APPROVED FOR PU WDCLAESEEASE. CASE 06-1104. D) $ए$ Conn (A) \square

6345
Momorandum Y-604

Page 1 of 17

> Projeot Whirlwind Servomeohanisms Laboratory Massachusetts Institute of Teohnology Cambridge, Kassachusetts

SUBJECT: BI-MEEKLY REPORT, PART I, SEPTEMBER 3, 1948

To: 6345 Engineors
From: Jay W. Forrester

1.0 WHIRLWIND I COMPUTER ELETIENTS

1.1 Listed by Blook Diagram Number
 102 Program Counter

$$
\text { (J. A. } O \text { Brion) }
$$

Work has started at Sylvania on the production drawings and the prototype of the program counter under the direction of Jo Connors. The time sohedule calls for delivery of the prototype on September 12th.

104 Control Switoh

(J. A. 0^{\prime} Brien)

The blook sohematio of the control switeh, T60CS00-4-C, is being revised by Sylvania so that it oan be used as a drawing for both the control and the storage switches. See M-601。

111 Synohronizer

(J.A. $O^{\prime} \mathrm{Br}$ 1en)

The plan to use relays to perform the switohing of pulses in the gas-tube section of the synohronizer has met with trouble in that large transients appear on the output lines when the relays operate. The exact sourse and mode of transmission of these transients has not been determined, nor has a remedy been found.

112 Restorer Pulse Generator

(J. A. O'Brien)

At the suggestion of G. Summer provision has been made
in the drawings of the restorer pulse generator to allow a

APPROVED FOR PUBELCREEEASE. CASE 06-1104.

6845
Momorandum M-604

Page 2

112 Restorer Pulso Generator (continued)
aingle pulse to be applied to all restorer lines and thus, when the computer is on push-button operation, all of the flip-flope in the computer will be oomplemented. This new input, oalled computer complement, will enable the operator to quiokly oheok all flip-flops by observing the neon lights on the console as he depresses the push button initiating the oomputer oomplement pulse.

Flip-Flop Storage
(R. H, Gould)

Teats on the flip-flop storage register have recommenced With the fip-flop storage output panel oonnected with it and tested at the same time. It has been observed that switching the reset switoh of the register on the output panel oauses the flip-flop to switoh before a reset pulse is fed to the panel. Investigation has not yet revealed whether the fault is in the oircuit design or in the oonstruotion of the penel.

Arithmotic Control
(G. G. Hoberg)

Testing has started on the multiply-shift control panel.

The ACO oarry and apecial add memory panel has been returned to the eleotronios shop for permanent rewiring of the several modifioations. The arithmetio oheok and special add pulses have been delayed $0.25 \mu s e 0$ to avoid interference with high-speed oarry.

Step Counter
(J. A. O'Brien)

The layout of the step-counter output panel has been started in the drafting room. It is hoped that this work will be facilitated by use of the Sylvania drawings of the layout control switoh output panel.

Cheok Register
(J. A. O'Brien)

The breadboard model of the oheok register oheok unit has been tested and found to function satisfactorily. The

APPROVED FOR PU进MCBEESAD CASE 06-1104.

601 Chook Register (oontinued)
oirouit sohomatio is ready to be given to the drafting room, but awaits a deoision on the proposal to add a gate tube in the end oarry line to the olear register driver.

700
Operator's Console
(C. W. Watt)

Studies are continuing on the equipment und faoilitios needed in the operator's room. For the temporary testing period, enough coaxial cable will be brought into the control room to permit oomection of simulated contral control to the arithmetio olement. This amounts to about $30 \mathrm{RG}-62 / \mathrm{J}$ oontrol lines, and 16 RG-62/U bus lines. WWI standard test equipment will be intercomneoted to provide proper pulse sequenoing. A design has been made for an indicator panel to house 32 neon indicators, and a prototype will be made next week. It will be part of the standard test equipment series.
(R. E. Humt)

A temporary operator's oonsole consisting of 8 standard 19 inch relay raoks is in the process of being designed.

