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Digital Computer Laboratory
Massachusetts Institute of Technology
Canmbridge, Massachusetts
SUBJECT: GROUP 63 SEMINAR ON MAGNETISM, XXIII
To: Group 63 Staff
From: Arthur L. Loeb and Norman Menyuk

Date: January 16, 1953

During the previous meeting we studied the problem of a particle
in an infinite potential well. We arrived at the equations

2
"Pn =2 1A sin \"Eg— x XXII-3

and
2
non £
B, = IXII-5
- 2ma
Therefore,
Y =24A sin mmx
n n —
a
and
-m
“I'=Scn on mmx o T XXIII-1
a

where the 2 un is included in the Cn.
Since the momentum p = ﬂﬂ'n_,

-k XXIII-2
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The separation of momentum levels is therefore & , and may be
thought of as the minimum uncertainty of the momentum (\p). TFarther-

more, since the extent of our knowledge of the location of the particle is only
that it is somewhere within the potential well, the positional uncertainty is a.

Py

Therefore adp = ﬂR~‘g, in agreement with the uncertainty principle.




APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Memorandum M-1795 Page 2 of 9

In general, the system described need not be in a stationary state.
If it is not, we must find (t) using the steps A to B listed in figure 43,

A. xnowlego at t = o

We will set our starting conditions such that when t o, the particle
is travelling on the wire with constant momentum p. At time t = o obstruc-
tions are clamped on the wire at x = 0 and x = a, entrapping the particle
within this region.

B. Find X (¢ = o)

Vhen t Lo

-1713% 'E'o=px

l1&x
io =K% -~ % XXI1I-3

We are not interested in W~ when t<o; when t = o the above equa~-
tion holds. Immediately afterward (t?¢) this équation will no longer
satisfy Schroedinger's equation subject te the new boundary conditions.

C. Solve ]"pn -2 ‘Qn

This equation was solved at the last meeting, and we obtained
V =214 sin 20X
n n a
D. FMnd cn

»
Since, in general, cn -fi‘n -!r; dt, we have for this case

1p x
_ a amx
c, =K L sin ZX : o2 ax XXIII-4
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where In = aun K
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Let us set p= (n+ ) nA

where m = an integer
and o fc1

i .
Then e -E & ad (D) m = (-1)® .1&
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Yor the special case n=n
a
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If we further let Q =» o
x 2 1&n K a <
in O = =gt 1uan Lo 1) . n (1me 107
]‘é-:o T [0 N o %o wese )
= XXI111-6




APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Memorandum M-1795 Page 4 of 9
3. Find Vr(+) -
i‘ g Gn * e +
n > whtl | nmx ma
RN S S Py .2 L

Thus we see that the system is not in a stationary state. The system
is described by various states with relative probabilitlies dependent upon the
coefficients., The energy of the system is constantly changing, with energy
given off in ths form of heat or radiation. To consider the equilibrium set
up between the system and the evolved radiation, we can no longer consider the
particle on the wire as an isolated system. Interaction between matter and
rediation will be discussed later.

. Find ¥

As an example, let us determine the average value of momentum.
»” B
5= {' (<1458 Tex

0 ? .

-2. zr(n) t.(m) f lin;?- cos % dx

where f(n) repreuntl the entire coefficient of sin -—
in equation XXIII~7 and f (m) represents the coefficient of cos -?1-

;’2 £(n) :(:) Cos (m=n) L. Cos (mén) ﬂ &
nm !
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Considering the bracket term only

[ 1865 - #e8 - redoy * reboy

for m + n even

for m + n odd

P (2n2) XX111-8

Potential Well with finite wall

We have considered a region of potential V = 0 bounded by infinite
potential barriers at X = 0 and x = a. Let us now consider a modification of
this system. We will maintain a region of gzero potential from O to a, bounded
by an infinite potential barrier at X = 0. However, the potential barrier at
x = a will be finite. As shown in figure 45, the potential is:

V=V, for xDa
V=17, for 0< x€<a

I 11
. B
(2, <v,)
V=0
] a
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In this case there are two distinct regions of interest, as shown
in figure 45. Region I extends from X = 0 to X = a; and Region II is that

in which X ) a.

