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Digital Computer Laboratory
Massachusetts Imstitute of Techmology
Cambridge, Massachusetts

SUBJECT: GROUP 63 SEMINAR ON MAGNETISM, XX

To: Group 63 Staff
From: Arthur L. Loeb amd Normam Meayuk
Date: December 18, 1952

As Newton's laws were foumd imsufficiemt to explain the motiom of
atomic particles, a more gemeral law was needed. At the previous meeting
we attempted to describe the steps that led to the formulatiom of this "mew"
more fumdamental mechamics as imtroduced by Schroedinger.

We moted previously that Schroedinger used the motatiom of Hamiltom,
namely

H(p,q) =2 (n‘]-)

where p = generalized momentum
= generalized coordinate

Schroedinger started with equatiom XX-1, but he had the quantities
operate on a fulctioniz, which we shall definme later. Thexn

V=tV (xx-2)

The script letter will be used throughout these notes to demote a
mathematical operator.

From classical mechanics we recall

2
H =¥§i‘: +V (x)===y y3=—) 2}~==).

Schroedinger used this equation, but he equated the momentum R
to the mathematical operator

p=-1th ¢y (Xx-3)
where A = -;-E (%ﬂ x Planck's Comstant)
V 18 the gradieat

Then p° = ~h2g2

whorove = Laplacian
2

2 2 2
(= .Q!. + ﬁ1 - a_: in Cartesian Coordinates)
¥y

o d 0
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Substituting XX-3 into XX-1 for a system of ome particle,

e
AR R AR (Xx-4)

Schroedinger further defined the emergy operator

Therefore, since

WY -ET |
CEv - DT - 3% »

This is Schroedimger's equatiom with the terms % .nd € expressed
in terms of the operators they represent. We see it is a partial differean-
tial equation involving a time derivative and a secomd space derivative of

the function ¥,
The fuaction ¥ represents the state of a system, and if it is
kmown, the various properties of the system may be determined. In the ideal

case, the Schroedingey equation can be solved to yield the exact form.of: i,
and all properties of the system are thern determimable. However, the equation

usually camnot be solved exactly, and approximation methods mst be used.

The location of a particle cam be demoted by a position vector 7.
In general, for three dimensional space, three indepemdent coordinates are
needed to define the vector. For examnle:

In cartesian coordinates
~
T=1x+ :j\y + ks
In spherical coordinates
Pt +5e+0 9
If a system comsists of two imdependeat particles, 6 quantities
are required to determime their positioms. We cam use two positiom vectors
(ﬁ"ul '!"’2) or a single six-coordimate vector. In gemeral, for a system of

N independent particles, 3N coordinates are meeded to defime their positionms.
Ome can use a 3N-coordinate vector

T =T (x)—xg, 7Ty 9 ——y)

We call this type of vector a comfiguratiom vector simce it gives
us the comfiguratiom of the total system. Im our work in quantum mechanics

we will be dealing with comfigurationms.

Schroedinger's hypotheses regarding i are as follows:
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We know that the state of a system is dependent upon the spin vector
of the system as well as the coordinates and time. Thus, if we denote ¥ as the
spin vector of the configuration,

Y = Tmaoy

From equation XX-6 we see that ¥ can be a complex quantity. If ¥
is mltiplied by its complex conjugate Ar* we have the probability density of
the system. It has the proverty thatAr * AF 47 is the probability that the
system is in the configuration represented by the volume 4%.

Thus when we integrate over all possible configurations the total
probability must equal unity, so

(1' Jrar =1 (xx-7)
Now supposg we have a function F, where F represents some property
of the system (e.g., mentum, position, etc.). We replace the function F by
the proper operator gc()e.g. momentum + -¢A V) and have the operator operate on
3r . We then mltiply by J~ * and integrate over the configuration space. Ac-
cording to Schroedinger, this yields the average value of the function F in the
system. Expressed mathematically,

f={jE° FI at (xx-8)

Depending upon the form of the operat‘.ory and the function iE,
the operation of ¥ on") may prove to have the same effect as a multiplication.

For example, if
Sl g Fagm

then

yi}:— =§; e X =.me T = —m'If' (a)

so that operating onf_ with ':ﬁ only multiplied it by -m. However, for the

same F but = cos mx, we see
ji =%(coa mx) = -m sin mx (v)

and this operation is not a simple multiplication. On the other hand, if f
remains cos mx, and Zf becomes

a »

& 1%

2
‘;i = d—a (cos mx) = o mx; (e)
dx

thus the operator 3’ has the effect on i of multiplication by -na.
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When the operation produces a multiplication as in e les (a)
and (c) sbove, - is called an eigenfunction of the operator ; and the
value by which it is mmltiplied is called an eigenvalue.

In that case, on determining the average value of F, we may bring
the eigenvalue outside the integral since

FXE=TE
hence ¥ =ri'3€i'dt
S Y*F Jras
=rf* I as
r

F =

Here the average value ¥ is the true value. However, if A}~ is
not an eigenfunction of 7f , we can only obtain average -vilues.

In order to be an acceptable function,ﬂ[ must satisfy certain
conditions. It must be a single valued contimuous function (except at a
finite mumber of points) and it must go to zero as the coordinates go to
infinity. A more rigorous mathematical statement of the requirements is
given in Eyring, Walter, and Kimball.®*

In a conservative system (energy constant) ﬁ mst be an eigen-

function of the energy operator H
£ T=1m oF
0

Solving this:
a¥_ -

¥

bn L= -%’ t + Constant

Therefore

EE*IPﬁ_% (Xx-9)

The function V is introduced above as a constant of integration.
It must, therefore, be independent of time. However, '\i} need not be a con-
stant in space.

. Iyri.gg, Walter, and Eimball, Quantum Chemistry, Wiley and Sons, New York 19 4%
P. 26.
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i

We see the time variation is e 75

-% ¢
— = cos % -1 ain% t
E_
T o
E=hz/ (Xx-10)

We have thus independently arrived at Einstein's relationship of
energy and frequency.

The function given in XX-9 must satisfy Schroedinger's equation;
substituting the relationship XX-9 into the Schroedinger equation XX-2, we
find

-%t i
e 7/-'4’ =T’1t-§l€ Q,'*'-
iE _iE

e.—rEt ww =lv/ e'ﬁt

Therefore
¥V =3P - (xx~-11)

This is the time-independent Schroedinger equation. This form of
the equation is of interest in conservative systems. However, it should be
stressed that equation XX-11 was derived with the assumption that is an
eigenfunction of the operator € , which is only true of conservative systems.
Therefore, in systems in which the erergy is a function of time (e.g. radia-
tion problems) this equation cannot be used.
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