APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineering Note E-L38
Page 1 of 18

Iigital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusatts

SUBJECT: BINAFY COUNTING KITH YGNETIC CCEES

To:
 N. H. Tayjor

From: D. A. Buck
Late: December 6, 1951
Abstract: Magnetic materials suitable for muiti-dimensional memories have recently become csadidates for circuit elements in other parts of a digital computer. Their possible uses in binary counters and as fulse-operated gates are being consicered.

A. INTFOLUCTION

In a binary acicier any one of the stages, except possibly the first and the last, must be prepared to interpret a combination of ONF's and ZERO's on three inputs and supply a ONE or TERO to each of two outputs. Two of the inputs are the oigits to be added and the third is the carry from the preceding stege; the outputs fre the sum digit and the carry to the following stage. The relationship between the input combinetion of ONE's anc ZEFO's anc the output combination of ONE's anc ZERO's is the well known binery addition table. If ε stage receives a cerry from the prececing stage anc at the same time trensmits ε carry to the following stage, it is saic to "propagate" the cerry, anc the carry is thought of as passing through the stege. If a stage has no carry as an input but does have a carry as an output, it is seid to "originate" a carry, enc conversely, if a stege has a carry input but no carry output, it is then said to "block" the cerry. These definitions will be useo in the foilowing discussion.

B. COUNTEFS

Counting is a apecial case of adaition in which one of the adends is always unity. In counting however, unlike in acaition, only the least aignificent stege can originete a cerry. All other stages either propagate or block a cerry. The carry cen be thought of es originating in the least significent stage ano propagrting up through the stages until it is biocked; having been blockeó it cannot start again.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engineering Note E-L, 38

Abstract

The carry can propagate through any number of stages in the counter from none to the maxinum number. The carry propagates through no stages on alternate counts when unity is acoed to an even mumber and merely changes the least significant digit from ZEFO to ONE, anc the carry propagates through the maximum number of stages when the counter exceecs its modulus, or "overflows". The latter cese in many ways subjects a given counter cesign to its most difficult operating concitions. The carry, as it propegetes up the entire jength of the counter, must maintain its amplitude and waveshape to on extent that will aliow it to accomplish its acidition function at each stage. In this case, also, the greatest amount of time is required for the cerry to come to a stop so that the counter cen be read. Since no knowleage of the count is assumed et the time of rcaiing, the maximum carry propegetion time must be allowed efter each enc every count.

The problem of meking the carry propagete rapicly hes been temporarily deemphasized here in view of the more funciamental problem of maintaining the amplituce anc waveshape of the carry as it propagates. At present, it seems ciesirable that for all except very short counters the carxy be amplifiec in some manner as it goes from stage to stege, and since it is hopea that the obvious expecient of putting ε vecuumtube amplifier between stages can somehow be avoiced, a smell-scale investigetion of possible techniques of getting the carry up through the steges was uncertaken. The progress to date will be briefiy reported.

Counters are often divioed intc two categories: those in which the carry is regeneratec by each stage as it flips over from ONE to $2 \mathbb{I} I O$, and those in which the carry propagates through gates which are controlled by the various steges. Logically the two are icientical, especialiy when the regeneration by each stage of a counter of the first type is thought of as a gating action. The distinction, however, exists, anc the counters in the first category are called "progreasjve-carry" counters while those in the secono category are cailed "geted-carry" countera.
i. Progressive-carry Counters

In progressive-carry counters the carry, as it enters a stage, causes the stage to trigger, that is, to change to ONE if it contains ZEFO or to ZERO if it contains ONE. In the latter cese, in which the stage changes from ONE to $Z E R O$, the carry is re-shapeo and colivereo to the following stage. This process continues up through the stages until the carry comes to a stage which already contains EEFO. This stage is changed from ZERC to ONE anc the carry stops. The power gain of each stage is utilized in the re-shaping process so that the carry propagates without attemuation.

