ to one of seversi possiblo permenently (at least semi-permanontly) selected regtster numbers. Thare rust be as many of theso oriers as there are special operations to be provided. In Whirivind I there night be 3 for addition, subtraction, and multiplication of multiplo-length nunbers. Noie, hovever, that the kinds of operations that may be performed have not been specified, only thelr nunber. The operations thensolves are as generat the the suoprograns stored in the regiater sequence begining/the number set in PG. The subprogroms may have subprograms of thair own. The subprograns mey be changed at will oven at the behest of the machine itself.

The result of 3 epplicntions of the first order above followed by 1 application of on order of the recond lind 1o:

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

GOMEDDINTIAL

6345
Memorandum 18-2.11
$-10=$

Abstract

1) The desired register numbers are stacked in $A E, I$ in $A R, 1$ in $A C, i$ in $B R$.

2) The startine register number of the subyrogreas to be uged is in PC.
3) The order nizber to which the machine shouid return is in a known placs.

The subprogran now etarts. The first stop is to renove the order in AC by a to or td orden. The order in BR is then transforred to $A C$ and renoved. The order $12 n$ AR is transferred to $A C$ using the seme type of order as put in $/ \mathrm{N}_{\mathrm{Z}}$ in the first place. The subprogrean then proceeds.

When the subprogren is corplete the last order is a subprogram order returaing the coitrol to the main program. If a epecial register is used for storing the return muber, a speciel order is needed. If the roturn zumber is stored in electrostatic storage, the standard submogron orier wlll eufilice, the number being transferred to it by a td order.

ROSRORET PTLSPS: it present the restorer pulsos are to be generated by the deley counter during otorage sotup. The high spead 32-position suitch removes the necoselty for the dolay counter which remadns, however, es a westorer pulse source. When electrostetic storage is added the restorer pulses can be generated by the storage control. Certain operitions, particulari.y division, require sufficlent time betwean storaco ojerations so that rastoring nuet be dona while they ars being carried out. The step countor may be used for thls purpose, stoppine the flow of clock pulses parit way through the operation and generating a pair of restoror pulses in the off interval.

An alternative is a restorer pulse generator which counts clock pulses and geaerates restorer pulises at regular interval.s. This possibility Las been d scarded in the past as vastoful sinco restoring can uexally be done at tines whon the computer is nornilly 1d1.e. If more acorcata information as to electrostatic storage control timing were available, a final dociaion as to restorer puls sourcos and timing could be mede.

RRE: has

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COHFLDENTLAL

6\%AB
Hersorenduas 14-213
Rage 2 of 1

Projoet Whislvind
Sorvomechanleme Leluorctory
Hermechuectss Irseituto of Tochnology
Cambriago; Maerachusotvo

SUBTLCOT BLOCK DLAGBAM FRIURTKUEK FOB VHIRIWIND I
To: Rubert R. Everott
From: Harrle Fanestock
Date October 9,1947

The Sylvanis sohedule orlis fur starting doalga of cabinats Novenber 3. Thia zeans we must heve a good estlmate of maber of ceblnets and their haight by that time. A criticel cabinet 18 that which vili hold the arithmatic ilonen; and tho kogister Peasi. Arithmetio bionent dosien is under bay No zust boon docide what the Registor Fansl mest carzy. The Sylvenia rchedule also calis for starting the Reglater tanel $\{1 \mathrm{mal}$. design Novariber 10 . Aozordingly with reference to K-111. Z would recomoud the folloving priorliles for our information:
2) pege $2,(2)$, Must ws add special register for storing progres countor mumare during automatio vub-progran?
B) pego $2_{8}(8)$ e Can wo do kigh speed spot checking by usiug the present chook register, 601, without edding the recontly discuseed "mamory chock regietert?
C) pago 2_{0} (5) o Nuat ve add four regiaters for input and output of cen ve get along with two? Furaigh couplete functionel specificacione.
D) Dage 2, (3) Program counter modification dotails noeded Novamber 20.
E) pago $2,(1)$. An astiunts on anount of edditionsi watris spacs boiore Brown wazts to start patrix dealgn-

His via

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONITDDANTI AL

6345 Nmorandum	M-123	Poge 1 of 7
	Project Whit rlwiad Servomechanis sas Laboratory Hassachusetts Instituta of Technology Gambricge, Massachusatts	
SURTISCT:	ADDITIONAL REGI STYRRS ZOR WIITLMTID I	
To:	Harria Fahnestock	
From:	Robert R. 3verett	
Date:	October 22, 1947	

In response to your request for further information about tho number of additional reglaters needed for Whirlwind I beyond tho se already deacribed in the block diagrams, I have made a brief stuciy of the problem with the results given in this manorandura. These resulta mey be summarized as follows:

1) A soparate troublem shooting reghater will not be needed. The present check regigter or the proposed imput nad output registers can be aatiafactorily used inetead.
2) A separate regtster for storing progren counter contents as part of aatomstic subprograming will not bo needed. One of the regular electrostatic storage registera can be used instead.
3) One pair of gtepping registers for input and output is noedied but is probably enough, at loas: at first. Another peir, periaps in a rmall packege, could be added in the future 12 problems being handled seem to warrant 1 t. This requirement should not arise for at least tso y-ars.

I bslleve these three points cover the problens in which you are most interested at this tine. The special controls needed for these services as well as odditional equipment to be adided to existing regioters hava not bean detailed and cannot bo until the checking problon hes received more consideration. I hope to have out next veeic for comment a preliminary memorandum on checicing.

The rest of this memorandum coneists of some discugsioa 02 items 2 and 2 sbove. This disucsssion 19 given to substantiate the conclugions dram and for oriticiern.

TH: THOUTL 2 SHOQSING RTEIST2
Purpose of Trouble-Shooting Replster TSR: All elemants oi the computer including thoso not now so 11 stod are to have gate tubes for reading out to the nain bus. A t-s regster with gete tubes for reading in

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CORUT DBNTI AL

6345
Kemorandun M-123
from the bus can thon recelve, upon recuest, the contentg of any computer element. This reception can to carried out st high spoed. If TSR is not imnediately reused, its contents can be read from its naon bulb indicators. The contents of ary fart of the computer can thus bo oxamined vigually although the contents so ezamined occurred during high-speed operation. Manually set counters and switches must be provided for selecting the element and time for reeding.

Adyantares over Stop-by-Stop Operation: The advantagea of this systor ovar the step-by-step operation syatem are

1) Information is obtained during normnl computer
operation.
2) It should be easier and faster to set snitches and get essentially instanteneous results then to push the ginglo pul se button many tines. The counter system can be used foz getting the computer In some desired position for starting s step-by~step process or can be used to stop the whole computer for complete examination or for performing a step-by-step operation were the steps are no longer single tine pulses but groups of fime pulses, elther regular or irrogular in length. If this equipment only is adied, the flexiblilty of single pulse operation is greatly extondod but the additional equipment needed for $T S R$ is Ereetily reduced. In fact, if ISR cen be combired with CR, very 11 ttie computers oquipment is needed for the high-gpeed examination. The control equipment will be very valuable in examining control pulses and compzter operating dotails in general.

Exanining Multiple Guantities: With a ingle SR it will be possibla to examine only one register et a tine. It would be very destrable to be able to exrmine several, either the saro ono or different ones at different times. There ure several possibilitios propesed for th1s.

1) Provido several banks of neon bulbs slong vith TSip. These neon bulbs are driven from TSR but are provided with gate tubes and holding circuits so that they nay recister the contonts of TSR at different times. TSR is probnbly still needed since it can be set in n aicrosecond while the neon bulbs are slover anting. It is at the moment undecided whether to provide sufficiont counter controls to select all quantitieg to be reglatered in a single computer sequence or to parforn the selection manuaily, requiring long time intervels. In the lattar case, the neon bulb banks servo as storage elements and remove the necesgity for uriting down register contonts for corparison.

Another desirable feature would be a comparison circuit which would sutomatically compare a neon bult bani oither with T3R contents or with a set of topgle switches.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COHYIDENTI AL

6345
Vanoraladua K-123
3
2) Use the atopping regiatera for input and outpit to stpply information to s cathode~rey tube. As many quantities could bo examinsd as lines could be provided on the CRI face, A difficuity with this system is that the information wolld have to bo aveliable recurrently for continuous vision. The multiple control would bo noeded if more than one quantity were undor consideration. Possible weys out of this difficulty are:
a) Continuous recirculation of a number in the atepping register. The regiater forms a delny storago element which could provide a coatinuous display with only one setting. The second sterping register might be usod to eive a maximu of two displnyed quartitiea.
b) Use a long-persistence or daric-trace tube which would require only a single swaep for continuoue viewing. A single control would sufflise for this viewing means.
c) Use the regular inn output device. ifith automatic development the eqproximate delay time betwoen exposuro and vigual examination would be three to five minutes which is ordinarily excessive. It inipght be possible to periorm e non-pemenent developing job in less time.

Use of the stepping registers should be seriously constderad. An automatic comparison can be easily ande using the second gtepping register with awitch inputs since comparing circtits are requirel for normal uses.

TSA Contral: The control for any of the TSA methods might be about as follow:

1) Type in on the direct input typewriter a subprogram order to start at some degired place in the soougnce. If a standard trouble-shooting sequence is being used, this operntion is unnecsesary.
2) Set the order number counter for the operation nuaber following the start in which the examination $1 s$ to be nade.
3) Set the TP cornter for the Tw nuber when exnaination is to be made.
4) Set high-speed 要 counter for selecting ity not in

THD if desirad.
5) Set selector switch for quantity to be determined.

Whon the time determined by the counters exrives, the clock is shut off. The dosired quantity is read out to' the ous and ixon there to TSR. The clook is then restarted and the sequence proceeds.

CONFIDEANTAZ

6345
Momorandua M-233

Abstract

The uultiple control would require several settinge on each counter. When the first batting of the order countor 2 s reachec, a gate tube is opened which oan then be pulaed when tho P counter reachse its first setting. The output of this gate tube can thon open n gate tube for the high-apeed tw counter firat getting, The second settings are also Iined up by gate tubes. The quentity selector switch can also be gated by the order counter setting. Assuming five possible noasured quantiifes, five settings are required for esch counter and the auitch. If the settings are not completely distinct, i.e., use the sane ardor number, clock pulse, or quantity, it is only necessary to thake the proper settings the same. If less than ilve quantities wre being messured. the unused settings con be left randorn or a switch for blonking unued. settiage may be providad.

Clearing and restarting pulsas will be required as well as a switch for automatic comparisone.

Conclusioge: It will be seen from the above discussion that the proposal for the use and control of TSA 1 a still nebulous. Any thoughts, sugsestions, or simply desiras which anyone has would be very valuable. There is, I bolleve, enough information, however, to consider the prasent problear which is whether or not rul additional register beyond those so for considered is needed for TSR functions.