The temporary console racks will be wired thru power raok P-9 (Panel Seleotion Rack), and thru an existing doorway behind the power bay.

A speoial wireway will be designed to oarry from the overhead wireway in the power bay to an overhead wireway above the oonsole racks.

Design \& oonstruotion on this job will probably require two more weeks.

1.2 Sybtem Engineering

1.21 Power Control \& Distribution
(C. W. Watt)

WI Installation. All of the 7^{n} base ohannel in the oomputer room has been laid. Most of the rack uprights for the racks have been installed. Installation of mounting braokets, terminal atrips, and remaining hardware for the 14 power bay raoks will proceed during the next two weekss; oompletion of the other racks and installation of wireways will prooeed at the same time.

APPROVED FOR PUBLIONRAEEASAEEASE 06-1104.

6345
Momorandum 15-604

Page 4
1.21 Power Control \& Distribution (oontinued)

Power Control. A sohomatio of the power control system is almost comploted in the drafting room. All parts are either ordered or on hand. Design of a panel for the power supply room is proceeding.
(H. S. Lee)

Power Conneotors, Momorandum, M-602, subjeot: "Standard Power Conneotors, WMI" has been published and distributed to all ongineers, draftemen and teohnicians concorned with the design, layout and fabrication of panels for the oomputer. This memo supersedes Engineering Note E-119 and Memo M-450.

D-C Filter Panel. J. Forrester has approved the location of the d-c illiter panel in the racks. Fabrication of seventyfive of these units will begin Tuesday, 7 September.

Rack Filament Power Panel. of the seventy-five basio panels reocived from the painters approximately 50% have been rejeoted and returned to the painters for repainting. The surface texture was rough and not equal to the standard previously established.
(R. E. Hunt)

Power Junotion Rack. The status of panels for the power Junction rack are as follows t

1. Shut (meter) panel - design and drafting oomplete.
2. Common tie and ground discomnect panel - design and drafting almost completed.
3. Lab power panel - design complete - drafting 80% oomplete.
4. Digit master switoh panel; WWI test jack panel will be designed in the near future.

Distribution Busses. Design is about 90% oomplete manufacture will ooumenoe immediately.

Leter Panel for Console Room. Design is completedrafting wil oomence inmediately.

1.22 Power Cabling
 (H. S. Leo)

Gavitt Manufaoturing Co. is presently ongaged in fabrioating all the preformed power cables designed to date. As of this

APPROVED FORPUBLLENKEAEASEAFOASE 06-1104.

6345
Momorandum M-604 Page 5
1.22 Power Cabling (oontinued)
date it is believed that deliveries oen be scheduled so as to meet the deadine date of 3 Ootober. Gavitt will submit prototype cables to us for approval by 10 September.

Design of the ground grid has been completed and installation should commenoe when wireway installation is oompleted.

Drafting on power oabling has been delayed one week by the illness of V. Savio.

APPROVED FORPUBLUNSEASASEECASE 06-1104.

6345
Memorandum M- 604

1.25 Time Schedulet

(R. A. Osborno)

The task of maling up revised time schedules has been completed.

Prints of all schedules posted through July 3lst have been distributed.

Prints of all schedules posted through August 31 st will be distributed early next week.

Following is a list of the Revised Mirivind I Time Schedules, together with their number, the name of the person responsible for the schedule, and the name of the coordinator.