To date, magnetic-core counters in the progressive-carry category are restricted to those which use a high-frequency magnetic amplifier type of flip-flop. One stege of a counter representetive of this class is shown in Figure 1. Levelopec by Computer Fesearch Corporation, it wes

APPROVED FOR PUBLİZ RELEASE. CASE 06-1104.

6345
Engineering Note L-438

Abstract

precedec by e similer cevelopment by Ingineering Tesearch Associates. Robert Pfaff, S.M. thesis stucent with the group, is at present investigating the possible use of a counter of this type in an application associated with the M.I.T. Servo Leboratory Miling Machine Project.

2. Gateci-carry Counters

Gated-carry counters (Fig. 2) are those in which each stage of the counter operates ε gate which controls the carry. Figure $2 a$ iilustrates one stage of a geteci-carry counter in which, after a short delay, the flipflop is triggered by the carry entering the stage. If the stage contains ONE, the carry has time before the flip-fiop triggers to pass through a gate which is helc open by the ONE-side of the flip-flop. If the stage, on the other henc, contains $\mathbb{Z E R O}$, the flip-flop is triggered, but by the time the gete on the one-side opens, the carry pulse, which is shorter then the delay, disappears and is not propegated to the following stage. Figure 2 b illustretes one atage of a similar gatec-carry counter in which the flip-flop need not be capable of triggering. Two gates insteac of one, however, are required.

A scheme has been workec out (Fig. 3) to use pulse-operated magnetic cores in this latter configuration. This is actuaily a four-core stepping register arranged so that the output feeds beck into the inrut. The logical operction will be cescribed here, but the circuit ciesign considerations will be covered in the section on pulse-operatec magnetic gates. Magnetic cores numbered 1 and 3 are the flip-flop and cores 2 and 4 are the getes of the gated-carry counter. Among the four cores of a stege, there is but a single ONE and three ZENO's. The single ONE will always lie, when the counter is at rest, in either core number lor core mumber 3, the two cores of the filip-fiop. If the ONE lies in core number 1 , the filp-flop contains $\mathbb{Z E R O}$ and if it lies in core number 3, the flipflop contains ONE. The carry input pulse is mace into two power pulses which are displaced in time one from the other by the delay. The first of these, power pulse I, orives the information from the odi-numbered cores into the even-numbered cores (flip-fiop into gates), while the second, power pulse II, orives the information from the even-numbered cores into the ocid-numbered cores (gates into flip-flop). The single ONE, then, will circulate around the loor of four cores once for every two carry input pulses. Each time it rouns the benc at core number 3, a carry is sent to the following stage. A carry can also be taken from core number 4 which will be celayed from the carry from core 3 so that the celay can be eliminated in all but the first stage, only amplification being neeceo in succeeding stages. The vacuum tube amplifiers shown could probably be eliminated for a very short counter, as alreacy mentionec. A four-core stepping register of this cesign (minus carry output leacis) was constructed by the group. Using ferrite cores, it was able to count at a rate exceeding 100 KC .

APPROVED FOR PUBĽIC RELEASE. CASE 06-1104.

6345
Engineering Note E-438

C. PUI SE-OPEFATEL MACNITIC GATE-AAFLIFIEES

At this point we cerart from counters temrorerily to investigete the possible use of pulse-opersted magnetic cores to replace the vecuumtubes as cerry amplifiers and gates.

1. A Simple Coincicence Gate

One scheme which suggests itself is to apply a power pulse end a pulse to be amplified simultaneously through wincings N_{2} anc N_{1}, of Fig. 4 a , in such a way that the power pulse alone is not enough to switch the core but the combination of the two pulses will switch the core. As the core switches, the instentaneous power delivered by the power fulse is the procuct of the instentaneous voltage and the instanteneous current
 and the output power $p_{3}=e_{3}{ }^{2}=N_{3} i_{3} \frac{d \phi}{d t}$. Since, auring switching, the $\frac{d \phi}{d t}$ is common to all winaings, the power going into each of the two criven windings is proportional to the ampere-turns of that vincing, and since the power going into these oriven winaings must go sollowhere, it goes into the loac, supplying the output pover. The requiloment governing the empere turns in the two driven winings is that their sum slightly exceed the knee of the hysteresis loop. The retio of fower-pulse ampere-turns, $\mathrm{N}_{2}{ }_{2}$, to the pulse-to-be-amplified ampere-turns, $N_{1} i_{1}$, oight be mace arbitrarily large and therefore it would appear that the power gain is limited only by the degree to which the amplituce of the power fulse can be controlled.

