
Memorandum M-1795 Page 1 of 9 

Dig i ta l Computer Laboratory 
Massachusetts Ins t i tu te of Technology 

Cambridge, Massachusetts 

SUBJECT: (ffiOUP 6^ SIM I BAR OT M ASSET ISM, H i l l 

To: Group 63 Staff 

From: Arthur L. Loeo and Norman Menyuk 

Date: January 16, 1953 

During the previous meeting we studied the prohlem of a p a r t i c l e 
in an i n f i n i t e potent ia l we l l . We arrived at the equations 

XXI1-3 

XXII-5 

tg - t l^ sin 

and 

2 ma 

Therefore, 

IP = 2 U sin ' n n 

and 

ir-£o_ sin 

| 2 m l n ' 

VST x 

gnx 
a 

mix e TT^ XXIII-1 

where the 2 iA i s included in the C . n n 

Since the momentum p = / B i l T 

p = 2 ^ XXIII-2 
n a 

The separation of momentum l e v e l s i s therefore a , and may he 
thought of as the minimum uncertainty of the momentum ( ^ . p ) . further­
more, since the extent of our knowledge of the location of the part ic le i s only 
that i t i s somewhere within the potent ia l we l l , the p o s i t i o n a l uncertainty i s a. 

Therefore aAp - TlK^r*, in agreement with the uncertainty principle . 
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In general, the system described need not be in a stationary s t a t e . 
If i t i s not, we must find j " ( t ) using the steps A to 1 l i s t e d in figure k}. 

• . Knowledge at t = o 

We w i l l set our s tart ing conditions such that when t ^ o , the part ic le 
i s travel l ing on the wire with constant momentum jo. At time t = o obstruc­
tions are clamped on the wire at z • o and z = a, entrapping the part ic l e 
within this region. 

B. Find 5E (t • o) 

When t $ o -. -_. 

- i * £ ^ o = pz 

J o = I ' e " •* XXIII-3 

We are not interested in i£" when t < o ; when t = o the above equa­
tion holds. Immediately afterward ( t ^ o ) this equation w i l l no longer 
sat i s fy Schroedinger's equation subject to the new boundary conditions. 

c. son . 3 m » n « i n n̂ 

This equation was solved at the l a s t meeting, and we obtained 

• = 2U sin £E£ 
u n a 

D. Tind C n 

Since, in general, C = / r j f dt , we have for this case 
n J n o 

n n j o a 

where X • 21A X* n n 

• & X {%> sin 2 S - f l cos HE ) f . ^ X ( ^ sin 
[ 0 :2 
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• 

(f) -£ L J 

Let us s e t p = (m • QJ TltL* 

where m = an in teger 
and o< £ < 1 

Then 

. n l TT 
C = n — 

n a 

e 2£ m , i (nrfg) if . ( _ 1 ) B e i&r 

£i&T (-1)«fxrfl 4 H 

nX 
Cn 

(» + S) 

= ^ n W [,1^1 ( - 1 ) ^ r f l + L | 

Tor the special case n = m 

n g C5m4 gy [± -i) 

I f we farther l e t ^ H»» o 

S-»o "° "^ ^-» ^ « £ * 
i l [m» IXIII-6 
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1 . Tlnd :3c(t) a t 

^ * a £ | J 7 i ^ _ i i " r * a f l * 7 \ n . »** £ m a - l _ T T T . 
• ^ T T ? (n-»-a T P W y ^ f g ( - 1 ) 2J « i » - T " * XXIII-7 

. .L~, 

Thus we see that the system is not in a stationary state. The system 
is described by various states with relative probabilities dependent upon the 
coefficients. The energy of the system is constantly changing, with energy 
given off in th? form of heat or radiation. To consider the equilibrium set 
up between the system and the evolved radiation, we can no longer consider the 
particle on the wire as an isolated system. Interaction between matter and 
radiation will be discussed later. 

J. find I 

i s an example, le t us determine the average value of momentum. 

9mf i-*<-i££) 3-dx 
0 

- S £ t(n) f *(m) f sin 2 £ cos SZ. dx 
n m j a a 

where f(n) represents the entire coefficient of sin — -
* a in equation XXIII-7 and f (m) represents the coefficient of cos 

f (n) f(m) £ °°* ( B ' * ) 2 x C o i ( B f n ) J x l 

I (B-n) I " Z (atn) IT =i 
* n m 

Z (m-nj TT " z (»vnj TT" 
a 
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Considering the bracket term only 

—r Cos (m-n) TT Cos (m+n) TT 1 + 1 
_ | 2 (m-n) TT " 2 (a+n) Tf 2 (m-n) Jf 2 (m+n) TT 

a a a a 

for m + n even 

(m*n) TT (m-n) TT 

(m-n) a - (m+n) a 
, I 2v 1, (m -n ) TT 

for m + n odd 

2n a 

(mZ-n2) TT 

P • 5 § . f(B) f(:) a s ^ _ 
n + a odd 

XXII1-8 

Potential Well with f ini te wall 

We have considered a region of potential V = 0 bounded by infinite 
potential barriers at 1 - 0 and x • a. Let us now consider a modification of 
this system. We will maintain a region of lero potential from 0 to a, bounded 
by an infinite potential barrier at X • 0. However, the potential barrier at 
x * a wil l be f inite . Aa shown in figure U5, the potential i i : 

V • T0 for x > a 

T » 7o for 0 < x < a 
i 

I 

_JVfV___-

y « 0 

zz 

• - • 0 

noon U5 
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In this case there are two distinct regions of interest, as shown 
in figure U5. Region I extends from x = 0 to It * a; and Region II is that 
in which X > a. 

