\vee
 APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Fingineering Note $\mathbb{E}-460$

Page 1 of 3

Digital Computer Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts

SUBJECT: THE FTKRRORLRCTRIC SWITCH

To:
Norman H. Taylor
From: Dudley A. Buck
Date: April 16, 1952
Abstract: A multi-position ferroelectric switch is propossc which can accomplish many of the switching tasks in an i. $\quad 10 \mathrm{on}$ handling system; in particular, it can select amor $i=$ and columns of a ferroelectric memory. The logit i cirsulv. \mathcal{y} of the ferroelectric switch can be painted ditwith vato the two ldes of a thin ferroelectric sheet.

The non-linear electrie d.jent 'casut-versia-fiold asracteris ics of a ferroelectric dielectric as , ilized to conetrict a sudunse who , capacitance ie a furcita. . .as ayplled voltage, "hise phommezion, whic
 of the switch to sy zere descrlbed. Fi.guee 2 illust a.tas the operation
 er as the geries breach. With no dizect vaterie across the cudeasor (Fig. 2.. : the circuit colevee like any ordinury Tr.section R-6 filtar witl the ox. :on thet diatoztson will result if tho input voltage is 2 sige en gh
 ar ahovi for amaboidal axcitattoa. If a bias voltage, T, is onartod in

 ev- oh as soct a. we.?

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Page 2 of 3

In the opposite position, output 2 is $O N$.
Figure $2 B$ illustrates an eight-position ferroelectric switch. Operation of the first stage, controlled by S_{1}, is the same as the twoposition switch. Subsequent stages, however, have the lower ends of their resistors connected so that the even resistors are connected to ground when the odd resistors are connected to V and the even resistors are connected to ∇ when the odd resistors are connected to ground. There are eight possible paths through the switch (Fig. 3) only one of which will have all of its condensers $O N$. With S_{1}, S_{2} and S_{3} of the eight-position switch set as shown, output zero is $0 N$. Outputs 1,3 and 7 have one condenser OrP, outputs 2,4 and 6 have two condensers OFF, and output 5 has all three condensers OFF. The number of OFF condensers among the outputs follows a binomial distribution:

	All On	One OFF	Two OFF	Three OFF	Four OFF	Pive OFF
4-position switch	$\because 1$	2	1			
8-position switch	1	3	3	1		
l6-position switch	1	4	6	4	1	
32-position switch	1	5	10	10	5	1

Successful operation of the switch postulates that a single OFF condenser leading to an output will cause that output to be OFF. To test this, an eight-position switch was constructed (rig. 4) using a thin (.025") sheet of barium tinanate ceramic (Glenco body "X-18"). All of the non-linear condensers are placed on the same sheet by firing electrodes on the two sides as shown. The signal enters the sheet via a large fired electrode (back view). Two electrodes match this input electrode on the opposite side (front view). Among the two condensers thus formed, one will always be OFF and one will always be ON. Each of these two electrodes is enlarged to match up with two electrodes on the opposite side which are alongside the input electrode. One of each pair of this third set of electrodes will be OFF. Finally the signal goes through the dielectric a third time coming out on one of the eight small electrodes (front view).

The operation of the switch is illustrated graphically by Fig. 5. With a constant-amplitude, sine-wave input of variable frequency, the RMS output at terminal 7 was measured as a function of frequency for each of the eight possible combinations of S_{1}, S_{2} and S_{3}. At 800 cps , the best operating frequency for this particular design, the ratio of ON voltage to the highest OFF voltage is greater than three to one. This operating frequency can be shifted higher or lower by changing the size of the condensers and resistors. Both steady-state and pulse tests on this dielectric indicate that the operating frequency can be shifted up to several megacycles per second. If the resistors are replaced by inductors, the output-versus-frequency characteristics can be improved and losses are lowered.

For pulsed operation of this switch, a non-linear condenser is used in both the series and shunt arms of the filter. Fig. GA illustrates such a switch which is so arranged that when the series condenser is OII, the shunt condenser is OFF (Fig. 6B); and when the series condenser is OFF, the shunt condenger is $O N$ (Fig. 6C). The filter looks like a condenser voltage-divider

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Engineering Note E-460

Page 3 of 3
to the rising edge of a pulse. The divider has either a large condenser in its upper leg and a small condenser in its lower leg or vice-versa, depending on whether the switch is ON or OPF.

The ferroelectric switch is proposed as a means for driving the rows and columns of a ferroelectric memory and for switching within an information-handiling system. Its unique packaging makes it promising in applications where size, weight and cost are important considerations.

Approved

DAB /pk
Drawings attached:
Fig. 1 - A-51155
Fig. 2 - A-51144
Fig. 3 - A-51151
Fig. 4 - A-50906
Fig. 5 - A-51148
Fig. 6 - A-51152

- APPROVED FOR\&UBLIC RELEASE. CASE 06-1104.

(A) SWITCH ON

APPROVED FOR 四UBLIC RELEASE. CASE, 06-1104.

APPROVED FOR PGfBLIC R'ELEAS筑. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

(BACK VIEW)

- APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

- APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B. SWITCH ON

c. SWITGH OFF

