APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Page 1 of 2

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: GROUP 63 SEMINAR ON MAGNETISM, APPENDIX V ANALOGY BR TWEEN A SET OF EIGENPUNCTIONS AND COORDINATE SYSTEMS

To: Group 63 Staff
Prom: Arthur L. Loeb and Norman Menyuk
Date: January 21, 1953

A set of functions $\psi_{1}, \psi_{2}, \ldots, \psi_{n}, \ldots$ is orthonormal if:

$$
\begin{equation*}
\int \psi_{m} \psi_{n} d \tau=\delta_{m n} \tag{E-1}
\end{equation*}
$$

Any function can be expressed as a linear combination of all functions in a complete set of orthonormal functions:

$$
\begin{equation*}
\varphi=\sum_{n=1}^{\infty} a_{n} \psi_{n} \tag{E-2}
\end{equation*}
$$

A complete set of orthonormal functions is a set including so many functions that no other functions orthogonal to any of the set exist.

The coefficients a_{n} can then be found by the expression

$$
\begin{equation*}
a_{n}=\int \psi_{n}^{*} \varphi d \tau \tag{E-3}
\end{equation*}
$$

A set of unit vectors of a multidimensional Cartesian coordinates labeled $\hat{q}_{1}, \hat{q}_{2}, \ldots, \hat{q}_{n}, \ldots$ has the following properties:

$$
\begin{equation*}
\hat{g}_{m} \cdot \hat{g}_{n}=\delta_{m n} \tag{E-4}
\end{equation*}
$$

For an ordinary three-dimensional Cartesian system the notation commonly used is $\hat{q}_{1}=\hat{\imath}, \hat{q}_{2}=\hat{\jmath}, \hat{g}_{3}=\hat{h}$ and

$$
\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1
$$

$$
\hat{\imath} \cdot \hat{\gamma}=\hat{\gamma} \cdot \underset{\rightarrow}{k}=\hat{k} \cdot \hat{i}=0
$$

Any multidimensional vector $\overrightarrow{\mathrm{A}}$ can be expressed as a linear combination of these unit vectors:

$$
\begin{equation*}
\vec{A}=\sum_{n} A_{n} \hat{g}_{n} \tag{E-5}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Memorandum M-1802
Page 2 of 2
and in particular in the three-dimensional case:

$$
\vec{A}=A_{x} \hat{\imath}+A_{y} \hat{j}+A_{z} \hat{k}
$$

The dimensionality of a system is determined by the number of unit vectors \hat{q}_{h} that are needed to describe any vector.

The components A_{n} of vector \vec{A} are found by the expression

$$
\begin{equation*}
A_{n}=\hat{q}_{n} \cdot \vec{A} \tag{E-6}
\end{equation*}
$$

or in three dimensions:

$$
\left.\begin{array}{l}
A_{x}=\hat{\imath} \cdot \vec{A}=A \cos \alpha \\
A_{y}=\hat{\gamma} \cdot \vec{A}=A \cos \beta \\
A_{z}=\hat{k} \cdot \vec{A}=A \cos \gamma
\end{array}\right\} \begin{aligned}
& \text { where } \alpha, \beta, \gamma, \text { are } \\
& \text { the direction cosines of } \vec{A}
\end{aligned}
$$

(
$(E-2)$, and (E-3) with (E-4), (K-5), and (E-6)
 product $\hat{q}_{n} \bullet \overrightarrow{\mathrm{~A}}$.

Equation XXV -3

$$
i \hbar \frac{\partial C_{m}}{\partial \tau}=\sum_{n} H_{m n} C_{n}
$$

was solved by assuming $C_{m}=a_{m} e^{-i \frac{\Sigma}{\hbar} \tau}$

$$
\begin{equation*}
\therefore \varepsilon c_{m}=\sum_{n} H_{m n} c_{n} \tag{-7}
\end{equation*}
$$

If the set of C_{n}^{\prime} 's is analogous to the components of a vector, then equation ($\mathbb{K}-7$) is analogous to the tensor relationship between two vectors; Schrodinger's wavequation has thus turned into a matrix equation.

The problem is always to diagonalize the matrix $\left[H_{m n}\right]$, for when this is done the stationary states of the system are known. This approach is called "matrix mechanics".

ALL/ NM: jk
Group 62 (20)