In region I we can use the solution obtained in our previous meeting 
(equ XXII-3) 

i _ = cT sin ( 1 * 5 ^ x mn-9 
r«i 1 1-31-

In region I I : 

n i l n n i l 

d 2 ^ 

"IT" * %F 
n i l • s (• - f j A 

t =c e JEE5T x 
TnII UII B &T 

XHII-10 

There i s no negative exponential term since the wave i s being 
propagated in the posit ive x-direct ion, and "*p __ must go to sero properly 
at in f in i ty . n " 

Since a properly behaved wave function i s continuous, 

•nl ' 

Thus 

H •**=$- • -«,,• 
.lhW, 

°'DC» "1^7 * 
e 
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Thus: 

* 
nl 

'nil 

II 

= 0 I I 

« ^ r 

Sin 7 
lj2m (»n - TQT 

e » 7 s 

vmrt - vv 

C-T i s generally found by the normalization condition 

£ t,! t-'n i l 'nil 

Ibr the case of unlimited space oyer which to integrate, the inte­
gral does not converge. This difficulty is usually avoided by limiting the 
region of interest to a large but finite region. In the problem we are con­
sidering, this situation would apply if 1 ^> v . 

n s o 
Tor the case I > V , ty TT is a c i so ida l function as shown above, n r 0 r nix 

In this case the probabil ity of finding the part ic l e in region II w i l l bo 
constant throughout the region since "4> * "4> TT i s then a constant. 

nix n i l 

However, i f Xn^.^o» w e ' l ad the probabil ity of finding the par t i c l e 
in region II decays exponentially with increasing x. This i s in sharp con­
trast with the result one would expect in c l a s s i c a l physics , since c l a s s i c a l l y 
the part ic le does not have enough energy to escape from region I . 

The probabi l i ty of f inding the p a r t i c l e in region I varies as the 
square of a s in function. The re la t ive probabi l i t ies in the two regions for 
1 <V and 1 SV are shown in figure U6. 

n ' 0 n * 0 

V t*» »n > I V Vorln<To 
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Under certain conditions Schroedinger's hypothesis leads to an ad­
d i t iona l property for the wave function, namely that i t has a continuous 
der ivat ive . 

Schroedinger's time independent equation t e l l s us that 

jLc*4-fr-T>1> XXII1-12 

Suppose that we consider the boundaries of regions I and II in 
figure U5 as separated by a narrow region as shown in figure kf. 

Region I Region II 

'II 

^U 

7I0UHI 47 

Ve will then investigate the derivative of T at the boundaries of this narrow 
region. If the derivative is continuous, the derivatives at both boundaries 
of the narrow region will approach each other as the width of the region is 
reduced to zero. 

Prom XXIII-12 we see that 

im &Vj ,££71^ um I - ( X T T - X T > <• - ^ M l im 
( 

In the l imi t , as (x - x ) •> 0, we see that the right hand side of 
the above equation goes to zero i f (1 - 7) and ' V ire f i n i t e quant i t i e s . 
Since a well behaved wave function i s always f i n i t e , the derivative of the 
function i s always continuous across a f i n i t e potent ia l barrier. However, i t 
i s not necessari ly continuous across an in f in i t e barr ier , and we have seen 
that the derivat ive i s not continuous across the boundary of an i n f i n i t e po­
t e n t i a l we l l . 

Physical ly , the derivat ive corresponds to the momentum, since 

At an in f in i t e boundary (r ig id membrane), a l l part ic les are ref lected e l a s -
t i c a l l y . At a f i n i t e potent ia l boundary some part i c l e s escape while others 
are ref lected with a decreased speed. The average momentum i s continuous 
across the break. 
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Iquation XXIII-12 shows that d j changes sign when (1 - V) 

dx 
changes s ign . And, when B y Y, the curve for V has a second derivative 
opposite in sign to r ; hence the curve i s concave towards the ax i s . Simi­
l a r l y , for X <̂  7, the curve i s concave away from the ax i s . 

If there i s a f i n i t e break in 7 in such a way that (I - 7) changes 
sign across the break, then the second derivative must also change sign across 
the break. Because of continuity requirements, th is is only possible i f the 
second derivative i s zero. Thus, at the point where (X - 7) changes sign,""Ar* 
has a point of in f l ec t ion i f the break i s f i n i t e . 

To point up some of these features, ^ (x) i s drawn for potent ia l 
wells with varying values of (X - 7) in figure 48. 

X J 

7 • 0 

7 « 70 

7 - 7i 

I 

7 = 0 

^V/V^ 
Qo 

7I0UHX k8 

Signed 

S lgned / / £ ^ ^ » ^ / % ^ t y 

Approved [Jf\ Q 

xJL 

ALL/HN:Jrt 

Group 62 (3-0) 
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