APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6365
Sngineering foto 1-m40

Page I of :

Digital Computer Laboratory Massachusetts Instituts of Technology
Canbridge 33, Massachusetts
To: Wathematics and Applications Group, Systems Group, Block Diagram Group.
Abstract: Drawing SA-50304 (attached) shows much information which should help programmers calculate the spoed of thoir programs, and which should be helpful to progeanmers and systens engineers in showing where to concentrate efforts to increuse over-all computer speed. The draving will bo. brought up to dute from time to tine, and the latest iscue should e.lways be used. This note explains now to use the information on tho attached issue.

SUbJLCT: WWI operating Speed

From: R. P. Nuyer
Date: December 21, 1951

INTRUDUCTIUN
Sections I, II, and III give a detailed account of WWI operating speed。 Some suggestions for using this information begin on page 6. In many cases these suggestions vill tell you all you need to know.

Section I. Equations and Symbols (See Section I of SA-50304, attached).
The two equations at the top of the section make use of tho
letter symbols defined in the remainder of the section.
The first equation shows the precise time required for any order, from time pulse 3 to time pulse 3 (or, soeaking very generaily, for any full time-pulse cycle, even with any future conditions), with the two following minor exceptions: (1) Restorer pulses ("RPF") aro not now synchronous and so can te handled only on an "avorage" basis; the actual RP time cun ke somewhat more or less than this average figure, depending on a number of factors (such as the contonts of the frequency divider at the start of an ES operation, the length of and spucing between, ES operations, etc。), (2), IO times are uncertain because of continuing modifications in the equipment, operating drift in the equipment, and the initial condition of, and previous orders given to, the equipment.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
inginaering Noto - 140

Page 2

The second equation shows the procise time required for why prorram, with the akorementioned minor excoptions. Urders whicl are repated in a cyclo nust ke counted as many times as thoy are partormod; orders which are not performed (due to a cp which is inserted to handle en unlikely situation) nust not be counted; if one or another set of orders is to be parformed (Lased on cp) then the longor time, the shorter time, or som modian value based on the probability of performing one of the sets, lut not tho sum of the orders performed in loth sets, should be used; orders ivhich do not originally exist but are leter generated and perforned must te counted. In short, count the orders which will actually be performed in the average (or maxinum, or minirum) run through the progrem, regardiess of the orders existing in storage. This equation can also te used for finding average order time in a. program by simply dividing the total time ky N. Actually, "d" is the only $A E$ (Aritimatic blement) time that is not 4 funcion of the individual order being performed, so that "Dd" is the only correctly ciefined AE time. Each of the others (such as lim) should actually be the sum of the individual processes porformed, or $\left(\sum_{i=1}^{M} m_{j}\right)$.

The lettor symbols, in general, should be selfeexplenatory. The sketch showing restorer pulsos represents LFCP (Low Frequency Ciccek Pulses) by long upward marks, HFCP (High FCP) by short upvard marks "half" of which exactly coincide with LFCP, RP (Restorer Pulses) by ?.ong downward marks, LFCP missed (curing the RP wait) by high dots, and HFCP missed (during the RP wait) by low dots. It is assumed that the LFCP occur at 1 mc and the HFCP at 2 mc . "TRP" is the tinne for RP, or the number of LF'CP missed. If no restorers occur at all, RPF=1. ES RP (the RP which occur at the start of each is process) ars not included in "RPF" but are trented separately, under LS . Each order eroup ($\mathrm{P}, \mathrm{A}, \mathrm{T}, \mathrm{H},-\mathrm{F}$, as defined in the chart in section II) groups together those orders whose times are defined alike (" T " and " O " could be erouped together at present, but not if selective writite is not used.)

