APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Memorandum M-1788

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: GROUP 63 SEMINAR ON MAGNETISM, XXI1

To: Group 63 Staff
From: Arthur L. Loeb and Norman Menyuk
Date: January 8, 1953

Page 1 of 4

Figure 42 represents a schematic review of the previous lectures.
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We will now prove that if Wis an eigenfunction of the energy at
any time,the energy of the system remains constant in time.
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his shows that if i;il an eigenfunction of energy with eigenvalue
E , then¥ (t) is also an eigenfunction, so that the system described by

(t) xeeps a constant energy B_. This is a property peculiar to thoCopomtor.

and does not hold in general for'all operators.
Potential Well Problem
As an example of the method of solution of a physical problem using

Schroedinger's equation, we will undertake the solution of a particle in a
ore dimensional potential well. We may consider a bead on a wire , with

obstructions on the wire at x = 0 and x = a. The bead is constrained by these

obastructions to the region from x = 0 to x = a, and so the stops may be

thought of as representing an infinitely high potential barrier. The poten-
tial is shown in Figure 43.
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Since the particle cannot penetrate the infinite potential bdarrier,
it will never be found outside the potential well. The function Y must there-
fore be zero outside this region. Furthermore, if ?13 to be a properly
behaved function as previously defined, it must be continuous at the boundaries.

Therefore,
T (x=0) = O

Temporarily dispensing with steps A and B in Figure 42, we first
solve
'H' }D'n - Eh.. 7,,.' -

Since V = a constant within the region of interest, and setting the
zero of energy such that V= 0 in this range,
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The solution of this equation is
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Imposing the condition 'K(x =0) =0
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and , ainco‘?kb (x=a) =0
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Thus we see that a solution is not gemerally possible. A solution can exist

only when
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Since n can only have integer values, only discrete energy levels

are permissible. A plot of energy levels as a function of the quantum number
n is shown in Figure 44,
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From equation XXII-5 we see that a narrow well width (small a)
leads to a large separation of energy levels.,
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