There are two possibilities for performing. TSR functions with present equipment:

1) Use the stepping input and output regiaters as described ebove. If the CRI dieplay is used, thege regieters are not on2y possible vut destrable.
a) They are thoroughly checked in their normal operation.
b) Thay are not a part ofnormal cormputer operation.
c) They not only raceive from the bus but elso step and compare.
d) It is possible to melse automatic photogreph1c records of the checking resul.ta. It might be deedrable to make the computor or s separate coaparator porform a comparison batween the tape so obtained and a standrra troubleshooting tape made for the porticular check problem.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDIMNLI AL

6345

Kesioranium H-1.23
e) If neon bulbs ara manted, thoy are alrendy avallable for a singlo quantity and can be put in banks for multiple quantitios,
2) Use the check register CR. The use of this rogister was the first thought for avoiding a separate TSR.
a) Although a part of the normal computer operation CR can be repoved from the system without affecting corput od results. The transfer check is lost but this check is complete enough so that if the trouble is there it can be isolated and corrected by other means. A snall complication in the control is needed to allow romoting the transfar chack.
b) Multiple quintities can be oxanined uging neon banks.

As conoidered at present there is no desirable function that could be performed by a separete SSR that cannot be done as well by existing equipment. It does not seem worthwhle to plan on a separete register for trouble-shooting. The control for trouble-shooting should be worked out in detall as soon as checking ideas have been grystollizad.

SUBPROGRAM STOLZAGE RZUISTYR

Purnese of Subprogren Storgge Rest oter: The automatic subprogra described in M-111 requires for an important part of its operation nomo place whers the consents of the progren counter IC nay be stored without requiring a separate order. It is also necessary that this placo be always the sane so that PC may be easily restored to 1 ts previous condition at a future time. It was originally proposod that this btorago elace be a separate $11.1 p-f 10 p$ register which hail no other use. A desirabie alternate is to use one of the regular alactrostatic storage registere thus gaining:

1) The same result with $2 \theta s$ equipneat.
2) The ability to remove the stored information using orders already available within the nochine.

Thers is no bagic reason why electrostatic storage oannot bo used. The question is simply one of whether the necessary operations cgn be fitted into the time available. The study is complicated by the fant that the timing dingrans for the automatio stibprogram have not yot been woriced out.

The operabions that nust be carzied out during autonatic subprogranaing are:

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COMPIDENTIALA

6345
Nemoranciua N - 123
2) Clear BR
2) Mransfer $A C$ to $B R$
3) Cloar $A 0$
4.) Trensfer $A R$ to $A C$
5) Clear $A R$
6) Trensfer Storage to $A \mathbb{R}$
7) AR to Bue-trensfer Check

This seme sequence is used in the earlier orders of the automatic subprogren. See M-111, pp 8-10.

The storage switch is set on TP5. If stops 1 through 5 are then performed, the read in from storage cannot be done until TP3 of the next cycle which is very bad since the bus use is pretty well fixed. Step 6, the transfer on the bus from storage to AR munt be done on TY? If the whole computer timing is not to be disrupted. To accomplish this end note that the automatic subprogran order which actualiy deternines the oper ation is different from the two which precede it and which simply insert orders in $A B$. These two orders, which are desirably identical, do not have the extre complication of the subprogram. Therefore, resequence these operations as follows

1) Clear AR - Clear BR
2) Tranafer storage to $A R$ and $A C$ to $\mathbb{B R}$
3) Clear AC
4) $A R$ to $A 0$

The first application of this sequence puts the first ordor in AC with AR open. The second application puts the first order in $3 k$ and the second in $A G$, ogain with AB opon. Nov ues the following secuence for the autonatic subprogran.

1) Clear $A R$
2) Transfer storage to AC

The result is the first ordor in BQ, the second orier in $A 0$, and the third in $A R$ as before but now all bus tranefers can bo done ae oarly as TP7 as dealred.

The price to be paid for this change is that thore is no longer any nethod evatlable within the standard ordere for getting the order out of AR. This step could have bean porformed in the othar sequence sitply by anothor application of that soquonce. The price, hovaver, is only another order; in fact, the order previoundy required to get information out of the epecial ap storege register may be used. resulting only in lesa of a gain for the nov system than at firnt supposed

Roturning now to this nex sequance, tho tranfer to AR is

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COMPIDENTYA,

6345
Tomorantua M. 133
checked on TPS. TY2 is used to transfer PG contents to tho storage switch. TPI Is open and cen be used for transferring $P C$ contort a to storage. There is no time available for chocking this tranafer if the main sequence time pulses are used. The transfer check cen be omitted in this case (not vary bad aline ail elements concerned are used and checked at other. tines) or the check can be eccomplishod while the storage control has charge.

The delay counter (or, actually, the electrostatic storage control) must be started if the storage is to receive the program counter number. The time required for this operation will the be longer than normal but will do no harm.

In order to simplify the storage switch and also to remove the need for clearing the switch before the next order is fat wp, uss the all $0^{\prime \prime} \mathrm{g}$ or cleared register position for storing the counter number. On present timing diagrams the storage switch clear pulse is putin TP1. It can just as well be in TP8. Than, for automatic subprogram start the delay counter or control at IPP oleo. This will be done by tho operation control. On IPI read out of PC onto the bus and into storage. TP2 will find the storage switch clear and ready to receive.

The timing of this and, for that matter, all the other operations, is dependent upon the final timing of electrostatic stozogo. However, it seems ransonaile to assume that if the nev operation can bs performed in the present timing sequence, there is as good a chare that it can be dons later as any of the othara.

The final sequence is then

```
TP6 Clear AH
TP7 Storago to AR
TP8 Transior Cbeck
    Glear Storega Suitch
    Start Delay Countor
TP1 Prograin Counter to Storage
" Sot Progrem Countar (Dal ev 1/2)
TP2-3-4 Not used.
```

The electrostatic storage can be used for tho automatic subprogram return order storage and the operation fitted into tho present timing sequence.

RRE: has
Copies: JWF, HRB, WI, DRB, CWW, JMO'B, SHD, E. Bo, JOE, FRS, Sylvanus (3)

CONFIDEARPIAL

.6345

tamorandun 18-227
Pege 3 of 25
Project Whirluind
Survomecheni sms Leboratory
Massachusetts Institute of Technology
Cambriage, Massachuaetts

SUBJECT: CHZCKINO
To: Jay V. Zorrester, D, H. Brown, H. Taylor, H. Pahuobock. C. W. Vatt, J. A. O'Bri on

From: Hobert 12. Zvereth
Date: October 27, 2947
The subjec: of checking has recently become oi inoreasing Inportance for the final design of Whirlvind I. This menorandum outisnos some thoughts on checking of verious kinds. The presentstion is rough snd is intended monly as a basis for diucreaion.

The momorandum $21 r e t$ considers the elehents of the corapistor in ozder with their possible fallures and way of checking. Consideration As then given to ohock problens and trouble-shooting problome.

HST OR THMGS TO BZ CHZCKD:

100 connot

101 Kastor C2ack
a) Producing pul ses mithout eidipping.
b) Pulsea of right ofze and shrpo.

102 Progren Countor
a) Rend ouv.
3) Nead in.
c) Count

103 Progran Eogl ster
a) Hesd out.
b) Neacl in .

104 Gantrol Switch
a) Propez satting.
b) Unised setting.

105 and 207 Goneration oi' 6 poration $2 P$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

COMFIDENEIAL
6345
Vemoraniun M-1.27

106 Themo Pulse Distribytion
a) A11 pulses.
b) No extras.
c) Right sequence.

108 Generation of Program TP
200 STORAGE
Storegs Sultciaes
a) Switches.
b) Deflection amplifiers.

Storege
a) Hesd out.
b) Read in.
c) Storing

Storege Control
300 ARTTHMETLC M, MN:NT
$301.4 R$
a) Recelving from bus.
b) Tranonitting to $A 0$.
c) Abs . value.
a Recoive Irom $A R$
b) Tranemit to RR.
c) $A d d$.
d) Caryy
a) Shift
2) D1vide shitet.
g) Shift and Cazry.
h) Abg. vaino.

303 3R
a) Recelving from $\pi 0$.
b) Shidting x and 2.
c) Zxanination of 22^{t}, dl git.
d) Ioundofe.

304 Signal Control ITip-2lop
a) Set.
b) Regot

Arithmetic Chock
Special lia

CONEIDENTIAJ

1
6325
Keaorandua M-127

305 Step Counter
a) 01enring.
b) Setting.
c) Counting.
d) Ind pulse.

306 and 307 121p-110p Controls
308 Divide TPd
400 and 500 INPUT AII OURPV定
600 CHECKNG
Transfer Check
OTHR
Kathematical Ghecke
Check Problens
Trouble-shooting problems
CHOKING:
102. Taster Clock

Possible Failures
a) Corplete Stoppege.
b) $\mathrm{Missed} p u 2 \mathrm{so}$ -
c) Draquency vailation.
d) Loss of pu?se shepa.

GODEKTNG_DNPHOR: - A pulse checker on the 11ne fron the Kabter Clock wi2 check
3) For pul se height and shape (Oheolsing (d)).
2) Time betweon pulses (Gheclcing (a), (b), and (c)).

Small varistions in frequancy will be unimportsat since the maoht ne 43 agynchronous. I? deskred, a nore accurate frequency cheok could be employad. Actual y_{3}, missed pil se would do no ham oxcept as an Indication of serious trouble.

If thers are two frecuencleg, s nisged pul ne in ome, not the othbr, sould be very troubloeome.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONPIDEIVTIAL

6345
Memorandun $\mathrm{V}-127$

The check for apace between pulses could be changed with the clock cut off. On single julse operation it would be desirable to continue checking hoight and shape and also to chsck pgeinst genoration of more than one pulse. With operating frequencies belov normal (if used for trouble-shooting purposes) the check for pulse space covid either be adjusted or omitted.

102 Progren Counter

Posible Fellures
a) Feilure to count st ell,
b) Miscount.
c) Improper read out.
d) Improper read 1n。
(c) and (d) are checked by the transfer checke An investigation should be made to make aure the transfer chack is complete on ell Progran Counter operations.
(a) aight be checked by mixing suitching aignals and checking to make sure at least one 1llp-flop switched.
(b) is most difficult to check without duplicating the counter.

A proposal 1s:
Zor checkint a counter vithout high-mped carry -
Note the Sollowng:

1) For onch edaftion thare is oxactly one flip-flop that ewitches from 0 to 2 . An exception is the aidition that overflowe the counter.
2) No section of the counter can switch unless the provious section has ewitched.

Teke the outputs of the O sides of the flip-11ops (that is, the aides opposits from those that generato trigerers for switching succonding seceions). liote (2) ebove stater that ono and only ono of the flip-flopo should generate a trigger on this elde for anch addition. Then, connect them as in the ifgure belor.

COMHIDSNVITAL

5345
Aemoranlum 14-227

- 5 -

The add pulso cones in, resets the flip-flop, and opens $G T$. If no pulse conos fron the 0 e1d.es, the 012 wdil remaln on and the dolayed atc pulse will sound on nlamm. If one pulee cones in from the 0 sides, the $211 \mathrm{p}-\mathrm{fl} 0 \mathrm{op}$ will switch, 02 will 60 off, and there w111 be no alarm. If two pulsos cone in, the second w1ll reset the flipp-flop, the reset alguel going out the elern line. Nore than two are uninportant since the tharm wil2 have sourced.

For checking a counter with higi-qpeed cemzy -
The abore method can be used but is only a partiai check sinco a $\{1 \mathrm{ip}-f 1$ op can fall. to reset (go from 1 to 0) without effecting succeediag sactions. Since the number of resets in an eddition is a variable, a chack similer to that above mat be modisicied.