Revised Schedule List

Schedule \$itie	Nomber	$\begin{gathered} \text { Porion } \\ \text { Reapensible } \end{gathered}$	Cocritinator
Racke (Cabinets)	0-31672-1	Vainwright	Watt
Overhead Mireways	0-32699	Nainwright Hunt	Watt
Video Cabling	c-31676-1	Anderson	Matt
Cabling Troughe	C-32700	Anderson	Watt
Pover Cabling	0-31674-1	Watt	
Panel Selection Rack	0-31675-1	R ${ }_{\text {c }}$ Hunt	Watt
Pover Panels (Sumnary)	0-31859-1	Anderson	Watt
Fixed Voltage Switching Panels	0-32645	Anderson	Watt
Fuse Indication Panels	c-31832-1	Anderson	Watt
Digit Interlock Panels	c-31671-1	Anders on	Watt
Voltage Variation Panels	c-31831-1	Anderson	Watt
Pover Supplies	0-31672-1	Boyd-Wieser	Forrester
A-Register-Program Regieter	0-31638-1	Y. Taylor	
A-Registar ero Digit	c-31667-1	F. Taylor	
B-Register-In-Out Hogister	C-31639-1	Ir. Taylor	
secumulator	c-31640-1	Connora	He Taylor
Acoumalator ero Digit	0-31668-1	Sumer	1. Taylor
Restorer Pulse Generator	C-31806-1	Kenosian	J. $\mathrm{A}_{0} \mathrm{O}^{\prime} \mathrm{Brl}$ e
Register Drivers - Type I	c-31657-1	Rowland	H. Taylor
Bus Drivers	c-31643-1	Rowland	H. Taylar
Arithmetic Control	C-31654-1	H. Taylor	
Divide Control	0-31660-1	Daggett	11. Taylor
ac-0 Carry \% Speoial Add Memory	0-31659-1	Hoberg	IV. Taylor
Point Off Control	0-31686-1	Dagge tt	N. Taylor
Divide Error a Sign Control	c-31661-1	Suaner	N. Taylor
Multiply \& Shift Control	0-31673-1	Daggett	H. Taylor
A0-0 Auxillary	0-31687-1	Sumner	15. Taylor
Stop Counter	c-31689-1	Daggett	17. Taylor

CASE 06-1104.

6345

Memorandum M-604
1.25 stme Sohedrien (Cont'd)

Schedple Thithe Stop Counter Outpat
Time Pulse Distributer
Time Pilee Dist. Counter
Time Pulse Dist. Output
Operation Matrix
Control Pulse Outputs
Operation Matrix Drivers
Control Switoh
Clock Pulse Control
Pulea Generator
Frequeney Divider
Syachronizer
Flipmillog Storage Output
Program Counter
Storage Switch
Flip-riop Storage Register
Hegister Drivers - Type II
Toggle Switch Storage
Toggle Switch Storage Output
Cheek Register Cheok
Cheok Register - Comparison Reg
Control Desk
Control Room Equipment
Tomporary Control Equipment
Film Reader - Recorder
Input-Output Control
Iegboard a Printing Control
Test Equipment
Trouble Lecation Methode
Air Conditioning
Preparstion of Computer Room
Storage Tube Sumary
Storage Tube Output Circuite
Storage Tube Deflection Circuita
Storage Tube Control Circuits
Storage Tube - 5 inch Tube
Storage Tabe - Ixpand Vacuum Lab. Facilitios I :
Storage Tube - Expand Vacuum Iab. Facilitios II
Storage Tube - Fxpand Test Lab. Facilities
Storage Tabe - Storage Phenomena . Research
Storage Tube - Stability Research Tubes \& Studies

Page 7
Person
C-38701
c-32652-1
0-32696
0-32697
C-31809-1
C-31810-1
C-31830-1
C-31649-1
C-31653-1
c-32655-1
C-31807-2
c-31805-1
c-31642-1
C-31645-1
C-31663-1
c-31641-1
c-31656-1
C-31662-1
C-32698
C-32643
c-31646-1
C-31665-1
c-31664-1
C-32646
C-31 678-1
c-31 666-1
C-32547
c-31679-1
C-31684-1
c-31681-1
C-31682-1
C-32702
c-31670-1
C-31683-1
c-32695
c-3270:
C-32704 Prohaske Dodd
C-32705
C-32706
C-32707
C-32708

Coordinator
J.A. 0^{1} Brien
J.A. 0^{\prime} Brien
J.A. 0^{\prime} Brien
J.A.O'Brien
J.A. $\mathrm{O}^{\text {Brien }}$
J.A. 0^{\prime} Brien
J.A. 'lirien $^{\prime}$
J.A.O'Brien
J.A.O'Brien
J.A. $\mathrm{O}^{\prime} \mathrm{Bri}$ en
J.A.O'Brien
J.A. 0^{\prime} Brion
J.A. 0^{\prime} Brien
J. $\mathrm{A}_{0} \mathrm{O}^{1} \mathrm{Brif}$
J.A. 0^{1} Brien
J.A. O^{\prime} Brien