The number of LFCP used in performing an $A E$ operation (00° US or IO) equals the nunter of LFCP not used as time pulses, and so equals the amount of time that must be added to the order tine. "Rultiply" has 15 "shifts" plus as meny "adds" as there are "ones" (of positive magnitude) in AC at the time mr or mh is ordered. This is done at 2 mc , and the rounding off required is discussed in connection with the "shift" time。 "Divide" is performed by pulses from the divide pulse distributor which has, at present, a count cycle of 5 LFCP. The sl pulse occurs on one of these counts and adds to the step counter, which allows 17 shifts. The sl does not occur at the end of tho count cycle so the lest sl stops the "divide" before the cyclo is completed. Thus only 17-1 full count cycles occur. The kst, partial cycle uses 2 LFCP which must be included in the "divide" time. "Shift" (right or left) has as many "shifts" as the address of the order specifics
(modulo 31). This is done at 2 mc , but the operation is not "comploted" until the next LFCP occurs. If 0 or 1 shift is ordored, then no LIPOP are lost due to the shift (the 1 HFCP used for the shift appears between the two LFCP). If 2 or 3 shifts are ordered, thon one LFCP is lost, etc. So the time lost due to the shift is half the number of shifts, rounded off low. "Scals factor" has as many shifts (at l me) as there are zeros (of positive magnitude) proceding the most significant "one" (which may be in $A C$ or ER), not counting the AC sign (which elways has a positive magnitude of zero). But these shifts are preceded by a sensing pulse, which may bo taken into consideration by including the AC sign digit in counting the zeros. If there is no "ons", the process is terminated when the atop counter overflows, which occurs after 33 shifts $_{g}$ making $33+1$ sensing $=34$.

The selective write system of operating ES affects time only in that an ordinary "ES Read" is added preceding every "ES 所ite。" The equation for any program is writton so that an ES Read is included on all orders containing an ES Write if and only if selective write is used, with the oxception that group " 0 " includes the ES Road regardless of whether selective write is used. The sead (or write) process time can be found by adding up the ESC Resot times fran "Read" (or "Write") to " F " (found on the latest drawings for ESC) as shown. The read process thus includes the rewrite. But the write process does not include the previous read, which is handled separately by use of "SW", the selective write factor.

The IO times are, at this time, so much subject to change that it is hardly worth-while discussing them. It might be pointed out that a program, or section of a program, with eny prosent IO orders (induding 'scope display orders) will sometines be so short, compared to the Io time, that it is not necessary to consider the other order tirees at alf, or in any groat detail.

Section II. Individuel Order Times (See Section II of SA-50304, attached).
The numerical values tabulatod in the loft half of the section result from using the equations (in Section I), with the assumptions shown in the remainder of this section. The symbols used are the same ع.s in Section I except that ESR is written " $R^{\prime \prime}$ " wen it obviously refers to ES rather than an order group.

The assumptions were chosen to represent conditions usually found in WWI these days, with the following exceptions: IO time is not included but should be handled separately (see discussion of Section I); no extra $H G$ time is assumed although it may occasionally be used, in which case such time should be multiplied by ($\mathrm{NR}+\mathrm{NW}$) and added to the order time; likely AE times have beon assumed, but if

APPROVED FOR PUBLIC RELEASE．CASE 06－1104．

$63 \varsigma 5$
Engineering Hote Es 440
Page 4
information about the $A E$ time for the specific ordor is available it can be inserted os shom in the column labelled＂composition＂（note： ＂d＂time can be assumed not to＂ary with tho orcior）。 Restorors（ $5 / 16$ ） are assumed（RPF＝16／11），excep＇s that two columns are labelled＂Mo R．Pe＂ for convenience in invostigating possibls future operation of WW with ． out restorer wait periods．（Note that all columns assuno $5 \mu \mathrm{~s}$ of LS RP whenever ESR or W occurs）．The order might be stored in ES or TS，and its address may refor to ES or $T S$ ；the four possibilities thus Fe esented． are tabulated in four columns，＂TS Only＂through＂ES Only．＂For ＂ES Only＂the ES procosses involved are tabulated under＂FS Used，＂ （the first R is for the order，and the remainder is for the address） and the total Es times for any of the above four cases is listed under ＂ES Times Assumed。＂

Section III．Average Ordor Times in Programs（Soe Section III of SA－50304，attached）
The sumerical values tabulated in the small black box in the upper right－hand corner of this section result from using the equa－ tions（in Section I），with the assumptions of section II and with assumed programs as shown in the upper left－hand corner of this soction． The graphs at the bottom of the page show the same results，with and without RP times，and for a $r i d e$ range of ES times．Note，in perticular that NO IN－OUT ORDERS ARE INCLUDED in this section．