In region I we can use the solution obtained in our previous meeting
(equ XXII-3)

2m Bn
"-’nI = OI sin ?.. 2 XXIII-9

In region II:

" 1)mn 1)1111

n

2
d

11 2m -
T:’L v @ - Yy =0

nII "2. u‘z Yol x XXI11-10

There is no negative exponential term since the wave is being
propagated in the positive x-direction, and 1’:11! mst go to zero properly

at infinity.

Since a properly behaved wave function is continuous,

Y, @ =¥, .

_— Ja-fl-v)'
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Thus :

1/2_'9_"( - %) a
\Pnl- Osi 2 * sa.& x
Sin Fn‘i—‘l . T X -\

1&1 (By - Vo) ,
1’ =0., e %
nll II
is generally found by the normalization condition

..
.Z*nn 1I)nn w=1

TJor the case of unlimited space over which to integrate, the inte-
gral does not converge. This difficulty is usually avoided by limiting the
region of interest to a large but finite region. In the problem we are con-
sidering, this situation would apply if .n 7 Yo.

Cr1

For the case B >V , WnII is a cisoidal function as shown above.

In this case the probability of fin the particle in region II will be
cons tant throughout the region since I! ‘inII is then a cons'tant.

However, if B, < Vo, we find the probability of finding the particle
in region II decays exponentially with increasing x. This is in sharp con-
trast with the result one would expect in classical physics, since classically
the particle does not have enough energy to escape from region I.

The probability of finding the particle in region I varies as the
square of a sin function. The relative probabilities in the two regions for

B <V, and B >V, are shown in figure u6.

\ I
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Under certain conditions Schroedinger's hypothesis leads to an ad-
ditional property for the wave function, namely that it has a continuous
derivative.

Schroedinger's time independent equation tells us that

a2
Ta’;" = -nYP XXI1I1I-12

Suppose that we consider the boundaries of regions I and II in
figure 45 as separated by a narrow region as shown in figure 47.

Region I Region II

11

II xu

FIGURE 47

We will then investigate the derivative of ‘p at the boundaries of this narrow
region. If the derivative is contimuous, the derivatives at both boundaries
of the narrow region will approach each other as the width of the region is
reduced to zero.

From XXIII-12 we see that

1im d‘P lim E(x -x)(l-?)]
(xgy = %) 90 I_ ) -ar]‘*( (x;, =) 9oL 1T E ¥

In the limit, as z; :.I) 4 0, we see that the right hand side of
the above equation goes to ze § it (8 - V) and Y are finite quantities.
Since a well behaved wave function is always finite, the derivative of the
function is always contimuous across a finite potential barrier. However, it
is not necessarily continuous across an infinite barrier, and we have seen
that the derivative is not contimuous across the boundary of an infinite po~
tential well.

Physically, the derivative corresponds to the momentum, since

P==1h J%

At an infinite boundary (rigid membrane), all particles are reflected elas-
tically. At a finite potential boundary some particles escape while others
are reflected with a decreased speed. The average momentum is contimious
across the break.
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Equation XXIII-12 shows that d.a* changes sign when (B - V)

dx
changes sign. And, {Ben B 7 V¥, the curve for \Dhu a second derivative
opposite in sign to ; hence the curve is concave towards the axis. Simi-
larly, for B < Y, the curve is concave away from the axis.

If there is a finite break in V in such a way that (E - V) changes
sign across the break, then the second derivative must also change sign across
the break. Because of continuity requirements, this is only possible if t
second derivative is zero. Thus, at the point where (E - V) changes sign,
has a point of inflection if the break is finite.

To point up some of these features, W (x) is drawn for potential
wells with varying values of (B - V) in figure 48,

y-"N

¥Y¥=Yo
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