Watt
Watt
Watt
Iverett
Everett
Everett
Everett
Forrester
Forrester
Dodd
Dodd
Dodd
Dodd

Molan-Youtz Dodd
Klemperer-
Dodd
Dodd
Zomparer-
Nolan-Youts Dodd

6345
Meqorandum M- 604

Storage Tube - Iffe \& Reliability Tests
Storage Tube - Equipment for
Pllot Quant. Tabe Const.
Storage Tube - Final Design WII Trabes
Storage Tube - Conet. WI Tabes Installation - WII

Peraon Page 8
Beapansible coordinator.
Youts Dodd
Klemperer
C-32751 Dodd

C-32758	Toutz	Dodd
C-32753	Youtz	Dodd
C-32754	Youtz	Dodd

6845
Momorandum M-604

Page 9

1.5 Aureiliary Equipmont

1.31 Power Supplies
(C. R. Wieser)

Barta Building Power. A now 2300-volt servioe from the Cambridge Electicio Light Co, has been installed. The 2300volt power is stepped down to 550 volts by two $100-K V A$ transformars in the oourt yard. The 115-volt lighting servioe near the Lass. Ave. entranoe has been out and removed. Lighting is now supplied from three now 371 2 -KVA transformers located in the transformer room. The installation of new conduit, wiring, switches, meters, eto.assooiated with oonversion to the new service is complete. The ohange has resulted in better voltage regulation and simplifioation of the eleotrical distribution system in the building.

WWI Filamont Power. The bed for the filament supply motor-generator set is being installed. The generator has been delivered. The motor is being rewound and should be delivered by Sept. 9. Conduit installation to supply motor power is almost complete.

WWI Plate Power. The plate supply alternator controlboardWring 18 oomplete exoept for the emergonoy supply oontactor, which is on order. The alternator regulator has been operated satisfactorily. The reaotors for the drive motor have been oomneoted. With these reactors in the oirouit, the 110 volt, a-c lab supply may be varied from 110 to 125 volts by manual variation of the motor field ourrent. Tests for design of an automatic regulator are under way.
(L. J. Nardone)

Variable Voltage. A ourve was obtained to determine the noise level vi. output filter oxpacitance for the amplidyne of the variabie-voltage supply. At an output of 100 volts $\mathrm{d}-\mathrm{o}, 2000 \mu \mathrm{f}$ are needed to reduce the noise to 0.1 volt rms.

Tests on the variable valtsge supply will oontinue for the olosed-loop system. All previous tests were on an open loop system.
(J. J. Gano)

Synohronous Llotor Regulator. The frequency response ourves and the time constants of the exoiter-amplifier with feedback have been seoured. The time oonstant of the synohronous motor will now have to be measured.

APPROVED FOR PUBLFCASSIEEESE. CASE 06-1104.

6545
Momorandum Li-604

Page 10
1.51 Power Supplies (continued)
(R. B. Humt)

Power Supply Room. Design of raoks and oomponent looation in the power supply room is now pritty well up to date.

The power supply raoks and wireways have been designed and installed.

Looation of the filament M.G. set has finally been fixed and instellation started. The side doorway will be moved one foot to scoomodate a larger motor starter than antioipated.

The grill work and grill doorways have been laid out, and will be ordered when final dimensions have been reoeived from the manufaoturer.
1.32 Air Conditioning
(R.A. Osborne)

Assembly of the air oonditioning equipment has not begum due to revisions by Carrier in their drawings.

Final drawings will be subidtted for our approval next weok.

1.4 Unolassified

(u. Hayes)

Simulation of Control Pulse Outputs. By simulating the pulse gonerator, olook puise control, the time pulse distributor, and the olook puise output unit, the amplitude and width of the pulses appearing on the oontrol line may be determined. The equipment necessary for this is being set up at the present time to onsure that the pulses on these lines are of proper amplitude and width.

