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Digital Computer Laboratory 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

SUBJECT: GROUP 6^ SEMINAR ON MAGNETISM, XX 

To : Group 63 Staff 

Trom: Arthur L. Loeb and Norman Menyuk 

Date: December IS, 1952 

As Newton's laws were found insufficient to explain the motion of 
atomic particles, a more general law was needed. At the previous meeting 
we attempted to describe the steps that led to the formulation of this "new" 
more fundamental mechanics as introduced by Schroedinger. 

Ve noted previously that Schroedinger used the notation of Hamilton, 
namely 

H(p,q) = E (XX-l) 

where p = generalized momentum 
q • generalized coordinate 

Schroedinger started with equation XX-1, but he had the quantit ies 
operate on a f u n c t i o n ^ , which we shall define la ter . Then 

! « $ - £ - $ : (xx.2) 

The scr ipt l e t t e r w i l l be used throughout these notes to denote a 
mathematical operator. 

From c l a s s i c a l mechanics we reca l l 
2 

H = £ * J - • V ( X l — , y i —, z x — ) , 

Schroedinger used th is equation, but he equated the momentum £ 
to the mathematical operator 

p = _ i k S7 (XX-3) 

where tt = -— (= i x Planck's Constant) 
2TT 2TT 

V i s the gradient 

Then p 2 = - K 2 < 7 2 

2 
whereV = Laplacian 

2 2 2 
( = J L - + £ - . + JL— in Cartesian Coordinates) 

3* ay di 
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Substituting XX-3 into XX-1 for a system of one particle, 

y -% V ' + T CXX-10 

Schroedinger further defined the energy operator 

£ = t«l n-5 

Therefore, since 

E 
V? 2 

= ii'.v3s V-" *** 
This is Schroedinger's equation with the terms 7/ jnd £ expressed 

in terms of the operators they represent. We see it is a partial differen­
tial equation involving a time derivative and a second space derivative of 
the function IP". 

The function x represents the state of a system, and if it is 
known, the various properties of the system may be determined. In the ideal 
case, the Schroedingei equation can be solved to yield the exact form of ̂ T, 
and all properties ol the system are thei. determinable. However, the equatioi 
usually cannot be solved exactly, and approximation methods must be used. 

The location of a particle can be denoted by a position vector r. 
In general, for three dimensional space, three independent coordinates are 
needed to define the vector. For example: 

In cartesian coordinates 

T = lx + jy + ka 

In spherical coordinates 

r*= r|.r| + » e- + j> J) 

If a system consis ts of two independent p a r t i c l e s , 6 quantit ies 
are required to determine the ir pos i t i ons . We can use two posit ion vectors 
(T^ and "rj?) or a s ingle six-coordinate vector. In general, for a system of 
N independent p a r t i c l e s , JN coordinates are needed to define their p o s i t i o n s . 
One can use a 3N-coordinate vector 

r = ^ ( x r - v 7i~-'r •!—•H> 
We c a l l th is type of vector a configuration vector since i t gives 

us the configuration of the to ta l system. In our work in quantum mechanics 
we w i l l be dealing with configurations. 

Schroedinger1s hypotheses regarding X are as fol lows: 
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We know that the state of a system is dependent upon the spin vector 
of the system as well as the coordinates and time. Thus, if we denote "? as the 
spin vector of the configuration, 

T - f (Jfr-I? t) 
Prom equation XX-6 we see that . x " can be a complex quantity. If x " 

is multiplied by i t s complex c o n j u g a t e ^ * we have the probability density of 
the system. I t has the property that5E * 5El 4T is the probability that the 
system is in the configuration represented by the volume dT. 

Thus when we integrate over a l l possible configurations the to ta l 
probability must equal unity, so 

( - • 

^ F * 5 E dT = 1 Cn-7) 
Now suppose we have a function ? , where F represents some property 

of the system ( e .g . , momentum, position, e t c . ) . We replace the function J by 
the proper operator 5^(e.g. momentum 4 - / X 7 ) and have the operator operate on 
~tlr . We then multiply by~\]r * and integrate over the configuration space. Ac­
cording to Schroedinger, this yields the average value of the function T in the 
system. Expressed mathematically, 

1 = (3p ^32. dt &*-•) 
Depending upon the form of the operator jr and the function *1^*, 

the operation of 3F on~^£ may prove to have the same effect as a multiplication. 
For example, if 

ox" 
&=L and ^ = e m i 

then 
? 5 E = 6 e" 1 " = -me-** = - a ^ T (a) 

so that operating o n l j r with *3r only multiplied i t by -m. However, for the 
same "jF but Sir = cos mx, we see 

JF J T • 77 ( c o s n"t) • -m sin mx (b) 

and this operation is not a simple multiplication. On the other hand, if j f 
remains cos mx, and 3^ becomes . 

d* 
7"2 ' dx 

<7" J ^ = —p (cos mx) • -m cos mx; (c) 

thus the operator "cr has the effect on TlT of multiplication by -a . 
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When the operation produces a multiplication as in examples (a) 
and (c) shore, ~>Jr is called an elgenfunctlon of the operator Tr ; and the 
ralue by which it is multiplied is called an eigenvalue. 

In that case, on determining the average value of F, we may bring 
the eigenvalue outside the integral since 

hence 7 = (5E*/£d* 

= / J* F J"dt 

= Yf$£ T£ dt 

P = P 

Here the average value P is the true value. However, if -\Jr is 
not an elgenfunctlon of y , we can only obtain average -values. 

In order to be an acceptable function, "vjr must satisfy certain 
conditions. It must be a single valued continuous function (except at a 
finite number of points) and it must go to zero as the coordinates go to 
infinity. A more rigorous mathematical statement of the requirements is 
given in Eyring, Walter, and Kimball.* 

In a conservative system (energy constant) ~y must be an elgen­
functlon of the energy operator £ : 

Solving this: 

*£--* « 
* - 1 - i l 

Jfa ~v£_~ - TT * + Constant 

Therefore 

3E-i ut 
* (xx-9) 

The function T is introduced above as a constant of integration. 
It must, therefore, be independent of time. However, 1p need not be a con­
stant in space. 

• lyring, Walter, and Kimball, Quantum Chemistry, Wiley and Sons, Hew Tork 19 44 
P. 26. 
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We see the time variat ion i s 

11 

% 

IX 

i t a 
• cos <i— - i B i n s t 

I = h * ' (XX-10) 

We hare thus independently arrived at Einste in's relat ionship of 
energy and frequency. 

The function given in XX-9 mast s a t i s f y Schroedinger's equation; 
substituting the relat ionship XX-9 into the Schroedinger equation XX-2, we 
f ind 

-Bt -S* 
at 

i l 4 t X* yV «• * e"X 

Therefore 

^ * - • * (XX-ll) 

This i s the time-independent Schroedinger equation. This form of 
the equation i s of interest in conservative systems. However, i t should be 
s tressed that equation XX-11 was derived with the assumption that & i s an 
eigenfunction of the operator S , which i s only true of conservative systems. 
Therefore, in systems in which the er.ergy i s a function of time ( e .g . radia­
t i o n problems) t h i s equation cannot be used. 

Signed 

Korman Menyuk 

Approved 

ALL/HMijrt 

(Group 62 (20) 

ft 
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