If a carry of 13 open, the add puise will pass through and sid 1nto tho noxt flip-ilop. Neanwhilo the pulse will heve oddac into the 1 Irat flip-flop and reabtting to 0 , If tho resot fallo dofoperate the GI_{1} ond OF_{2} udll ramela on. The pulao that has passed through CS_{2} 1s delejed and gent book through ons. if of 2_{2} is still open, tho alaria v121 mound.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENSILAK

6345
Neworandum N-127

A aimpler version but roughly the same 1dea 1s:

If the firgt flip-flop is a 1 , the odd pulso will pass through the GI. The pulse will return through the delay and again supplied to GT. If GT is now shut, nothing further occurs. Diodes nre provided to prevent improper additions. If GI 1s open, the prelse v111 pacs back into the ald 11 no and w 111 carse a set (0 to 1) on some flip-ilop. This extre set will. cause the oze-set check to worik.

This combined check seams to sunction under Elmost all considered types of failure.

Both output pulses from the last flip-2lop, highest ordor, should be eupplied to the chock 2l1p-12op.

103 Program Megister
The operation of the Jrogran $\mathrm{R}_{\mathrm{g} \text { git }}$ ster geems to be thorouphly covered by the transfer check. This statenent ehould be checked to maks eure all operatione aze covered.

104 Control Switch
Posefble Inglures
3) Foilure to recelve correct order detas,
b) Dailure to set scoording to ordar data received.
c) Setting of more than one 2ine or of no Ines.

The transfer check shoulä catuh type (B) Lailures. A coding matrix mby be uged in conjunction with tha transfor chock for chocking both (a) sind (b).

There is an sutomatic chock agninat the fallure o? the switch to select a line at all. The Iinal transfer is ordered by DC but the

CONFIDEMFIAS

6345
 Hs:20rta dua 1/-2:2?

Gra: ufor check puise coner fron PG. If tha DC does not owtar a trenefer, the tranafar chock wi.2.1 diecover it.

Hute: Chock on CR clear and comeot sattings.

The ready checiing of the appearanco of al.2 oparation timing puleos is very ilpelcult ulthout dry21cating the equiptient involvod. The pal.zus oppear at rardon times nind in ranton order. Tho operation of the switch ond tho elistributor aro choclech separately. Fallures in the diodic aatiluon thamsalves seem unlikaly, The zow of outpat fate troos 13 a \% \% MCo of troublo.

A possible check;
Choct for a control pula out for anch 2 P in. Ineort duany fote Subes and Tpis for ench oporation to evoid blonks. SAmaltencous pulene are not checked. Mony of the efmultuneatu asts of TP's, howover, are coanected with tho tran for check ond con be oulttoch from this chocis.

Another posefble check is to commt totni. дuaber emoratod for an oporation and comporo egainet the etrudide nuber for that oporation. operations could So Gronped acoording to the number uosd, or by the pase of du'ny puleos the total for sll operatione could bo netle the bano.

105 T1ne 2uz se 12atributor
Foesinte Fainurss
a) Migsing a pulise wibh and withont loging sequence.
b) Ineerting an extra pulse。
c) Interchanding priaos.
(a) La pretty woll chacicad by tho transter checke Sevan Reta Ero uesd for threa trenozors with chockt. The ondseton of any of these covsn, with or without loaIne fequanco, wtil signoz an olart,

The remaining pulee is 31 mig a deloy to oliow otorege aotupe It is not checkend at present. Ono posestbility is to uee a dumy Eraneror
 ondscion of the pulse.

It is possiblo to check Trij by ste epproximate aquivalont. parheme by a ring of 8 or a counter of 8 counting tina pulede and ehocicing on the end caricy.

Missing in eoquence is prybably gete tube or potriz feslure.

CONITDMR2TAT

c3s 5
Neavrantum 1K-137

Misaine out of sequanco is probibly counter fotiuro.
(b) w11 in genorni tuset the trenvfor check:
(c) will in geaernl upset the trenafor chock,

Some sttention should be given to the non-trangfer pulse, It is probably worthuhile to study the offoct on the tranefer check of 0.2 simplo failure combinations.

108 Coneration of Frogras TP
The chocking of thero pulas is esseatiseliy tios some as chocking TPD since the progras TP are almost ail tranefer pulses checked by the transfer check.

The appearence of the aded pulso can be checkad as describod. in the countor check above by obtaning the counter chock puise fron the progran insteed of from the odd pulso.

200 STORAGE
Storage Sidtehes and Doflection
Posaible fallures
a) Impropar switch setting:
b) Improper output line selection.
c) Itpropar deflection moltago to ong os ell tuios.
(a) is checked by the tranefer chack.
(b) can be chocked by a coning matrin cheoking (a) elso. See Section on Control Swit alt.
(c) Is more difficult to oheck, One posesiblisty is to vecode the electricel magnitudo tricing the far ond of the Line. Thin chnck could includo (a) and (b) excopt that (a) at laast is very oney to chock, and probably vorthwhie, (b) is easy to cheok viefibly in case of a (c) checis clemm.

A check proposed 12 tha past 13 to provide on astra bentc of elcatrostatic atorage tubes usod only to chock deflectlon voltager. Tho tubes aro sot up and rens out the eotup number what can bo chooked againat the original order.
 read out by awoeping. This mothod is slow and reautroa a difforgnt oype 02 storege. The pattorna on the faces of tubes would 2001.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COHFLDENTKA

$6 \% 3$
lemorancua 11-1.3?

There vould be eloven tubes in the bonk for whirlivinc. Is The petterns vould be acturi stored chrgen in standarc tubos. These tubos actualiy constitute a recodor for the elactrloal magnitude of the deflaction volinge。

There is no chock egaingt the feilure of the dofledtion volte ge at some particular tube rathor than all bubes.

A check opoinst a single specs out cen be nccorpis shed wi th ons tube storing alternete + A particalar sotup should bo elthos \ddagger mistrike of one position will rosult in the wrong polnriby.

The Stornge Itsol?
The gtorage can ba thoroughiy ahocisod b> some procodure ench as ceacribad in $\mathrm{K}-121$.

The Seoxeze Controd
The Sorage Control has not bsen Iasd out in detasi but own
 the control makes on orzor.

 by duplicabing aquipzents. Tho aquipaan; is both Isst ant complioatod. there is littie tina for chocking since alvest nl. the portm are working si nsar mockmun rateg.

A usual gugergtion is to dupllaste tha Arlthatic Jlonent. Sagh
 part of the computer, Zt would be nica to eis further and frovide thzep orlthaetio elcinentis 4 is order to detorntiae not only tho mystance as a Inilura bus which unit Sniled. An oxtonalon loods bo the surgogtion that two or three complete computexs be provided and citecloed agrinst each o:hex at overy etop.

PPPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONTIDKINTAL

6345
Nie:302tantua 1\%-13?

All these methods require large anounts of ndational outip mont which muet be kopt ruminge. It geens at this timg bettor to cheok whore poss $4 b 1 e$ with amell anounts of ecutpmont and lou time lose, Tho smoothness cheoks w111 be uned for overa31 results and occnsionat cheok problems to pick up permonent failuros.

301 AR
Yosestive Failures
a) Flead in from Bu.s.
b) Transuift to $A C$.
c) Abe, value
(a) is checked by the transfor check.
(b) is not et prosent checkec. One poesibilisty is to put in a gpecial transfor chock for thio on Ca . Tho contents of AR are traneferred to $A C$ on this operation. If they are transforrod bock and addod to AR, the result should be ell. $0^{1} \mathrm{~s}$. This chack would require gates for reading from AC to AR, ald inputs to AR and a check for all o'e

The check does not warrent this equipment. It is internittont; it will check only about 20% of the tranafers from $A 3$ to $A C$.

Check Problem check
Transunt 1,00 OI to AC
Nd 0.21. 12 to $A C$
The sum should be positive.
Thise chock checks a lot of otizer things too.
(c) could bo checked ≤ 1 a method wore availeble for soeing it any of the All filp-flope had not switchod.

302 AC
Fonstble Pallures
a) Triproper recention frou $A R_{0}$
b) Empropor transmiosion to BR ,
c) $2 a^{\circ} 212=0$ to ned.
d) Yasiure to oarry
e) Tastuma to ahtro Zoft.
f) Failuare to divido ehsift loft.
8) Raslure to ahsth and carry.
h) Abv, value
(a) Is disauesod briofly unôe: $A P$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDMESAL

6343
 Hersorardun $\mathrm{K}-3: 37$

(b) Ifes roughly in the snus antogary as the trennex iffor Al? to AC. The transfer is dons only in maltiplication. Di nlwase is cloared before recelving. The nuabor onli bo sent book to AO and added in using the adding ability of AD. Tho eldition could be made aitor the carry gate tubes if checking for ail $0^{1} \mathrm{~s}$ is desirad. EDthor 12. 2^{4} a or ell $0^{4} \mathrm{~s}$ is satiofactory since thay both represent 0 ar AO cleared.

- It might, be cosirable to have a clonr checic on AC shywoy sinco A] to AC will probably not be checlon.

The row of gate tubes neodod for transmitting 3 to $A C$ aculd be used instead of shisting whon actual. Infomantion is to be brengiemped but there seoms little advantage to this zodification.
(c). A posesble pertiel chocic is to trice tho ovitohing signel. from the partial sua flip-flopa in AC and tranemit then to the complement gate tubos of the corrosponling af digits. Pasaing a pulso would represent the unwantod switching of a flip-flop. If another gate tule could be ndded to provide o pulso on non-swltching, this prise could be suppliad to the iirect gate tubes of the corresponding at disita, chocling foz feslure to ewitch which is zuch toro likely. This chock vould aluo check (A).

A timing study would be necosenry to dis scover if this chock can be accoaplished. The check does not caasidor the carry 221p-22opg.
(d) cen be checked a.a i.e the bigh-speod carry in 20. Tho operation of the gate tubes on the caray $11 i p-f 10 p$ is not chacked by this nor is the failume to operato of the carry GI' es It is olso necegsery to check the ropneergo of tho ceray puteen by sonie other method than PC, probnbly a mothod reçising one cdditional. Q2 per soctione Tho check does not look vary sotlsfactory.

A second GT on tho carry $211 \mathrm{p}-110 \mathrm{ps}$ could be rasci to check the proper csrxying and cloexing of theso flip-12ops. A gecont row of higl:speed corry $\mathrm{Ct}^{4} \mathrm{~s}$ could vary easily checs the onrry. These disis vould to piaced in peralle? with tha present onoe cud euppliad with the semo pulsas delgyed one 5 Ify-flop operate tino. Pussed pliges indicato orrore of omisuion end conmission.
(e) has sevoral poesibilitios for chacicing. A dozinite shist pulse should eppear on one or tho other but not both of the shift iszes Iocding From econ digit. A check could be male of this but It wound bo expeneive of equipment.