When the hysteresis loss of the core is considered, however, the inability of the scheme to provice power gain is clearly sien. The hysteresis loss in the core, $\int \mathrm{HdB}$, is the eree of the hysteresis loop. As this gate operstes, moving from one resicual point on the hysteresis loop to the other, one haif of the hysteresis loop area must be oissilipated in the core. The power-puise ampare-turns, $\mathrm{N}_{2}{ }^{1} 2$, can be thought of (Fig. 4b) as supplying a fraction of the hysteresis loss which is arbilrarily close to, but never greater than, unity. If the power pulse were to supply more then just the hysteresis loss, the core woulc switch on this fulse alone, thereby cestroying the geting ection of the core. The pulse to be amplified, then, supplies the rest of the hysteresis loss plus the power delivered to the loac. Clearly, as in the case of a conventi nal transformer, there can be no power gain.

2. The Harvard Gate-Amplifjer

A pulse-operated magnetic gate which does heve a poror gain (Fig. 4c) has been developec by the Herverd Computation Laboratory. In this scheme, the power pulse end the pulse to be amplified are not applied aimulteneously, and they are each large enough to switch the are. The pulse to be amplified is flrst applied, switching the core fror ziFio on

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345

Engineering Note E-438
the top of the hysteresis loor, the core's rest stete, to CNE on the bottom. When the puise to be amplifici is removec, the core is ler i at ONF on the bottom of the loop, where it wili remain until the power pulse is applied. The power pulse, aprliec so as to prociuce flux in the opposite direction, switches the core back to ZEFC, anc the gate is once agein in its rest position. The presence of the rectifier in the load circuit effectively removes the losi when the pulse to be amplified switches the core but reconnects the load as the power pulse switches the core in the oprosite iirection. This allows the power pulse to supily power to the load as well as one-half of the B-H loop area, whije the pulse to be amplifiec merely supplies the other hajf of the B-H loop area. If the puise to be amplifiec is ciefined as the input to this core anc the pulse delivered to the load is cefined es the output, it cen then be seid that the core gives a power gain. Gating action is achieved by virtue of the fact that if a power pulse comes along without having been prececea by a pulse to be amplifiec, the core, which is alresdy on the top of its hysteresis 100 F , will move from $2 E R O$ to "a" anc back ceusing a negigible chenge in inouction and therefore no pulse in the load. If it is assumed that at the time of a power pulse one does not know in which state the core lies, then there will or will not be a pulse in the loac depending upon whether or not a pulse to be amplifiea came along. The rulse to be emplifiec, then, cen be thought of as a geting pulse.

This gete, besice provicing amrlification, has the most cesirable feature that neither the pulse to be amplifiec nor the power pulse neec be measured pulses. They are oniy requirec to exceed a minimum value, above which they cen heve any value whatever.

An interesting feeture of this gate is that oniy one pulse can pass for each gating pulse, a feature which might be usec to acventage in an application such as a push-button pulse synchronizer in which on asynchronous pulse is useo as the gating pulse anc the first ciocl: pulse to come along after the geting pulse is used as the power puise. All subsequent clock pulses would merely drive the core from ZiFO to "a" and back, the gate being "off". In this application, the gating puise would have to be larger in ampere-turns then the power rulse so that it coulo overwhelm the power puise in the event they coinciced with one enother in time.