The values for assumed programs tabulated in＂Percentages of orders used in programs＂were obtained by counting orders performed （as discussed under Section I）in the following actual programs： （1）Selected programs writton by the Application Study Group（Co62 to C．－104），（2）R－155（L－1），（3）E－161 by Orden，（4）R－156 by Adams， （5）a program vritten by John Dodd．（See E－267，＂Time Saved by Simul．－ taneous Operation of $A E$ and ES．＂）Each of the last four programs consist of two distinct parts，and all the programs listed as＂program（1）＂ are grouped to；ether as one＂part．＂Porcentages were found for the orders in each part separatoly．The maximum（and minimum）percentages found，regardless of which part they occurred in，are takulated under ＂Max＂（and＂Min＂）．Tho val ues tabulated under＂Mod＂are approximate weighted median values between max，and min．These three columns are， of course，not ormalized to 100% ．From these values several kinds of programs wero assumod：an average slow program was assumed to heve a minimum uso（see＂min＂column）of P，A，and S orders（which are fast orders－－see＂ES Only＂in Section II），a median use of M orders（which is medium speed），and a maximum use of other orders（which are slow）． These values are tabulated under＂Slow Ave。＂after having been normalized． An average fast program was assumed in just the reverse way and is similarly tabulated under＂Fast Ave．＂．A medium speed program is assumed to have a median use of all ordors，so the column＂Medium＂is merely a normalized version of＂Med．＂The＂Illustrative S̉ample Prograns＂show

APPROVED FOR PUBLIC RELEASE．CASE 06－1104．

6345

Ginginooring Noto E－440

Perge 5

possible sequences of orders which fit these throe assunaed speods fairly cloaely．The＂Slow Limit＂（or＂Fast Limit＂）is the slorost （ \sim fastest）the computor csen be made to operate under the given
mptions（no in－out，etc．），and will never be reached（for ： appreciable length of time）in a program without a conscious of ces to do nothing but reach it．This is because the slow limit results from coatinually repeating the order af $\mathrm{H} H E \mathrm{~N}$ AC PLUS $B R$ Eiquals ZERO，which makes very little arithnetic or Togical sense，while the fast imit results from continually repeating sp or cp ，which also makes very little sense．If only test storafe is used，the slow limit results from repsating order dv（which makes very little sense），while the fast limit results from using orders from only groups P, A, T ，and O（which are all the orders considered which do not use AE）and oan easin．to reachod in useful programs．

These tabulated values for assumed programs were thon inserted in the equation for Average Order time（Section I），and ths results are tabulated ia the black box．The most important figure is the average order time for a medium speed（or＂everage＂）program which exists ontirely in ES．This figure is emphasized by being placec in a special black box．

Values for the graphs at the bottom of the page were cal－ culated in the same way，except that no RP were included（seo below）， and ES Read and Write times were made variable。 It is assumod thet test storage is not used，but if only $T S$ is used，then this is equiva－ lent to an ESR and W of zero，which oan be found on the graph．The equation for average order time oan be rewritten as：

$$
\text { Ave。 } \mathrm{T}_{\text {ive }}=\mathrm{K}_{1}+\mathrm{K}_{2} \text { (ESR) }+\mathrm{K}_{3} \text { (W) }
$$

where oach K is a function of the number of various kinds of orders in the program，and replaces a number of symbols in the original equation in Section I。（For example，$X_{2}=\left[N^{0}+\left(A^{\prime}+0^{\prime}+L^{\prime}+D^{\prime}\right)+(S \pi)\left(T^{\prime \prime}+F^{\prime}+H^{9}\right)\right]$ ） Each \mathbb{X} can be found by inserting the various assumptions in the original equation．The graphs can then be drawn．Then if RP are assumed the ESR and F time must bo changed，but also the value of F_{l} changes by an amount equal to

$$
K_{4}=K_{1}(R P F) K_{1}=K /(R P R-1)=K_{1}\left(\frac{T R P}{\Delta R P-T R P}\right)
$$

so that the above equation can be rawritten as

$$
\text { (Ave Time with RP) }=(\text { Ave } T \text { ime })+\mathbb{X}_{4}
$$