Another poastbility is to mond thilting pulaes over to the next cight bat interchanced to veo if tho 2LSp-I2op had sot corvoctly.
(2). Sane an (0) oxcopt check lest dxelta also.
(g). A chect could ve provided for checking the appeoranco of

APPROVED FOR PUBLIC RELEASE．CASE 06－1104．

COHETDKMETAL

6325
 fovoras inas $\mathrm{K}-3=7$

a eothing pule somewhat aE in 對。
For（h），soo di cutision under AF．It vould be pocatble 0 ． chock for propor chearing of 10 ．

304 31．5 Control Flip－11．op．
This device could bo checked by mplicontion ≤ 2 dosirod．It does not goen particularly valunble to do so sn Vin of tho lack of checkingelsemhere in A ．

The arithostic chock ond spocisI add inll in about tho suns category．

305 Stop Counter
Posstole Fatlures
a）Clearing
b）Sotting．
c）Osunting．
d）Ex pulso．
The cloaring and sotting from the ous（a）and（b）are both covered by the transfor check．

A possible chock egninet fallure to set properly on malyiply or divide is to provide a sotting nyetsa for C月．Then，the 2lrot there the bus is vacant（vory soon）eet of and rend out of Stap Countor foz ： trensfer check
（c）rag be hapdled $11 k 0$ PC 15 there is suffictent tine．
（d）．The ond pula 18 one of the signels that notisate tha chack of（c）．

 31g1 control 211p－120p．

It 13 Fary difficult and oxponsive of ecuipmant to provido ory efonuate contimous chocking of tho Arithmotic 2howent．Tha gmount of
 of continuous chacks at ail in A3．

Bus Syatens－Thece seon to be adocuately chacicac by tho bransfez ahec）r．

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDIANTIAL

6345
Meroorandum M-127 ~ 14 -
to cheok checkine errors. In company with this can be a device winich is put in operation when the checking is proceeding and which will clear all faults and restart the machine at each alarm. If an alarm fails to appear, the corputer can stop without an alerm and the stoppage during check brought to the attention of the operator. This type of checking is In addition to the normal checking which is to find faults in the non-checking parts of the machine.

CHECK PROBLEMS AND TROUBLESHOOTING PROBLZMS:

Check problems ilscover the ex stence of an error whout determining the nature of the failure or the location of the fadlod part. It is desirable in a check problem to cover the greatest possible amount of equipment in the fewest possible operations so that the check roblea may be carried out frequently without eppreciably reducing the efficiency of the computer.

A check problem is mentioned on pege 10 which consists of:

The sum should be positive.
This problem checke:

1) Read gates from $A R$ to $A C$. If any gate falls to transintt, the gum will be negative. Throughori, it is still assured that only one failure occurs at a time.
2) Proper reception by $A C$ of singie digite por section.
3) Froper adaition in ACl5 only.
4) Carry oparation ACl5 only.
5) High-speod-carry in all digits.

If the answer is negative, there 13 no way of telling from the chack problem where the error occurs. A possible trouble-shooting problem procedure for discovering the error source might be:

> Mrst try

Tranen 1t	$1.00 \ldots$
Add	$0.11 . \ldots 02$

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFTDENTITAL

6345

Memorandun M-127

Examine olgn of sum.
Then try

Trangmit $1.00 \ldots 0100$ to $A C$	
Add	$0.11 . \ldots . .$.

Continue until a positive reault is obtainod. This teat will limit the failure to a single digit. The fault is in the firat successiv.l column if there is a high-gpeed-carry fallure. Otherwige, it ie ora column to the right.

Then, to check whether the failure is in AR reed out gates or in $A C$ reception:

Transmit	mimas(cg)
	Subtract

Result should bo positive if $A R$ gates were at foult since only the AR complement gates have been used.

Then, to check whether the failure has been in $A C$ reception or in high-speed-carry, if the fanit is not in AR

Trangenit 0.00 . . 010. . . 00 To AC
where the 1.1 sin the last unsuccessful digit column as deternined by the tost above.

> Add the same $0,00 \ldots 010 \ldots, \ldots$ to $A C$
> Then edd $1.11 . \ldots 100 \ldots$ to $A C$

If the columin is recoiving, the suan will bo pogitive and the fault wi.lı be in the high-gpeed-carry. Otherwise, the digit tevted vill be known to be faulty.

A11 Ifve poasible fallures can bo Lsolated by the above Bequence. The computer could, if deelred, try the check problen and on ciscovering the failare $G O$ on through the troublembooting sequence autometically. When the istlure is determined, the computer can stop either gending its last order number to en output decimal printer or leaving it to be read from the neon banks. The operator cen then tell. irom a code book both the kind of error and the pasel in which tho fatlure is loctated.

I do not suggest that the above saquence has a real volue excopt as an example.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFTJBKII AL

6345
Remorandum $\mathrm{N}-13$?

- 16 -

The trouble-shooting register can be used to accomplish the same end with the help of the oparator.

In this case the machine would stop when the chack problem falled. The operator would reed PC and get from a code book the test being run and the proper settinge for the TSA controle. The machino would then be staxted and go through the check problem over and over again while TSR extracts the following information:

1) $A R$ contents for first addition.

Should be 1.00 01
2) AC contents sittor ifrst sddition.

Should be 1.00. 01
3) $A R$ contents for second addition.

Should be 0.111. 11
4) $A C$ contents aftor aacond addition but bofore carry.

Should be 2.11. 10
5) AC contents efter anrry.

Should be $0.00 \ldots .22$
The different fiailuros have a distinctivo appearance. It is not possible, hovever, to tell whether $A R$ has read out incorrectly or $A C$ has recalvad incorractly if one of these arrors has occurred. It is necessary to repeat with complawents ae deacribed nbove under troubleshooting problema in order to use the other AB gates nad isolate the orror

Much work must bo done in deglgniag both chacic probletag and troublembhooting problems in onder to get thorough and effiolent chocks. Wharever possible, those parts of the panchine whioh aro undameged ehould be used to reduce the losd on the operator by outoantically oarrying out trouble-shooting proceduras.

RRS: has
Gopseat SH, HPB, R2SS, $2 B$, JOB.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

compidraital

6345
Hemorandum M-1.29 Page 1.0 .3
Project lihlrlwind
Servomechanisms L-aboratory Massachusetts Institute of Technology

Cambrides, Hassachusetts

SUBJECT: WHRLLWIND I TROUBLE SHOOMING, COFMGMTS ON MOKORANDUM M-123
To: Robert R. Iverett
From: Jay W. Forrester
Date: October 28, 1947

The following commenta occur to me after reaing Memorandum M-123 on the Trouble-ghooting Register.

The Stepplig Register normally used for input and output nounds like the best bet for the trouble-shooting raquirements.

To simplify equipment, I would suggest that we not uee more then one get of coincidence circuite and therefore read out only one number per cycle of the check problea.

It should be possible, if desirec, to channel the trigger, which is obtained from the coincidence circuits for operation of the troubleshooting register, into the clock-stop systen. It should then be possible to readily restart the chock problem at ite beginning. The stop order anc the restart facility would malos it possible to progress through the check problem one step at a time until trouible is detected. This is desirsble since trouble might rosult in strange end unoxpected computer operation wich would prevent it irom restarting on the test problem,

If no eqpreciable amount cf extra equipment is required, it might be desireble to have the coincidence puise from the counting clrcults restart the check problem at its boginning in order that the test problen up to a given point can be solved cyclically. An orror algnes ircin the check register could thon be used in the clack-stop circuit eo that the computer rould stop cniy if a miataka were made on the nuaber being obsected. This would be useful for transient troublen.

I feel we ehould consider both neon lighte indioating the contents of the stepping regiater and a cathoce-ray tube with double trace for indicating both the number and its complement in the giepping register. Normal permenent faljures would be picked po on the naon 11 ghts ont the cathoderray tube and stepping rogister resding both numbezs ond complementa could be used for detecting transient disturbances which would result in es wrong number only occasionsily.

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONYTDKANIA

6345
Mamoraniun Vm-129

Automatio comperison of tha muber read into the stoublushooting register with the premet correct value would be of conaidernblo holp and facility is probably already avatlable for thls oporatione

I would suegest considering the use of punched carcs on winfch can be entered the proper quantities for a check teat. Reading would be done in a simple, manually operated contacting device. The card cozld be punched with the order number, counter initial setting, the tine pulve counter number, the high-bpeed time pulse counter numiocs, and tho ergection of the quantity to be detamined as well as the prcier valua of this quantity which vould bo fed into the check register. Cl cking could then be done by inserting cards, one at a time, into fito reader until the trouble sequence is located.

JWF: has
copies: H. Fahnestock
H. Boyd
R. Taylor
D. Brown
C. Watt

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONDIDRMTIAK

6345

Nstorendum K-117
Page 1 of

Project Whirlwind
Servorechanisms Laboratory
Massachusetts Institute of Technology
Cambridga, Massechusetts

SUBJECT: CONTROL DESK, WHIRLWIND I

To:	Herr1s Fehnestock, Robert R. Everett, David R. Brown, Norman Teylor and C. W. Natt
From:	Jay W. Forrester
Dete:	October $17,194,7$

The following miscellaneous thoughts occur to me regerding the control desk and its interconnection to Thirlwind I. Those ideas are all subject to discussion and correlation with other information.

The control desk should include a decimal keyboard and conversion circuit in order that mubers in the computer cen be altered as requirod in simulation problems and in trouble shooting. It also providos a means for insarting specisl orders and number's for checking purposes.

A spocial register, perhaps the same one as used for normal cheoking purposes, should indicate any munoer solacted from a repeating check problen in tie computer. Monitor registers and setting suitches shovlel be availablo on coincidence counters for selecting the proper point in tho test problem as a function of the program counter setting and the clock polse distributor position. The output of this multiple coincidence system should bo availabl. as a trigger for various scopes as required on the control desk and also should be pi.ped to convensent points throughout the computer perhaps in eech cabinot of tho Whirlwind I systeal so that test equipmont can be operatod.

Trouble indicatfons should if possible be of the doubie acting kind indicating both the satisfactory state of operation and the unsetiefisctory state of operation to guerd againat pilot light and essociatec circuit troubles. However, during normal oporation it should not be required that the operator obsarve a lerge array of lights which are on but ratber that his atfention bo attractad by lights which come on only when trouble oxists. A sinfle light indicating that overything is setisfactory should be so intericoked thet any trouble light will turn off the normal indication and bo subetituted by one of several trouble indicators.
-
Trouble indicators chould indicate the source of clock atop orders arising from various chocks in the compater, should indicato fillanent poser

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONYIDEENETAL

6345
Homorandua $u-117$
-2

Abstract

plate supplies, bies, atc. arranged in some sort of coded system to use the smallest practicel number of lights. For oxample, one ligat might bs used to indicate plate supply diPficulty while another light would indicate the cabinat in which trouble hes exisen. Likevise a bjas eupply ixcilcetor might initiate the same light for a given cabinet. Intorlocks whore nocossary should be so arranged that trouble is indicatod at the primery source. For exaraple, failure of a bies supply should perhaps automatically trip various plate eupply voltegos. Trouble indication should appeer only on the blas supply light until that fault has been cloared. Control switches shovid Encluda an emergoncy stop cilcuit which can be located et various parts of the conputer in cese of fire, etc., perhaps elso interlocked with thernontete.

The control desk should provide for stand-by operation, e definition for ahich must be established, probably meaning filaments on ond plate supply voltages turned off.

If at all possible, sterting of the computer should be a single switch operation and probably should have a key type lock to prevent unauthorizod use. Proper interlock circuits muat be nvailable for starting notor geaerator sots and turning on filaments flrst and in proper ordor.