This is the gate used in the magnetic stepping register anc in the gatec-carry counter already iescribed. It has the obvious disadventage that a time celay is requirec between input anc output. If, in the gated-carry counter alreacy describsi, this gate were used to replace the tubes usec to amplify the carry between stages, a succession of these delays woulo be required in order thet a carry propagate the entire iength of the counter.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Engincering Note E-4.38

3. A Current-Biased Gate Amplifier

Still another magnetic-core gete has been ceveloped which is turned off by a current through one of 1 ts windings (Fig. 5), in a way analagous to that in which a vecuum-tube is biased off by a negative voltage. A large m.m.f. cue to the control current, i_{2}, will hold the core in a region where there is a negligible incuction change for a given change in power-pulse m.m.f. In this region, the power pulses are effectively disconnectec from the loa since coupling is by chenges in induction. Furthermore, there will be ilitile voltage across the control winding, N_{1}, and the power wincing, N_{2}, so that a negligible amount of power will be supplied by these circuits when the gate is "off". Removal of the control current, i_{1}, allows the core to move to its residual incuction point on the bottom of the hysteresis loop and the gete is then said to be "on". If, when the gate is "on", a positive pulse followeo by a negative pulse occurs in the power winding, N_{2}, the core will go around its hysteresis loop and the resulting incuction change will celiver a positive and negative pulse to the load. The control circuit, deliverin zero current, will absorb no power. Subsequent peirs of positive and negative pulses in the power winaing, N_{2}, will deliver pulses to the load. These pairs can, in fact, be sine waves, if it is desired merely to couple power to the load, as would be the case if the load were a panel lemp in an indicator oircuit. A variation is to have a single positive pulse which will act as in the gate previously described coupling a single pulae to the load and then no more until the gate is turned "off" and then "on" again.

This gate has been extended to a scheme in which a core can be biased off by any mumber of control windings, each of which acting alone is enough to hold the gete "off". K. Olsen has apriled this to a multiposition awitch in which the control wincings on a mumber of cores are connected as a matrix so that all of the cores except one are biased off. This geting scheme is the basis for a "carry-matrix" type of gateo-carry counter yet to be cescribec.

L. A CARFY-MATRIX COUNTER

Teking aodentage of the fact that the carry progresses through the stages of a counter, triggering each of them, until it comes to a stage containing $2 E R O$ which it triggers and then stops, we cen use the gate just describod to control the carry. Consider a metrix of magnetic cores (Fig. 6) in which there is one core whose responsibility it is to propagete the carry to each stege. These cores are connected as gates in such a way that a ZERO in any atage of the counter will bias off all of the gates leading to higher stages. This scheme involves the use of filp-flops which cen be trifgered. An extension of this (Fig. 7) uees tion cores instead of one to propagate the carry to each stage. The

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

-7-

6345
Engineering Note E-438
stage itself biases one of the two cores off. The output of one of the cores sets the flip-flop to ONE while the output of the other sets the flip-flop to ZERO. The whole thing is so arranged that if the flip-flop is $2 \mathbb{R} R \mathrm{i}$ it gets set to ONE or if it is ONL it gets set to ZERO , and therefore need not be capable of triggering.

This concludes the discussion of counters. It was felt that the informal appendix at this point is a useful way to introduce some of the design problems and techniques.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
Appendix I
Magnetic Core Coupling
Consider two identical cores so ARRANGED THAT ONE DRIVES THE OTHER. Assume no leakage flux. Let $\frac{\mu A}{l}=1$ SO THAT $\phi=N I$

$$
\begin{aligned}
& \phi_{1}=N_{p} i p-N_{1} i \\
& \phi_{2}=N_{2} i
\end{aligned}
$$

substituting,

$$
\begin{equation*}
\phi_{1}=N_{p} i p-\frac{N_{1}}{N_{2}} \phi_{2} \tag{1}
\end{equation*}
$$