Since K_{4} is also e．function of the number of various kinds of orders， \mathbb{K}_{4} for each assumed program is listed undor each graph as a valuo to add to the value obteined from the graph．

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineering Note EL440

The graph for the medium speed program is not shown in Soction III, but is shown separately on SA-48264-G (attached). ?his graph is constructed in the same way as the others, exocpt tiat $\mathbb{F}_{\text {, }}$ is not merely stated but is used to provide an additional sc.a.s so that times with and without RP can be read directly (but differeai values of ESR and W must be used with and without ESRP),

All of the above graphs are combined on SA. 48265-G (attached), but RP are assumed and ES times are assumod (but with variable HG time) as in Section II. These curves thus present the same informetion as tio black box in Section III except that a wide range of extra HG time is shown. Note that

$$
\text { (Ave. order time) }=\text { (Ave. order time with NO } \mathrm{HG})+\mathrm{K}_{2}(\mathrm{HC})+\mathrm{K}_{3}(\mathrm{HG})
$$

which can be rewritten as

$$
\text { Time } \left.=K_{5}+\left(\mathrm{K}_{2}+\mathrm{K}_{3}\right) \text { (HG }\right)
$$

or as

$$
\text { Time }=K_{5}+K_{6}(H G)
$$

where K_{5} is the value found under "all $5 S^{\prime \prime}$ in the black box of Section III, and K can be found easily. The curves oan then be drawn, placing "O" HG away from the vertical axis by ESR Sor convenionce, and showing the "All TS" values also (which are NOT an extension of the simple equation above).

Suggestions for using this information (SAc50304, attached).

1. General

A. Consult the latest issue of the drawing (not attached).
B. Tho average over-all speed of WWI is given in the special tlack box of section III, but this does not include In-Out order times.
C. See section I for I - Otimes.
D. For some programs, the I - O time alone determines the speed.
E. For many programs, average over-all speed plus I - O tine is sufficiently accurate.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Engineering Note L- 840
Pug. 7
$\overline{\mathrm{F}}$. Some prozrans, or sections of progrms (e.g. those becweon I-0 orders), make little or no use of I-U orders. They can be analyzed as follows:
2. If the program time is not critical the black boz fişures of Section III should be sufficiont, and indicate the range of speeds to be expected. (Also, see Nomograph below.)
b. If the program time is somewhat critical, or rather critical in a very long prozram, the values of Section II should ks sufficient--possibly modified by information atout shift-order addrasses. (Also, see Nomograph below.)
c. If the program time is quite critical, especially if it is shart, the values of Section II should ke modified ty the m, d, s, and f times found in Section I and applied as shown in section II under "composition." (Remember that RP time can increase or decrease the order time, and is correct only on the average). (Also, see Nomograph below.)
G. If $H G$ time is to be added, add it to every use of $E S$ (see Section II under "ES used"), or see SA-48265-G (attached).
H. If any changes in timing or organization of WWI occur, refer to Section I。
J. Drastic, or unforeseen, changes in WWI may require complete revision of all sections.
2. Programmers

In eddition to finding the time required for a particular program (see "Suggestions, 1. General"), a programmer can tell (usually from Section II) which orders he should use to provide the fastest program when several programming possibilities exist. From Section III he can get a feel for the range in average speed possible between "careless" programming and "efficient" progranming (total speed is more important than average speod, but with a fixed amount of storage the two may be closely related). He oan also get a feel for the number of dv orders, etce, he is likely to have in an average program.

3. Systems Eingineors

In addition to estimating the times required for performing certain kinds of programs (see "Suggestions, l。General"), the system engineer can estimate (usually from Section III) the over-all saving in operating speod that will result from making any timing change in any order, and thus can determine how much offort should be spent in making suoh a change (for instance, it would probably not be worth while to change dv). He can also tell what savings would result from roducing RP time, EStime, etce Section III (Mormalized table) indicates

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

0345
Engineering Note E~it:0 एमदе is
the duty factors of the different groups of orders and so can be used to find duty factors for some of the components in why an thus indicate the probability of certain failures occurrlay or detected between periods of testing, etc.