Filanent voltoges should be incroesed gradvally unless we have infornation to indicete this unnecessary.

D-C power aupplies should probebly be equipped with ripple nonitore which are essentially amc amplifiers operating lock-in relays to indicate ripple or transiont voltage disturbances. These shovl.d be sufficientiy broadband to catch video spikes appoaring in the dec linos and probably should operate through gas tubes so thet ainglo transionts will be recorded. INkowise regulated power supplies should have voltage monitors posesbly of the type thet compare the supply voltage mith a standard cell through a vibrator circuit, converting the signal to e-c and anplifying for operation of indiceting circuits.

Scopes on the control desk should inclucie one for clock pulses, probably a separate one for indicstion of restorer pulses, and the possible continuous presentation of time pulse distributor and operation conirol output signal.s which can be triggered from the colncidant eircuit or from any other source which aill give a vseful output. Perhaps for example, one might initiate the scope for each moltiplication or each eddition and metch a sequonce of output pulses to check for fittor and irretic operation.

Should a purb-button for inserting single pulaee into the restoser syaten be availeble in order that the trigeering of flip-flops an be observed?

The gystern must be intarlocked with the asr conilitioning for tempereture control probably with thermostats in each cabinet. Cabinet doors should heve interlocks so that open doors are indicated in order that the operator mey know that efr flow is interrupted in thet cabinet.

COMFIDENSTAL

5345
Bemorenciun M-217

Coneidorable attention should be given to tha locetfon and grouping of neoa indicetor lights considering their reletive fmportance to one mother and the problom of easy reading. An output rogistor from the cocimal koyboard should probably line up with the display of regiater 1igits so that oasy comparison can be aado between any decirel number and the binary indication from the rogiators. To avoid confusion, slide shutters or othes devices might be considered for masking of the zaro position lights of the flip-flop sxcept Then necessary for checking the individual flip-flop operation. The control deak must provide indicators for the filin supply in tho output unit and for the controls necessary for these units, espacially the one providing graphical recording where the start-stop and speed controls may be manvei. In many cases.

Consideration must be given the cockpit simulation problem to decido sinether any control for that syatem will be on the contzol deel: or merely interlocked with the on and off controls of the computer itself.

It is probable that a cathode ray tube should be provided on the control deak which will be deflected by the deflection voltagee of the storage tubes and which will be triggered by the atorage tube triggers. It should also be possible to ves the coincidence counter system for triggering this indicator scope at any desired storage operatica in the check problen. The scope could have ruled or indicated on its iace the proper locetions of the rarious storage positions.

JWF:จb

PPRROVED FOR PUBLIC RELEASE. CASE 06-1104.

COITPIDKNTI AL

6345
Memorandum M-135
Page 1 of 7
Project Whirlwind
Servomechani ems Laboratory
Massachusetts Institute of Technology
Cambridge, Mas saohusetts

To:	Jey W. Forrester	B-39391
Fromi	Robert R. Ererett	B-39392
		B-39393
		B-39394

Date: November 10, 1947

Block diagrams in this mamorandum on electrostatio storage are propared for discussion purposes. They are supplied as illustrative information and vill be considered in detail, revised, and oxtended before use in the aysten.

There are many changes will oh can be proposed for the aystem about to be described. Some of these are listed at the end of the momorandum. The system described is cosplete within its limitations, however, and improved designs should valt for more exact etorage specificationg.

Drawing B-39391 is a block diagram of a aingle electrostatio storage tube and 1ts aseociated oquipment. The box laboled "One Electrostatic Storage Tuben includes any necessary output amplifier. The output of the storage tube is sent througl a delay to a three-position flip-11op. This flip-flop is assumed to have the folloving characteristics:

1. It has three stable states.
2. It can be set to any of thege three stable states by the application of $\mathrm{t}=1 \mathrm{ggers}$ to the proper points.
3. The application of a positive trigger to the trigger input vill cause it to eydtch in one direotion; 1.e., from 2 to 1 . The application of a negstive trigger to the eame trigger input will cause it to avitch in the opposite direction; sey from 2 to 3.
4. It is possible to piok off positive signals from vacuum tube plates to correapond to the three stable states of the ilip-flop. Farthermore, there muet be at least one point with three potentiale corresponding to the three states.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum M-135
COMPIDENTIAL

This flip-flop, and for that matter the whole system to be described, has been mentioned in Memorandum K-21.. The positione of this filp-flop are labeled write plus, read, and writo minus where read is the middle position.

The action of the storage tube during reading or uriting is determined by the potential of one of its elements, oither the screen in front of the storage surface or the signal plate behind it. The action of the tube, except for polaritios, is unaffected as far as these block diagrams are osncorned by which elemeat is chosen. In draving B-39391, the screen or plate is ehow connected through a buffer amplifior to the output of the three-way flip-110p. It is aseumed that this line will have a different voltage level for the three positions of the flip-flop. When the tube is not being used for reading and writing, the holding beam 413 be $\mathrm{on}_{\text {, and }}$ the soreen or plate ehould be held in the wite plus position. It will probably be deairable to turn off the holding beam during the operations of read and write minue. The holding beem is thus ghow connected to the same line as the screen or plete in such a fashion that when the ecreen or plate is at the write plus potential the holding been will be on, while if the ecreen or plate is placed at some other potential the holding beam wlll be turned off.

The sequence of events for using the tube is then as follows

1. Sot the amitches whish determine the deflection voltages for all the tubes in the bank, fivo or three microseconde must be allowed for these voltages to reach tholr final velues. Doring this time it is desirable to keop tho holding bean on. The screen of the tube will thus be left at the write plus position, as will the three-way output ilip-flops.
2. Set to read conditioa. Whan the deflection voltages are almost set and just jefore the high velocity beam is pulsed, it is necessary to eot the three-way flip-flop to the read conditio:2; thus setting the screen or plate voltage to the read sondition and turning off the holding beam.
3. The high velocity beam is then turned on.
4. After the reading tiae has elapsed, the high velocity beam is turned off. The delay element in the signel line from the tube to the flip-flop is made large enough, if necessary by the uso of additional tube elements, so that the screan or piate potentisl may be held in the road position until the tube has been completely read. When the beam has beom turned off, the three-way

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

CONFIDIMNI IAL

6345

Memorandum M-135 -3~
filp-flop must have been set into one of its write positions because oither a positive or a nogative output unst have come from the tube. It is thus possible to check to see whother the three-way filp-flop is in one of its write set positions. This is shom schematically as diode mizing onto a chock for vrite line which connects to all tubes in the bank.
B. Send a aingle pulse to the main-control time-pulse distributor. It is assumed that the control pulses for the olectrostatio storage tube bank are dorived from a special electrostatic storage control whi ch has no information as to whother the tubes are to be read or vritten on. The single polse sant to the main-control time-pulse dietribut or will return read-out, read-in or olear signals to the three-vay flip-flop and, at the same time, pulse the necessary gates in the other equipment of the computer. If the etorage is to be read out, the read out to bus inne is pulsed and the information is sent out through the gate tube and the bus driver to the bus. The three-vay fip-flop and ecreen are left set so that the previous elgnal will be restored vhen the high-velocity beam is turned on. It the tube is to be stored on, the read in from bue signal firstisets the three-way filp-fiop to the write minus position. It also gates the in gate tube. If a one comes in from the bus the three-way filp-flop will be reset to the wite plus position; otherase, it wll be left in the write minus position.
6. The high velocity beam is again turned on.
7. After the proper timg has elapsed the high velocity beam wll be turned off. The sigaal should have set the three-way flip-flop back to the read or neutrel position, a fact which can be checked using the check for read-in gate tube.

If the cheok is euccessful the three-vey flip-flop should be reset to the urite plus condition thus turning on the holding besm and leaving the tube in its normal condition, A pulse ahould also be sent to the main control restarting it and stopping the electrostatic storege control.

The electrostatic storage control presents some special probleas since the times involved are not finally established and operation ehould be made adjustable over wide limits 12 possible. Drawing B-39392 showe one possible method for accomplishing the control of the electrostatic storage.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDETMAL
6345
Memorandum M-135

It uses an eight way time pulse diatributor which can be idonticel w th the ones used in the main control of the computer. The alock pulese to this distributor are not supplied directly, hovever, but through a counter. The counter shom here is a 24 or 16 position counter allowing time inter vels between outputs of the time pulse distributor of from 1 to 16 mioroseconds.

The start algnal from the maln control switches the flip-plop, opening the gate tube, and allowing the one negacycle low frequency clock pulses to reach the counter. The counter has been preset to some particular Value. When it reaches ite all ones position the next pulse will travel down the high apeed carry gate tube line into the elght vay time pulse distributor and go out the first position. The ilrst line can be connected to any or all of the fiip-flops in the counter by the vertical lines. If no connections are made, the counter will be at zero and no pulee will reach the time pulse distributor for 16 oounts. If all connectiona are made, the counter will be set at all ones and the next clock pulse 411 reach the time pulse distributor. Internediate sets of conneotions allow any time delay dealred between 1 and 16 mícroseconds. When the second pulse reaches the time puise distributor it will go out the second line which is again connected back into the counter as desired to produce any desired delays. The whole eystem, therefore, provides pulses in sequence on the lines coming from the time pulse distributor with delays between them whioh can be arbitrarily selected. The conneotione can be made through diodes soldered in place.

Draving B-39393 shove a somplete control of the electrostatic storage. The tubes are connected to the bus, there being two tubes corresponding to banks 1 and 2 coniected to each line of the bus. With the ayetem in its nornal position, the three-vay flip-flope of all tubes will be at the vrite plus condition and the holding beans vill be on. The sultches in the selection devices 111 all be at their cleared position a vill the electrostatio storage control time pulse dietributor. When the storage is to be used the main control wil sand a reed-in pulse to the suitches on the horizontal and vertical deflection amplifiers and the eingle position flip-flop axitch which is used for bank selection. This wll read in the 11 digit address section of the order uhich has just been read out of the program regieter, see R-127. At the same time the main control will send a start pulse to the eleotrostetic storage control and wil also stop the flow of olock pulses to its own tilmo pulse distributor. The deflection amplifiers will then begin to sot up the proper deflection voltages in all the tubes including both banks. When the dolay, determined by the initial setting of the counter in the slectrostatic storage control has olapsed, the first pulse dill appear out of the electrostatic storege control. This puise is to set the three-way flip-flops in the bank to be read to the read oondition. The outpute of the bank selection filp-flop are thus supplied to the gate tubes 01. The initiel pulse coming from the electrostatio storage tube control wil thus go out only thet bank line which has been selected, and will swl tch only those flip-flops in the selected bank.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONTIDEMTIILL
6345
$-5-$

After another selected delay the second pulse will appear whose purpose is to turn on the high veloch ty beam in the selected tube. Once again it is necessary to use the output of the benk selection flip-flop to sot the gate tubes 02, thus allowng the beam pulse to turn on only those beams in the selected banks. Since the beams are to be kept on for an appreciable time, holding flip-flops are provided thich sot up a voltage through the buffer emplifier on the line going to the selected benk for holding on the high velocity beam.

After another selected delay, the thi rd palse will appear from the electrostatic control and will be applied to the reset inpute of both the beam flip-flops; thus turning off the on beasas but not affecting the off beams. This puise will also go to the gate tube on the check-for-urite line, sending out an alarm if any of the flip-flops have failed to be changed from their read position.