WRITING A VOLTAGE-LOON EqUATION,

$$
N_{1} \frac{d \phi_{1}}{d \tau}=N_{2} \frac{d \phi_{2}}{d \tau}
$$

ASSUME ϕ_{1} AND ϕ_{2} START FROM ZERO AT TO AT ANY TIME, T,

$$
\begin{gather*}
\int_{0}^{T} N_{1} \frac{d \phi_{1}}{d t} d t=\int_{0}^{T} N_{2} \frac{d \phi_{2}}{d t} d t \\
N_{1} \phi_{1}=N_{2} \phi_{2} \tag{2}
\end{gather*}
$$

SUBSTITUTING (2) into (1),

$$
\begin{aligned}
& \phi_{1}=N_{p} i_{p}-\frac{N_{1}^{2}}{N_{2}^{2}} \phi_{1} \\
& \frac{N_{2}}{N_{1}} \phi_{2}=N_{p} i_{p}-\frac{N_{1}}{N_{2}} \phi_{2}
\end{aligned}
$$

N THEREFORE,

$$
\begin{equation*}
N_{p i p}=\phi_{1}\left(1+\frac{N_{1}^{2}}{N_{2}^{2}}\right)=\phi_{2}\left(\frac{N_{1}^{2}+N_{2}^{2}}{N_{1} N_{2}}\right) \tag{3}
\end{equation*}
$$

DEFINE TURNS RATIO $R \equiv N_{1} / N_{2}$.
THEN

$$
\begin{equation*}
N_{p i p}=\phi_{1}\left(1+R^{2}\right)=\phi_{2}\left(R+\frac{1}{R}\right) \tag{4}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

TYPICAL STEPPING REGISTER ADVANCE "A" STEPS INFORMATION FROM ODD CORES TO EVEN CORES. ADVANCE " $B^{\prime \prime}$ STEPS INFORMATION FROM EVEN CORES TO ODD CORES.

COUPLING DETAILS

PRIME PURPOSE OF SERIES DIODE IS TO UNLOAD CORE 2 WHEN READING FROM CORE 1 TO CORE 2.

Harvard (AIDEN) 15075 Burroughs 8040

TRANSDUCER (CIRCUIT BELOW)

CURRENT FLOWS AROUND COUPLING LOOP IN SAME DIRECTION DURING ADVANCE "A" AS ADVANCE " B ", DIUDE (2) IN CONJUNCTION WITH THE RESISTOR PREVENTS BACKWARD FLOW OF CURRENT, ALSO HELPING PREVENT BACKWARD FLOW ARE CORE 1 BH LOOP SHAPE AND DIODE (1) NON-LINEAR FORWARD CHARACTERISTICS, PLUS TURNS RATIO, IN FACT, THESE LATTER THREE ARE ENOUGH TO DO THE JOB ALONE. ONE COMMERCIAL DESIGN:

33 T.
 9 T.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Appendix II

Sands, of Burroughs, has observed that for most metallic cores there is a range in the applied-field versus switchingtime curve over which the product of the two is constanta. doubling the driving current through its winding produces twice the applied field strength. This in turn cuts the switching time in half doubling $\frac{d \phi}{d t}$ and therefore DOUBLING THE VOLTAGE ACROSS THE WINDING, EXACTLY AS IF THE WINDING WERE A RESISTOR. SANDS GIVES:

TYPICAL R's: ORTHONIK $1.1 \mathrm{mill} \quad 1.85 \times 10^{-2}$ OHMS/TTERN
MO-PERALLOY .26 mil, 5.51×10^{-2} OHMS/ TURN ${ }^{2}$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

(a)

(b)

Fig. 2 Gated Carry Counters

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Fig. 3 Magnetic Gated-Carry Counter

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

(a)

(b)

Fig. 4 Pulse-Operated Cores

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Fig. 5 Biased Magnetic Pulse Gates

APPROVED FOR PUBLIC RELEASE．CASE 06－1104．

F章

迹

$$
\begin{aligned}
& \text { Counter } \\
& =N_{\text {on }} 7 .
\end{aligned}
$$

$\frac{\sqrt{\frac{7}{9}+1}}{\frac{2-1}{4}}$
$\underset{3}{4}$

$\stackrel{\rightharpoonup}{\circ}$
Can Be每