APPROVED FQRUNBLASSIEIEASE. CASE 06-1104.

6345
Memoranduy X-604

WI Dreaing Liat
8ystien
Control
Mastor Clock
101 Pulec Generator
102 Progran Coumtor
103 Progran Registor
104 Gontrol switch

105 Operation Matrix
Control Pulse Output
106
Time Pulee Distributor
106 Time Pulse Distributor Counter
106 Time Pulse Distributer Output
109 Clock Pulee Control
110 Prequency Divider
111 Synchronizor
112 Restorar Pulse Generator
200 Storage
201 Storage Switch
202 Toggle Switch Storage

203
203
203
301

Filp-F1op Storaca Output Mip- Flop Storage Regieter Flip-M1Op Storage Control L-Rogiator

Dhook
3-37072-5
B-37098. 4
B-37159-1
-37155-1
B- 32385
E-32333-3
B-37062-4
B-32213-1
D. 31516.4

B-37067-2
B-39289-1
D. 31276-7

B-37066.3
T60cs00-4-C
\$600400
B6OCPOO
B-37068-3 T60PD00-8-8
T6CPDOO-3-A Y6CPDOO-B
T60PD00-4-A $260 \times 100-1-A$
B-39817-1
a-32642
R-31916
-372541
B-32264-1
B-31729-1

A-3760
B-32209-3
D. 31909 - 6

C-3756-1
B-32150
B-37121-1
C-31152
B-32722
B-37222.2

B-37060. 4
B- 32269
B-37057-3 B-32268
B-31211-3
Giraut Schemetic
$2600500-1$ M60cs00-1-A 260cs00-2

2600400-1-B
860cp00-1m B
-

ㄴ․ $37061-5$

E 32711 L-32721

I-31635-3
r.31621-3
D. $31276-7$

Page 11

APPROVED FQR UNCLASSIFIERE. CASE 06-1104.

6345
 Memorendu M-604

WI Draying List (continued)
301 A-Regietor 2ero Digit

302 Lecumulator
302 ACC Zoro Digit
302 AcC Zoro Aux.
303 B-Regiater

304 Sign Control \&
308 Divide Error Control
305 Step Counter
306 Multiply \&
307 Shift Control
308 Divide Control
309 Special Add Mamory \& ACO Carry
310 Foint off Control
403 In-Out Register
404 Comparison Iegieter
601 Check Register
Bus Driver, Arithmetic Element
Bue Drivar, Flipoflop Storage
Rogister Driver. Type I
Regiates Driver, Type II
Fuse Inilication Panel
Voltego Variation Panel
WWI Pover Connector Pin Connections

Block
B-37056-2
B-37072-7
B-37063-5
B-37096-5
B-37096-5
B-32492-2
D- 32602
B-37097-3
B-31212-3
D. 31277 -3

B-37069-3

Co31576-2
E-31619-1
B. $3707^{14}-5$

D-31828-1
D-39764

C-31532-3
P. 31588.2

C-31552-2
R-31718-3
C-31575-2
E. $31632-1$

C-31600-5
E.31717-3

B-37119-2
B- 32434 m 1
D. 31277 -3

B-37220-2
B-32578
E. 32576

B-39816-2
B- 32577
E. 32576

A-32297-1
D. 31727-5

A-32296-1
D. $31726-5$
B. 32207
~ 32691
E. 32261-2
D. 32690

W60pP00-7-C
w60PP00-6
C-31955-4

6345
Memorandum Ma 604
Page 13

2.0 Whitinisd I Reskarch

2.1 Circuits

2.11 Plip-Flop Doalem and Stability

(R. L. Best)

A flip-flop has been loaded with two gate tubes on oach side, as in the divide control, with one gate tube on each aide being pulsed coincidently with the flip-flop's trigger tube. This operates satisfactorily with no added capacitance between control and suppressor grids of the gate tubes. but requires up to 21 volte input to irigger tube vhen 12 micro micro-farads are added botween each gate tube control and suppressor grid. Some smeller value of ceppacitance might be tolerated, howerer.