After another delay, probably of short duration, the next, or fourth pulae, appears from the olectrostatic control. This pulse is sent to the main control time-pulse distributor and provides the reading and writing pulses to the storage tubes. It may or mey not be necessary to channel the read and write pulees to gate-tube pairs selected by the bank selection flip-flop, depending on the particular polarities needed during the holding aotion.

The fifth pulse from the electrostatic control turns on the high velocity beam again through the gate tubes 02 and the holding flip-flops. After a suitable dolay, pulse numbor alx will appear and turn off the high velocity beam. It vill also check for read using the chock-for-read line and gate tube and send out an alara 12 any of the three-way 111p-flops on the selected bank have not been returned to the read condition. This pulso is also used after a delay to clear the three-way flip-flops back to the vrite plus condition; thus turning on the holding beem and leaving the tube in the holding condition. This elxth pulse also olears the switches in the horizontal and vertical deflection and bank selection systems, restarts the main control time pulse distributor, and resets the electrostatic storage control time pulse distributor to its zero position.

The tubes can then reacia in a holding condition as long as desired or may be read again immediately.

Draving B-39394 shove the additions to the present computer systea ceused by olectrostatic storage. The rest of the computer is not shom but is the same as in Tigure 46 in Block Diagram Report R-127. The eleotrostatic storage tubes and the selector switches are conneoted to the bue. While there is no connection betwean the bus and the electrostatic control, the control muat be supplied with alock pulses.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFTDimatial
6345
Memorandum M-135 -6-

The control pulses from the main control to the electroetatic storage are alresdy almost all present in test storage. Tho readout read-in for the awitches, the read-out read-in for the electrostatio ptorage tubes themselves, the start for the electrostatic control, and the restart for the main control are alroady present. The start and restart are at present used for the delay counter.

These block diagrams are not only tentative but incomplete. Proviaion has not been made for ueing the transfer check on either the storage switch settings or in uaing the storage itself, oxcopt in the case of reading out. When reading in to olther the sultches or the storace, it is necessary to read out again immodiately to the main bus for checking purposes. This difficulty can be oasily avoidod in the case of the evitchos by not stopping the main time pules distributor until one pulse time after the electrostatic control has been etarted. This one pulse time can be used for ordering the transfer check. In the case of reading in to the olectrostatic storage, one possibllity is to send two pulses to the mein time pulse distributor instead of the one proposed at present. It should be easy to work out these details.

I think that the olectrostatic storage control is probably fleadble onough for our purposes. Fot only does it possess the adiventage of adjustable delays betveen pulses bat it uses our standard and already deaigned eight way time puise distributor and provides two sparse for unforseon operations.

Among the many posaible changes in thia system are the following:

1. The use of a single output three-way filip-flop aystea for the two tubes in each digit colvan. For aysteans anth more than two banks of storage tubes, all the tubes in ono digit column could bo connected to one output syatem. Some special equipment would be required for wixing but a net saving of tubes should rosult.
2. The delay in the tube output inae could be avoided by prom viding a special holding flip-flop for the sereen and triggering this ilip-flop from the output throe-way fip-flop.
3. The characteristios of the output flip-flop and the checiling procedure could be chenged to evoid the effeots of ewtohing transiente on the tube output.
4. If the write time on the tube is appreciably longer than the read thae, the sequence oan be changed to only provide the long write time whon a sigael is being stored. Only part of
the charge need be romoved when roading thus alloring relatively rapid restoring if the data is not changed.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
B.39392
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum $\mathrm{H}-236$

CONETDENTX AL
Page 2 of 3

Project Whirlwind Servomochanisms Laboratory Massachusetts Institute of Technology

Cambridge, Lassachusetis

SUBJECT: ACCUMULATION OF PRODUCTS IN THE VHIRLKIND I COMPUTER.
To: Jay Wo Forrester
From: Robert R. Everett
Date: November 10, 1947

This memo considers briefly the problom of accumulating products in WHIRUWIND I without the necessity for storing the partial sum in the memory at each step of the process. Such accumulation of products will not be included in the original construction but caa be added later or included in future designs for any application for which the operation is sufficiently valuable. I would suggest the followizg:

1. That the problems be sccumulated in a sixteen digit shifting register similar to the B Register which is so arranged that on shifts and carries it will shift one step to the right and at the same time insert its right-most digit into the loft-moot digit position of the accumulator. Supposo then that we are in the middle of the product accumulation process. The sum of the products to date is in this special register which I shall call the Holding Register, HR. We will now order the next multiplication by a special multiplication order which I shall call mer for multiply and accumulate。 I think at the moment that it would be better to use a apecial multiplication order for tho accumulation process rather then use a special storage order later on for clearing the holding registerc This will enable us to carry out sequences of other operations, including normal multiplications, between steps of the accumulation process. The ma operation proceeds as in the normal multiplying round-off operation, 포, up through time pulse 1 when the multiply pulse turns the control over to the multiplication control inside the arithnotic eloment. Tho multiplication process is exactly the same as far as the existing arithmetic element is concerned but in this special cass the shift and carry pulses are also supplied to $H R$, shifting its contents one step to the right and shifting ite right-most digit into the $A C^{0}$ position of the accumulator. The next multiplication addition will add the multiplicand on top of the shifted partial product plus whatever has been inserted from HR. When the multiplication process is over, the entire contents of HR will have been added into the accumulator in proper sequence. The carry will have been proporly cared for and no additional tine will have been required for this accumulation.

Consider now Figure 76 in the Block Diagram Report R-127. This figure is the timing diagram for the multiply and round-oif operation. The multiply pulse occurs on time pulse l. Following the additions of the multiplication, the control is returned to the main time pulse distributor,

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

CONDTDENTIAL
Memorandum M .- 136
2.

Time pulse 2 orders the carry and round-off operations which are still needed. In order to get the extra time required for replacing the sum in the Holding Register, we will move the product sign pulse from time pulse 4 to time pulss 3, where it will occur at the same time as the clear BR pulse. At the end of time pulse 3, the correct sum of products to date will be in the accumulator. On time pulse 4, therefore, we can transfer this sum back into the Holding Register. It will be necessary to invert the shifting of zeros and ones from the right end of the Holding Register to the loft end of the accumulator, depending on the position of the sign control flip-flop in the arithmetic element. Or the contents of $H R$ can bo complemented as well as $A R$ and $A C$.
2.

I can ses no objection to this process at the moment. Very little change is needed in the main control. The extra Holding Register which can be made idontical to a B-Registor must be added, as vell as connections from its right digit to the left digit of $A C$. The greatest change required in the computer is a set of gate tubes which will allow reading the contents of the accumulator back into $H R$ at the completion of the ma operation。 A possibility to be concidered, paricicularly if thie device is added after WHIPLWIND I has been completed, is to shift the contente of the accunulator back into $H R$, particularly since, if $H R$ is made like BR , it till be able to shift left. Then, if we provide a special shift-loft line, including a pair of apecial shift-left gatee on $A C$ zero, that is, gates which are different frcm the divide shiltleft gates, we can shift the entire contents of AC back into the Holding Register without the necessity far adding an extra row of gate tubese If this is done, it will be necessary to ues the step counter to count the number of operations. This can be accomplished by resetting it to its -16 position, using probably the same line that is used for the multiplication operation. Under these circumatances an extra flip-flop will be required in the arithmetic element which can be pulsed on time pulse 4 vinich will in turn shut off the main control, reset the step counter, supply Holding Register shift-left pulses to both Holding Register and Accumblator, count up 16 shifts, then clear the Accunulator and return the control to the operation control. The transfer pulse can be delayed a half-pulse time and used for clearing the accumulator.
3.

Wo still need a means for getting the product sum out of $H R$ to s end it to storage, when the summation is complete。 This can be done in several ways:
(a) Provide a special arder which will transfer the contents of HR into $A C$ by ohifting on request.
(b) Provide ancther multiplication and accumulate order which, instead of transferring the sum back to $H R$ on completion, will instead leave it in $A C$.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
CONETDENDIALS
Yemorandum $M \rightarrow 136$
(c) If it is considered not undesirable to lose the advantace suggested above of being able to carry out other nultiplicetion oparations between summations, the standard multiplication order can be modified. Always shif't in the contents of HR, it being the special ma ruultiplication operation only which roplaces the sum in tho Holding Register. A narmal sequence for summing multiplications will then consist of all ma's except for the last one mich would be a standard me and would end up wi.th the total sum in the accumulator.

RRE:hcs

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

M-158

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL

6345
Memorandum M-158
Page 1 of 8

Project Whirlwind
Servomechanisms Laboratory Massachusetts Institute of Technology

Cambridge, Massachusetts

SUBJECT: BLOCK DIAGRAMS, INPUT AND OUTPUT
To:
Jay W. Forrester
From: Robert R, Everett
Date: November 10, 1947

The film input and output to be used with Whirlwind I is described briefly in a report by the Eastman Kodak Company entitled "Progress Report \#1: Film Reader-Recorder for use with Computer" by R. D. O'Neil. A single unit with modifications is used for both purposes. Reader-Recorders are needed at the set-up typenriters, at film comparison stations, at the inputs and outputs from the computer, and possibly at output printers. These uses plus an estimate of the total number of units required for Whirlwind I are discussed in M-73.

Briofly, these machines consisted of a clutch controlled 35 mm . film drive plus an optical syetem and a combination of a cathode ray tube and several photocells for putting information on the film or taking information fram the film. In writing, the beam of the cathode ray tube is awspt across the surface of the tube which is supplied with a mask and focussed on the surface of the film. Both numbers and their oomplements or inverts are stored on the film. If all is boing stored, the beam is left in the number row while if a zero is to be stored, the bean is deflected to the complement row. Information is stored in binary notation as a series of opaque or transparent squares on the surface of the filin. Approximately 50 channels are to be used. A beam-splitter is used to deflect sone of the beam's light to a pair of photo-cel1s, which both determine whether a zero or a one has been stored and supply oontrol pulsos for indexing the boans.

In reading, much the same systern is used excopt the beam is swept across the face of the tube without vertioal doflaction, firet across the number line and then across the oomplement line. Photo-cells bohind the film piok up signels whonever the beam strikes a transparent spot. For further dotails see the Esatman Report.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL

6345

Memorandum M-158

- 2 -

The characteristics of this system are as follows:

1. Since the beam is swept in time across the face of the film, the digits are stored or read in time sequence and must be supplied to and received from the reader-recorder in time sequence, that is, serially.
2. When recording the recorder can transmit back to the computer the actual number stored.
3. When reading, the reader sends to the computer not only the number but the complement of the number. 2. and 3. may be used to give a quite thorough check on the readerrecorder.
4. As each digit is stored or read the reader-recorder can supply a pulse to the computer requesting the delivery or reception of the next digit.
5. The film stores about a hundred lines of data on a linear inch of film. A word may require either one or two lines depending on the length of the word being stored. A twenty-five binary digit word, satisfactory for Whirlwind I, could be stored offectively in one line although actually the word itself will be stored on half of one line and the complement of the word on half of a succeoding line. The lines being interleaved in such a fashion ss to use all the surface of the film. If fifty-digit data were being recorded two whole lines would be needed although these lines might again be out up into four or more lines interlenved so as to cover the entire surface of the film.
6. The film moves at a speed of approximately twenty inches per second allowing a reading rate of the order of 1,000 words per second. The beam of the cathode ray tube, however, in sweeping serially across the film, sweeps in approximately fifty micro-seconds. This time is short enough so that the linear travel of the film during the sweep does not produce en appreciable alignment problem. Information must be supplied to the reader-recorder or received from it either at .5 megacycle rate or at a 1 megacycle rate depending upon the number of digits being stored and the particular storage arrangement being used.
7. In recording, a glass wheel in the recorder contains an index mark whioh is used for spacing the words equally along the film. In reading, an index placed in the margin of the film during the recording is used to indicate when a word is in the reading position. In both cases the reader-recorder supplies the ready information to the computer. Since about one millisecond olapses between readings of words, the computer has adequate time for its own control operations.

