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Figure kZ r ep resen t s a schematic review of the previous l e c t u r e s . 
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We will now prove that If "$"is an eigenfunction of the energy at 
any time,the energy of the system remains constant in time* 

where we define Y " £ (* • °) • 

then 

In general , 
t '-"•*% 

m i _ 1 

At the previous meeting we found C^ *JW MTA rt. 

Hence^ since W= C^ f , 

Therefore, the only non-xero c term i s c , and from XXII - i , 
n m 

Shis shows that if j^i« an eigenfunction of energy with eigenvalue 
• , theny (t) is also an eigenf unction, so that the system described by 
"flr (t) keeps a constant energy K . This is a property peculiar to the £ operator, 
and does not hold in general for all operators* 

Potential Well Problem 

As an example of the method of solution of a physical problem using 
Schroedlnger's equation, we will undertake the solution of a particle in a 
one dimensional potential well. We may consider a bead on a wire , with 
obstructions on the wire at z • 0 and z • a. The bead is constrained by these 
obstructions to the region from z • 0 to z • a, and so the stops may be 
thought of as representing an infinitely high potential barrier* The poten
tial is shown in figure kj>. 
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Since the particle cannot penetrate the infinite potential barrier, 
it will never be found outside the potential well* The function ̂F"must there
fore be zero outside this region. Furthermore, if ̂ jris to be a properly 
behaved function as previously defined, it must be continuous at the boundaries. 
Therefore, 

Temporarily dispensing with steps A, and B in Pigure ̂ 2, we first 

solve ttft.^-fc. 

Since V = a constant within the region of interest, and setting the 
zero of energy such that V = 0 in this range. 

AM. <ixv *» ™ 

The solution of th i s equation i s 

Imposing the condition ~y (x = 0) • 0 

/ • . *o 

0 = A • B 
n n 

^--A^^*-*-"^-) 

and, since Tl[ (x = a) = 0 

Thus we see that a solution is not generally possible. A solution can exist 
only when 

y / S g S \d » KTT 
XXII - U 

where n i s an integer. Then, 
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Since n can only have in teger v a l u e s , only d i s c r e t e energy l e v e l s 
a re permiss ible . A plot of energy l eve l s as a function of the quantum number 
_n_ i s shown in Pigure 44. 
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Pigure 44 

Prom equation XXI1-5 we see that a narrow well width (small j i) 
l eads to a large separat ion of energy l e v e l s . 
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