With the flip-flop loaded with only one gate tube on each side, as in a different part of divide contrel, 12 micro-microfarade between control and suppressor grids of the gate tubes do not make prohibitively large trigger tube inputs required, and nay therefore be used.

Simulation of other WWI circuite is in progross. (J. J. $0^{\prime} \mathrm{Brien}$)

Marginal cheoking schemes for the basic flip-flop circuit are being investigated.

So far, using separate plate voltage supplies looks feasible.

2.16 Bagic Circuite

> (A. X. Susskind)

An investigation of the triggentube circuit is being conducted. Characteristice such as prf sensitivity, input impedance, galn, offect of supply voltage variations, and pules mape roproduction will be determined. Particular attention will be paid to methods of increasing the input impedance which appeers rather low in the present circuit.

6345

Memoranduan M-604
Page 14

2.2 Components

2.23 Vecur-Tube Studios

(J. J. O'Brien)

A check of a fow tubes that are on life toet under WWI conditions indicated apain the poor ilfe charactoristic of GAC7 tubes for these circuit applications. The 7AD7 tubes dropped to about 85 parcent of their initial plete current. The length of time of operation was 1450 hours.

All 6as6 tubes of the Five-Digit-Multiplier vare ramoved and teated. Their hours of operation vary from 1000 to 4000 hours. Many dropped greatiy in plate current. An examination of this data indicated a strong tendency for the 6 as 6 plate current to drop to a value of about 10 ma. Indopendently of its initial plate current. A report is being propared.

WII Specifications for the testing and preburning of 6Y6, 6S87. 7AD7 and 7AK7 have been prepared under the Standard Speciflcation Mos. S-7.400-2 to S-7.400-5.

2.3 Systens

2.31 Five-Diedt Multiplier (H. L. Ziegler)

Continuous operation of the Multiplior is being maintained to provide further data on the life of vacuum tubes and of the various components.

A study is boing made of circuit alterations nocessary to provide for marginal checking of the Multiplier by WWI methode. These circuit alterations will be made as soon as the study has been ceapleted.
(E. S. Rioh)

Plans are boing dram up for installing marginal checking contrels on the Multiplior prior to the start of life tests. A study has been made of what voltages will be varied and of the amount of work involved in making the wiring changes required and in building the control. A proposal covering this will be prepared the first of next weak.

3.0 SPECIAL CIRCUITS

3.2 Toest Rquipment
3.21 Standard
(R. L. Massard)

Honry Amplifier. A much better and fasfer method for lining up the amplifiers has been worked out. It involves using a step-function voltage (a very fast rise-time gate) and observing the transient response of the various stages of the amplifier. The lining-up time for an amplifior has been out by a factor of 50. The gain ve. frequency method was not worth the time which it consumed.
(H. Kenoaian)

Pulse Standardizer. Prototype testing is complete. Production is now under way.

Cathode Follover Probe. Tests on the prototype are nearly complete. Production will begin this week.

6345
Memorandum M-604
4.0 BLOCK DIAGRAMS
(R.P. Meyor, J.M. Salzer)

Revision of all blook diagrame is contimaingo, Bloak diagrams have been coordinated with existing Block Schomatios and a mumber of corrections made.

6345
Memorandum M-604
$P_{\text {age }} 17$
5.0 CHROXING PHETHODS
(G. C. Sumner)

In a convereation with J. A. O'Brion a poseible means of improving the present CR checking system was devised. As pointed out in M-413 a faulty transfer in the rightmost digit permits the CR to be cleared by the transfer-chec:: pulse. This is undesirable for trouble location because valuaile information is wasted. If the proposed modification is not eatisfactory, further study should be made to find a system which preserves the contents of the CR after a faulty transfer.

The study of trouble location has now progressed far enough so that a thesis report can be written. Since the last report a method has been devisod for locating feults in shifting registers which cause a particular XF to receive simultanoous set and reset pulses.