6345
Mamorandum M-1.58

COMPTDESTTAL

Since the reader-recorder is relatively slow in operation when compared with the rest of the computer, it has been felt desirable to build special equipment for connecting the reader-recorder to the computer. This special equipment will allow the transfer of information in either direction with only a very short interruption of the mein computer cyole. This extra equipment can be avoided if the loss of time resulting from using the mein computer equipment can be tolerated. A proposal is discussed in this memorandum for automatically obtaining information to be recorded from or read to the main storage of the computer without the intervention of the main control. It is still not clear whether this additional equipment is desirable. It may be that at first at least, the Thirlwind I computer will avoid this special automatic equipment. The equipment can be added later if desired. The deoision must weit until further study has been made both of the cost of the special equipment in extra computer complexity and size and the seving in operating speed and in coding. The system vill be described here plus mention of how the same operations can be carried out using normal computer orders and equipment.

D-39395 shows a pair of reader-recorders and the equipment necessary for connecting then to the bus of the computer. This equipment consists largely of a pair of stepping or shifting registers which have a number capacity equal to the digit length of the machine. This will be sixteon digits in the case of Whirlvind I. A pair of registers is neoded for ohecking purposes. The pair of registers is referred to as SR, the particular registers being called SRN for the number stepping register and SRC for the complement stepping register. One pair of these registera will suffice for handing both reader and recorder although more atepping register pairs can be added if higher input and output speeds are desired.

The recording process is as follows:

1. The number to be recorded (the source of this number will be discussed later) cones in from the bus to the number stepping regieter through GTOl. From there the complement of the number is transmitted to the complement stepping register through GTO4.
2. When the inder mark in the recorder shows that the film line ia in the ripht position, the recorder will send out a stepping pulse to the number stepping register thus shifting its right most digit off into the out lines and from there to the recorder.
3. The recorder will store a 1 in oither the number or the oomp?ement line depending upon whother the number shifted in was a 1 or a 0 . The bean splitter photo tubes will sond a signal back to the left end of the number stepping register, transferring a 1 if a 1 wore stored or a 0 if a 0 were stored. If the system is working properly the dizit shiftod off the right end of the stepping registor will be replaced in the left end.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL
6345

Memorandum M-158

4. The beam-splitter signal will also generate another stepping pulse to the number stepping register. This process continues until the ontire number has been sent to the recorder. When the beam has finished sweoping, it will actuate a photo-cell which will stop the stepping process and send out a signal on the complete line.
5. The number which has actually been recorded will have been replaced in the number stepping registar. The actual stored number is again added to the complement stepping rogister clearing it to all zeros unless a mistake has beon made in the recording process. A check pulse to the complement stepping register will check to make sure that the register has been cleared and will produce an alarm if any error has been made.

The reading process is as follows:

1. Both the number and complement stepping registers are cleared to begin with.
2. When the index mark of the next word has reached the reading position, the reader cathode ray tube will start to sweep. Ascume for the moment that the number line is swept first and then the complement line, although this process may be different whon the final interleaving method has been determined. The reader will then first provide ones or zeros to go into the left end of the number stepping register.
3. As each digit is read, the reador will send a stopping signal to the number stepping register and will at the samo time, insert the read digit in the loft ond of this register.
4. When the beam has finishod sweeping the actual number read will be in the number stepping register. The beam Will then start over and read the oomplement line.
5. Stepping pulses are then sent to the complement stepping register and digits inserted in its left end until the entire line has been swept.
6. The number is now in the number stepping register and the complement in the complement stepping register. The number con then be read through its complement output gates to the complement stepping register cleoring it unless there is a discrepancy between the two readings. Once again a check pulse is sent to the complement stopping register causing an alarm if an error has been made.

There are also stop start lines to the reader and recorder for engaging and disengaging the olutch drive on the film.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL
Memorandum M-1.58

- 5 -

It would be possible to use the accumulator in the arithmetio element as the stepping register for recording, oomparing it later with the actual number to be recordod, once again extracted from storage. The accumulator can also be used in reading, the number being read into the accumulator first and stored and then the complement being read into the acoumulator, which is also used for the comparison process.

It is possible with only slight modification to the existing control to use the standard orders already available for supplying information to the stepping registers when recording and extracting information from the stepping rezisters when reading. Signals from the readers and recorders could be transmitted to the control, breaking into the main sequence at come strategic point and calling in a sub-procram particularly designed for the reading recording process. The computer could keep indexes in the storage for locating the source of numbers to be recorded or the destination of numbers read. Certain special input and output ordere would be needed for starting and stopping the reader-recorders and for transmitting information to and from the stepping registers. Once the relatively small group of operations neoessary to set up a new word had beon performed, the computer could then return to its regular computing sequence.

A possible way of taking care of the reading and reoording sequences automatically will now be discussed. This way has the following characteristics:

1. A section of the regular electro-static storage is designated as a sort of buffer between the main computer and the input and output equipment. The size of this buffer storage is arbitrary and depends upon the amount of reading or recording being done. The use of part of the electrostatio storage for this purpose does not in any way provent its use for normal computer purposes exoept at those specific times when the input and output are being used.
2. The number of registers in this storage would probably be a power of two. The register section could then be considered as a ring or sequence. Numbers going into the storage would go into the first empty register in the top part of the sequence while numbers being extracted from the storage could come from the first full register on the lover part of the sequence. If the sequence is considered as a ring, this process can continue as long as thers are any full registors or any empty registers in the anount of sţorege allocated.
3. In order to use this ring automatically, it will
be neoossary to keep track of three things:
e. the register number of the first full register, used for oxtracting information from the storage.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
CONFIDENTIAL

Menor andum M-158
-6-
b. the register number of the first ompty register, used for entering information into the storage.
o. the number of full registers in the storage. This number must be kept traok of since special steps must be teken if the storage section becones either completely empty or completely full.

Drawing B-39396 shows this system as applied to the recording operation. The in-counter keeps track of the first empty register position in the storage and is indexed every time a new number is entered. The out-counter keeps traok of the first full position in the storage and is indexed each time a number is extreoted. The difference-counter counts positively for numbers added and negatively for numbers extracted. The recording process is as follows:

1. Whenever the computer has a number it wishes recorded it transfers this number to the storage, using the in-counter reading to select the register in which the number is to be placed. The difference-counter keeps track of these insertions and when the storage ring has been filled to a certain pre-determined amount, it starts up the recorder. When the index mark in the recorder has reached a recording position, the recorder sends a complete signal to the control, thus, setting the flip-flop shown in the lower left-hand part of the drawing and opening GTO5. It is not possible to break into the standard computing sequence at any time becauss so doing may destroy a part of an order incompletely carried out. However, when time pulse number 1 ocours a new operation is just starting. The arithmetic element may be working on some old information but the arithmetic element is not needed for the recording process about to be described. Time pulse No. I therefore is supplied to GTO5, and thus produces a pulse to initiate the recording operation only at this selected part of the operation cycle.
2. The pulse coming from GTO5 first stops the main time-pulse distributor, thus stopping the oomputing process. This pulse also reads out the information from the out-counter as to the first full register in storage and also goes to the electrostatio storage control where it initiates the extraotion of this register number.
3. The storage switoh autonatically accepts the out-counter reading and no further action ocours until the electrostatic storage has been set up.

4. The single pulse from the eleotrostatic

 storage control, which is normally used to index the main time-pulse distributor for selection of reading or recording
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL
6345
Memoranduan M - 158
$-7=$

In the storage, is instead supplied to GTO6. This gate tube is normally open but is shut when the recorder flip-flop has been set. Instoad, GTO7 is on and the single pulse from the electrostatic control passes through this gate tube, returning as a read-out signal to the electrostatic storage control and opening the input gate tube on the number stepping register. The information in the desired storage register is thus transferred to the stepping register.
5. The eleotrostatio control then proceeds with the re-storing operation in the electrostatic storage. When this operation is complete the control returns a restart pulse to the main control clearing the recorder flip-flop and re-starting the main time-pulse distributor. This distributor will proceed with time pulse number 2, the interpolation of the recording selection process having had no effect upon the main computing sequence.

This procese proceeds, the computer inserting new information in the storage ring and the recorder extracting information from the storage ring. If the difference-counter finds that the ring has filled up, thus showing that the computer has gotten ahead of the recorder, it will stop the computing process. The recorder will continue. When the ring has been emptied the difference-counter will again start up the main oomputer. If the recorder gets ahead of the computer to the extent of emptying the storage ring the film recorder and the recording process will be stopped and not re~started until the differenco-counter shows that the ring has at least partially filled.

Drawing B-39397 shows how this system can be applied to the reading process. The in-oounter again keeps track of the first empty register in the ring except that now it is supplied with pulses from the reader and not from the control. The out-counter again keeps track of the first full register in the range but it is now indexed from the control since it is the computer itsolf which is extracting information from the storage ring.

The difference-counter is again indexed with plus pulses from the in-counter and minus pulses from the outoounter. Gates are now provided for reading numbers in from the bus to the difference counter. It is sometimes desirable for time economy to read in only a few numbers from the reader, perhaps as few as one. The computer can then transfer a number to the difference counter sufficient to merely fill it. If the reader is then started, it will read only enough numbers to fill the counter, thus stopping the reading process. The counter must then be cleared.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONFIDENTIAL

Abstract

6393 . 8 - Memoranduy M-158 An index oounter is also provided for selecting a particular number or group of numbers on the film being read. The computer can read into this counter the number of words from the word last read to the next desired word on the tape. As the reader film moves past the index photo cell, it will send out index counts to this index counter. When the desired number of words has passed by the index photo cell, the index counter will send out a start order beginning the reading process. If this counter is used in connection with presetting the difference counter any desired number of words oan be read at any place in the ifilm. Orders are necessary for running the film in two directions. Check numbers can be inserted on the films at desired points so that the computer can heve a oheck on whether the film is in the desired position.

It is not planned at prosent to provide scaming speeds in the film readers and reoorders. Thus it is possible to read or record at the maximum speed at which the film oan travel. At the expense, therefore, of a certain amount of computing speed, it would be possible to accomplish this soamning process using only the standard orders in the computer and allowing the actual numbers to be read from the film at each step. The computer would simply not put the information in storage until the proper word had been reached. The computer could keep track of the index number itself using the arithmetio elemont as the counter.