Nomograph (S A-50530, attached)
This homograph presents some of the information of Section II in a form convenient for finding total program time or average order time. Also, the Alt times are present ϵ in full and not merely assume. The nomograph can be used by taking a strip of paper and marking off, end-to-end, the vertical distances taken i ron the nomograph for the number of orders of each group. The total ieneth thus marked off can then se placed against the scale to find total. or average time. A total of 100% mast be marked off to find average order time, but any number of orders may be marked off to find total program time. The "number of orders" scale and the "total time" scale may be multiplied by any convenient power of ten to hand le loner or shorter programs.

Sisnua: R. P Mayer
R. P. Mayer

Approved:

B. R Everest.

Drawings Attached:
SA -50304
SA -48264-G
SA =48265-G
SA -50530

Total Time $=\left[W^{\prime}(T P)+M_{m}+D d+\left(S+R Y_{s}\right)+F f\right][R r F]+[E s K]\left[N^{\prime}+\left(A^{\prime}+O^{\prime}+M^{\prime}+D^{\prime}\right)+(s W)\left(T^{\prime}+F^{\prime}+H^{\prime}\right)\right]+[W]\left[T^{\prime}+O^{\prime}+F^{\prime}+H^{\prime}\right]+[\mathrm{I} 0]$
TP $=$ Time Pulses $=8$
sit NR, NW $=$ Number of ES Rends, or Writes AFF 2 Restorer Alse Factor $=\frac{\Delta R P}{\Delta A P-T R P}=\frac{16}{16-5}=16 / 11 ;$ cin $\frac{\infty}{\infty 0-0}=1$
AVERAGE FIGURE OWIY.

 $P, A, T, H, O, M, D, S, R, F=$ Number of orders from speafied grouF. (Sec chart below.) $A^{\prime}, T^{\prime}, H ; O^{\prime}, M^{\prime}, D_{1}^{\prime} F^{\prime}=$ Number of orders $\left(" \quad . \quad\right.$ " ${ }^{\prime}$)
$A E=A$. thmetic Elemert Tine (see each order.) $m=$ Multiply Time $=[15+$ (e of positive "1"s in AC before M o.der) $] \times \frac{1}{2}$; rounded off low $76 m \leqslant 15$
$d=$ Divide Time $=\left[(\right.$ count cycle $)\left(\left[\right.\right.$ ef $\left.\left.\left.^{f} \underline{s}\right]-1\right)+2\right]=[(3)(17-1)+2]=50$
$s=$ Sh.ft Time $=[$ Address (modulo 31) $] \times 1 / \mathrm{E}$ jrourded off low. $0 \leqslant s \leqslant 15$
 $S W=$ selective $W \cdot$ te factor: " 1 " if $S W$ is used, " O " if not. $E S R=E S$ Read $=($ Read Process $)+$ (ES RP) $)+$ (Estra HG tims) $W=E S$ Write (Write " $)+\left(\begin{array}{ll}\text { " ") })+(" \quad ", ~ ") ~\end{array}\right.$ Read Recess (includes Rewrite) $=$ ESC Resets: $\left(\right.$ Reai $\left.+A+\cdots D_{R}+\cdots F\right)$ Write Process (N_{0} previous Read) $=$ ESC Resets: $\left(W_{r} \cdot t e+D_{w}+\cdots F\right)$ $E S R P=5 \mu s$
Extra HG Time - Easily adiustable from 0 to 100 ess or mere.
$10=$ In Oit time (see each order.)
H c.acers: $[H W$ - (t.me for crders since ofd or If $) \pm 15]$: onig if positione $H W=" H^{2} W_{\text {ait }}=[H$ interich time $-(4+W+E S R)]=[5: 2-60]=452$.
Camers: 220 m ill. seconds.
Reader Pinch, Flexo: (140 millisec) + (flexowriter "Aachine Function" $t / m e$)
PETR: $\{$ First or ($1 . \mathrm{sec}$, if mose than 30 . sec since or.)
PLUS (70 m.llisec per inch of blank tape.)
Other or 7 millises
TIME FOP INDIVIDUAL OFDERS, WITH
WITH CERTAN
ASS UMPTIONS