Drawings: $\quad \mathrm{B}=39395$
B-39396
B-39397

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B-39396

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B-39391

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CONYIDIENTZAL

3


```
sumryco. Demnriptian of Computer Systen - Frpa Ia
    Da[z: Suguot 13, 2.940
20RYMOBT
```

This description of a partioclur form of M gh-spead computiog eyaten
is ant tenced to bo a complate divousalon of the many proslors of elsctronto
difitel computation and does not attampt to fully oxplesin tha conakderations
leeding up to the resalt presented. Thie io staply a doserintion of what the
syotam is and how it voris
Eor, dose thia outliso congider fully the fact that sven a complete
rosult is not secessarily final One poesiblo nodification to sapand the povar

improvementa aro alrandy in proppot futuro tronts, 38 wall as past dolitar
ations, ere deemed to ba boyond tho soope of this dencription of the aretan 2
charnoteriatics

thet the roader bo faniller with the terninolofy uoed in the caunating fiold in
goneral, and by tha projeot ia perticule
Tho prodiontion of thif a nyptoti upon sypes of phyelosh, souf peas
still under development has note a conviderable murbor of heutuptionn necoseary
These essumptions are etven as suoh, and in general. It io not porarbis to

B formetion 20 avalleble in tho form of physiond esperimental daba e yfor
ovaluntion of tha syntan ona epelty bo male

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
COM/IDIMNTALS
6346
zoghmearing Notea No - S-25
1. ODSoocivan of Syaten wancul}
```



```
2.1 Sarial Oparation
Binary Daeo
Fizod Poine Systen
la.4
3. Womoricel. Proatment
    3.2. Number Regietor
    3.2 Number TTansmission
    3.3 Intelligoneo Pul
    3.4 Negativo Rumbora
4. Aasumptions Negarcing Storago Nubas
    4.1 Rending
    4.3 Se{-up
    4.3 Capacity .................................
```



```
    5.1. Computing Slomaaz
        5.23 Oporation
        5.23 Dolar
        Storago Units
    Smischos
    5.4}\mathrm{ Timing Unite
6 Oporation
    6.1 Mundamontal Uni\s(Dravinge)
    6.3 Compononts(Drawi aga)
    6.3 Orcare end Timing(Drawinge)
    5.4 Syotam
        6.41 Ordor Selavtion
        6.43 Order In lalstion
        6. &3 Ordar D1 granltio
        6 4/ Orier #yajution
        Order Charsetor!mbic
            Tralag.
            Sab-progrisa
        6.48 Storaco
Appgulx A
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.


```
conitidastry al
Ragranarligg lotea ilo 2-3
2.3 A Fixad Folus Systom will elimiaeto the seed for anto ically
honeling the location of the point in the machine
331 The roference point will bo taken an one disit in froin left side of number regioter
33 A sanis factor of some pover of a (for blamy ase) is naed to rediace all poestive numbers \(t\)
3.33 Scale factors are introduced in problem preparation and arist elways be acoounted for although they nevar appear in the rachine
332 Muabers to bo nddad(or eubtracted) frust have the seme scale fector, whioh is aluo tha gasale factor of the anower.
3. 333 Any twa numbors moy to multiplied but the acale factor af the rosult dapends on the roundiag-off process es well as the acals. factors of the aultiplioand and maltipliar
a 333 Scals factors must bo chosen to atcic a result which ruas off the numbor regista in elther dirsotion
34 The digit P1Y is as avied to be \(1 \mathrm{MC}, \mathrm{y}\) th \(1 / \mathrm{s}\) miarosocond pulgo
3. Yunerdad Frestanat
3.1 The nuabar register will conelat of 33 digit apoene (axoluding intoliagonce pulse)
3 a Digit pulier will be tranemited ia the seouerce with the Least algnificant cosiag farvg and tho niga digit bolog the labt 10 ight enc of ambe: Fagiater come fitat
3.3 The namber ragiater will bo pracadad de trenamisalon by a
, evorlo Intelifgoceo Fales. IP, wekine in trenziteted length of 33 a1gita
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
S
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6.454 The last order of the main program cycle sets the storage selector switch to a unique position restorage selector switch to a unique position selector to reset the counters to zero, thus starting the program over st the beginning.
6.46 Timing of Operation
6.461 Triggers spaced at 40 microseconds appear alternately on trunk lines, T' and T'I. Hence each trunk carrle triggerg apeced 80
he triggers on $1 /$ are counted in the Progra elector except for gub-progren interiuptions. eading of the counters 18 timed start efte ordor has been read, 80 that when a sub-program is to start, the counter can be stopped to permit eturn to the proper place when the eub-program is
6.463 A trigger on T'' atarts the sweep of first tube where order 1 s stored.
6. 464 The neat trigger on 21 in addition to atarting the program solector for the noxt order, starts the sweep of the second tube where the rest of the order is tored.
6. 465 The second trigger on T'' goes to all computing storage tubes as well as starting the sweep for the er pard or. The two swees rich vere set up by Sect1ons A and B of the order, sweep and produce the two nunbers for the computer on runks A and B . A tube, set up by section C of the order, sweeps to erase, preparatory to receiving the anaver on Truak C. All other tubes, though triggered do not produce numbers because they heve not been ${ }^{\prime}$ sot-up ${ }^{\text {n by an order. }}$
6.466

Th11e the "C" storage tube is orasing, the "A" ana "B" tubes read nurberainto the combuting element he $n_{C} n^{2}$ tribe has had time to arase and recover from the erasing aweep, about $40{ }^{6} \mathrm{sec}$.
6.467 The answer is storsd on the "G" tube when its IP is nsed as a trigger to atart the ${ }^{n}$ writing ${ }^{\text {a }}$ sweep

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

COWPIDENSIAL

6.485 All operations, except transfer from torage to the recording device will be terminated by the storage of the result on an electrostatic storage tube.

Drawings:
B-37011
B-37012
B-37013
B-37014
B- 3701.5
B-37016
B-37017
C-3701.
C-37019
C-37020
c-37021
B-37022
B- 37023
B-37024
B-37025
B-37026
D. 37030

PDT:VC

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B. 37011-1 wo.	TOLERANCES NOT OTHERWISE SPECIFIED: DECIMAL $\pm .005$ FRACTIONAL $\pm 1 / 6$

> A Gate Tube is an on-off switch stimuleted by an externnl olgaal. It may be elther aormally open or normally closed. In elthar case presence of the elgnel causes the poposite connection to be made and when the control sional 18 removed the Ewltch revert colncldence timlap device to emit a sinale pulse ir a pulse arrives on the lnout ine at the same tire as the alogle pulse control slanal. If there is no coincidence there vill be no outout.
> In sone cases the switth may be reauired to oberate only when two eyternal sicnals are anolied simultaneously, operation starting whenever both siznels are on togethar and case of tubes which ore nomally off.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B. 37014 wo.	TOLERANCES NOT OTHERWISE SPECIFIED: DECIMAL $\pm .005 \quad$ FRACTIONAL $\pm 1 / 6$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B- 37015 wo.	tolerances not otherwise Specified: DECIMAL $\pm .005 \quad$ FRACTIONAL $\pm 1 / 4$

The Basic Adder is a circuit for addine the pulses reoresenting two binsry numbers such that the pulses resultine will correctly denote the number thet is their sum. To add binary n:mbers.
$1+0=1$ with no carry
$0+0=0$ with no carry
The elements labelled "Add withnut Garry" Derform this operation. The two numbers to be adied are fed in colacidentaliy, ant when no oulse errives on elther ilne nothing is the result; if there is a pulse on one lina but none on the other a oulse zoes out on the liae marked "Sum without Corry"; and, if two mulses arrive simultonenusiy, e slarle oulee epes out on the "Corry" line but nothine goes out on the "Sum without Carry" Ilne. Cenry dipits are delayed one diplt time in the Deley Element (DE) pad are then bdfed to the sum in the second "Add without Cerry" unit.

The adder wlll not oroperly add two numbers if each hae at
Intelligence pilse, hecause of the gererated carry, but when oniy one number hes an IP the anower wlll have the same I ? and will be numerical correct.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

8. $\quad 37015$ wo-	tolerances Not Otmerwise Specified: DECIMAL $\pm .005 \quad$ FRACTIONAL + 㳅

ADDING ELEVE

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

PPROVED FOR PUBLIC RELEASE. CASE 06-1104.

5

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

| E. 37022 | TOLERANCES
 DECIMAL$+.005$ | NOT OTHERWISE SPECIFIED |
| :--- | :--- | :--- | :--- |
| WRACTIONAL $+1 / 4$ | | |

SASIC COMPUTING ELENEN

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B - 37024-1

Time in microseconds

DESCPIPTION OE ORTERS
A1 - Order setting the "irct aviteh fecegnery to select the Storape Tube which is to produce a number on Trunk a of the combuten syrtem. Compozed of 4 tiplta to connect orn out of 15 posstiole witch positiono.

A3 - Orier selectine the tube line to be useli to procuen e number on Trunk A. diplts to set un defiection valiere oú out of 汭 poscible stormice llaes, and 2 dialte to connect tho tube to noe on the theo trunke :\% the comozter zjetarn, A, B, fy C. Txjes oa Trunks and B will alkays read; toon on Trunk C whl flways oree flest and then promare to write an liooming number.

C1 - Sama io Al but belecting the tube on Trunk C.
Cz - Samens A3 but for the tube on Trunk C.
D - Oraes donirine the enmater operation to be oerformad. Contosed of 2 dizite to select one of four apselole eythretic operstions, ond 1 thelt aytra for soecteying. an altert.etive roundiar-of? loothe or position if t.) aporution ie a muiti-lication.

Q1 - Okltchlat orde blilis to Al but for the purpose of espeotias a Sub-Proprar Storare Tube to stert
a nio-0roxtam cycze
S3-simlitr : Aj gut withous the Pdigits :or
enocifyiaz the line connection, and for the
somo purnone za Sl, ramely io desictate the
stention colnt of a subormeram.
 1efthand or leeding edpe of each omber.
 rogntting tolemence of nius on minue ono miornesenont

SERVOMECHANIMS LABORATORY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY							
DIVISION OF INDUSTRIAL COOPERATION PROJECT NO. 6345							

(1) $\frac{1}{\text { TIMING PULSES FROM TE }}$
(2) TRUNK T"
(3) $\frac{1}{\text { TRUNK } T^{\prime}}$
(4) ORDER SELECTION

(5) \begin{tabular}{c|c|}
\hlineC \& S

\hline ORDERS FROM PROGRAM \& B / D

\hline

 \square

\hlineA \& B \&

\hline
\end{tabular} \qquad $c \mid s$ \qquad $A|B| D$ \square cIs

(6) TRUNK A READ ST-A \square READ STA \square READ ST-A \qquad
(7) \qquad READ STAB \qquad READ ST-B \square $\sqrt{\text { READ STAB }}$ \square
(8) \square WRITE STAG ERASE ST-C \square WRITE ST-C \square ERASE ST-C \square WRITE ST-C \square ERASE ST-C \square WRITE ST-C L TRUNK C

NOTE: - Word length 1 s assumed to be 32 microseconds lone, and Storage Tube speed such as to permit one sweep every 40 microseconds.

- For detailed composition of Standard Orders see Dig. B-37024
- It is assumed that storage tubes will be capable of receiving and interpreting orders while still in the process of executing a previous order.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