$\begin{aligned} & \text { OR DER } \\ & G R O, J P \\ & \hline \end{aligned}$	ORDERS	$\begin{aligned} & \text { ES } \\ & \text { usE } \end{aligned}$	$\left[\begin{array}{cc} \text { NO } & \text { R. P } \\ \text { TS } & \text { owir } \end{array}\right]$	TS ONLT	$\mid A D O R E S$	ADDK.	5 ONLY	Confosition
P	$C_{P} \mathrm{SP}$	R	8	11.6	29.6	11.6	29.6	natic P ptime
A	cac cs	RR	8	11.6	29.6	29.6	47.6	basc A tive
T	ts to ta							
	qh qd $\mathrm{q}^{\text {f }}$	RRW	8	11.6	29.6	67.6	85.6	basic T Tima
\bigcirc	30 ge							
M	mr mh	RR	20	29.1	47.1	47.1	65.1	$A \mathrm{Tmi}+\mathrm{mman}$
D	dv	RR	58	84.4	102.4	102.4	120.4	A Ting + d the
5	${ }^{\text {I }}$ sr	R	12	17.4	35.4	17.4	35.4	TiN: + s Tim
RGIf ${ }^{3 / 2}$	ar ap as							
F	$s f$	RRW	16	23.3	41.3	79.3	97.3	T*E + f

ES TIMES ASSUNID:
$R=R E R D+R P$
(ncT inellbinc. R)
$K=18 \quad W=38$
$R=18$
$R R=3 \dot{6}$
$R W=56$
$R F: W=74$
(No Exita Hín Hem: (senctiva wovive intith)

$A E$ Facco:s	WOte tp	
m	12	17.4
d	50	72.7
5	4	5.8
f	8	11.6

OTHEF ASSUMPTIONS:
NC IO TINE. 5/16 R.P. ARE USED UNLES

PERCENTAGES OF ORDERS USED IN PROC.AAMS.

ORDER GROUP	values tarentam Torat slaver. wot NonMAL'zas			$\begin{array}{\|c} \text { ASSUMED KIND: OF } \\ \text { PROODANS. NCRMALIZED } \\ \hline \end{array}$				
	MAX	MED	MIN	$\begin{aligned} & \text { slow } \\ & \text { Limsis } \end{aligned}$	SLOW AVE.	EDIUA	$\begin{aligned} & \text { FAST } \\ & \text { AOE } \end{aligned}$	
P	14	1			. 9	7.7	13.2	100
	50	40	30	130		38.6	472	-
	40	26	4		37.7	25.	13.2	
	17	6	0		6.0.	5.1	0	0
M		5	\bigcirc		4,2	4.5	42	c
D	2	1	0	100)	1.9	1.0	\bigcirc	-
5	3		0	0	\bigcirc	6.8	12.3	T 0
F	1		0	(100)			-	c
OTAL	174	103.5	45	1001		100.0	100.1	10

ILLISTRANE SAMPLE PHOGOFIM:

WWI JULY 1951 ORDER TIMES VS ES TIMES FOR PRCGKAMS OF VARIOUS SPEEDS
WITH: NO IN-OUT ORLERS; NO USE OF ILST STORAGE; SELECTIVE WRITE SYSTEM; ASSLMED AE TIMES. (ES READ OA WRITG TINE = [ES READ CA WRITE PAOCESS] + [ES RPD] [ADDITICNAL HG TIME]. ES WRTE NUST NOT WCLUDF READ.)

SEE SA-48264-G FOR MEOIUM SPELD.
SEE SA-48265-G FOR OADER TIMES VS. HG TIME (FOA VARICVS SPEEDS). SEA SA-50530 FOA NOMOGAAPH,
SEG NCTK E-44-O FCA DISCUSSION.
APPROVED FOR PUBLIG RELEASF CASE 06-1104

APPROVED FOR.PUBLIC RELEASE. CASE 06-1104.
$5 A-48265-G-2$

